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Abstract
Trapped-ion quantum sensors have become highly sensitive tools for the search of physics beyond
the Standard Model. Recently, stringent tests of local Lorentz-invariance (LLI) have been
conducted with precision spectroscopy in trapped ions (Pruttivarasin et al 2015 Nature 517 592–5,
Megidish et al 2019 Phys. Rev. Lett. 122 123605, Sanner et al 2019 Nature 567 204–8, Dreissen et al
2022 Nat. Commun. 13 1–6) . We here elaborate on robust radio-frequency composite-pulse
spectroscopy at second long coherence times in the magnetic sublevels of the long-lived 2F7/2 state
of a trapped 172Yb+ ion which is scalable to spatially extended multi-ion systems. We compare two
Ramsey-type composite rf pulse sequences, a generalized spin-echo (GSE) sequence (Shaniv et al
2018 Phys. Rev. Lett. 120 103202) and a sequence based on universal rotations with 10 rephasing
pulses (UR10) (Genov et al 2017 Phys. Rev. Lett. 118 133202) that decouple the energy levels from
magnetic field noise, enabling robust and accurate spectroscopy. Both sequences are characterized
theoretically and experimentally in the spin-1/2 2S1/2 electronic ground state of

172Yb+ and results
show that the UR10 sequence is 38 (13) times more robust against pulse duration (frequency
detuning) errors than the GSE sequence. We extend our simulations to the eight-level manifold of
the 2F7/2 state, which is highly sensitive to a possible violation of LLI, and show that the UR10
sequence can be used for high-fidelity Ramsey spectroscopy in noisy environments. The UR10
sequence is implemented experimentally in the 2F7/2 manifold and a coherent signal of up to 2.5 s
is reached. In (Dreissen et al 2022 Nat. Commun. 13 1–6) we have implemented this sequence and
used it to perform the most stringent test of LLI in the electron–photon sector to date with a single
Yb+ ion. Due to the high robustness of the UR10 sequence, it can be applied on larger ion crystals
to improve tests of Lorentz symmetry further. We demonstrate that the sequence can also be used
to extract the quadrupole moment of the meta-stable 2F7/2 state, obtaining a value of
Θ = −0.0298(38)ea20 which is in agreement with the value deduced from clock measurements
(Lange et al 2020 Phys. Rev. Lett. 125 143201).

1. Introduction

Over the past decades, trapped-ion quantum sensors have become sensitive probes for physics beyond the
Standard Model [1]. Competitive tests of fundamental physical principles have been conducted with precise
measurements of quantum mechanical resonances, see, e.g. [2–4]. Often, magnetic sensitive states, which
strongly interact with the environment, need to be addressed spectroscopically. Decoherence from this
unwanted interaction often hampers the interrogation time and, as a result, the resolution of such
spectroscopic measurements. Methods to protect the system from environmental noise, developed in the
field of quantum information science, are now being exploited for robust quantum sensing and more
stringent tests of fundamental physics [5–8].
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In trapped ions, decoherence-free entangled states have been used to suppress the influence of magnetic
field noise [9, 10], e.g. to test local Lorentz-invariance (LLI) with up to four entangled Ca+ ions [11] and to
measure isotope shifts at the level of 10mHz in a pair of Sr+ ions [7]. In states with finite lifetime, entangled
states decohere faster than non-entangled ones, which may limit the interrogation time [11]. On the other
side, for states with extremely long lifetime as in ytterbium [12], the slow excitation rate leads to a
decoherence of the entangled states already in the preparation stage. Another approach to protect the
quantum system from magnetic field noise was invented by the nuclear magnetic resonance community
where clever spin-echo like sequences have been invented to decouple the quantum system from noise
[13, 14]. In the atomic physics community, this method has been adopted and pulsed electromagnetic fields
are used to engineer a robust system [15–17]. A proof-of-principle implementation of a generalized
spin-echo (GSE) Ramsey sequence in the 2D5/2 state in Sr

+, to reach coherence times of up to 30 ms with
110 rephasing pulses [18]. These high angular momentum states are more sensitive to pulse errors, and,
therefore, robust pulse sequences are required to extend the coherence time [19–23].

In this work we apply rf composite pulse Ramsey sequences based on the universal rotation (UR) method
with 10 rephasing pulses (UR10) [19] for precision metrology in the meta-stable 2F7/2 manifold of a trapped
172Yb+ ion. We demonstrate that the UR10 sequence is more robust than the less complex GSE method and
implemented it in a trapped ion for the first time to test LLI [24]. We compare the two rf sequences both
theoretically and experimentally in the more simple spin-1/22S1/2 electronic ground state of

172Yb+ and
show that the UR10 approach is 38 (13) times less sensitive to pulse duration (frequency detuning) errors
than the GSE sequence. We also simulate both sequences in a 8-level system at a 1 s Ramsey dark time. From
simulation, the UR10 only introduces an error of εUR10 = 3× 10−10. We apply the UR10 sequence in the
2F7/2 state and demonstrate a coherent signal of up to 2.5 s with 104 rephasing pulses. This sequence has
enabled the most stringent test of Lorentz symmetry in the electron–photon sector to date, in which all the
sublevels of the 2F7/2 manifold were used, including the most sensitivemJ =±7/2 substates as presented in
[24]. The method is also suitable for accurate measurements of QSs to determine the quadrupole moments
of meta-stable quantum states [25]. We demonstrate this in the 2F7/2 state and extract the quadrupole
moment to beΘ = −0.0298(38)ea20. This is in agreement with the value deduced from optical clock
measurement [26]. With a clever choice of the magnetic field orientation, we show that an accuracy can be
achieved that is competitive with the result from optical clock operation at the 10−18 level [26].

2. Theoretical description of the studied rf-sequences

It was first proposed that the principle of LLI could be tested with composite pulse Ramsey spectroscopy in
[18]. We here closely follow the same theoretical description of the physical system.

2.1. Physical system
We consider a system with total angular momentum J and magnetic sublevelmJ ∈ [−J,+J], denoted by
|J,mJ⟩, interacting with an applied quantization magnetic field (B-field) B= Bzẑ via its magnetic moment
µz. The Hamiltonian describing the free evolution of the quantum system contains a linear and a quadratic
part according to

Hfree = Hlin +Hquad = µzBz Jz +κ J2z , (1)

where Jz is the projection of the spin onto the quantization axis (ẑ) and κ is a parameter quantifying the
magnitude of the quadratic part of the Hamiltonian. As shown in figure 1 for the 2F7/2 manifold, the linear
term induces an equally spaced energy splitting between themJ substates from the first-order Zeeman effect.
The quadratic part describes am2

J -dependent energy shift∆E due to the quadrupole shift (QS) of the state
and a potential violation of the LLI denoted with the subscript LV, i.e. κ = κQS +κLV. A signal for a possible
Lorentz violation is encoded in small temporal modulations of κLV at harmonics of Earth’s rotation
frequency and its harmonics [18, 24].

When a driving rf field with an angular frequency of ωrf = ω0 + δω is applied to the system, where
ω0 = (µzBz)/h̄ is the frequency of the linear Zeeman splitting shown in figure 1 and δω is a small frequency
detuning, the coupling Hamiltonian is given by

Hcoup = Ω cos(ωrf t+ϕ) Jx . (2)

Here, Jx is the generalized Pauli matrix, Ω is the multi-level Rabi frequency and ϕ is the phase of the rf pulse.
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Figure 1. Zeeman substates within the 2F7/2 manifold of 172Yb+. With a defined quantization magnetic field B, the 2F7/2
manifold splits into eight Zeeman sublevels spanning frommJ = −7/2 tomJ = +7/2. Them2

J dependent terms in the
Hamiltonian lead to a non-linear energy shift∆E caused by the quadrupole shift and a potential Lorentz violation.

Table 1. Phases ϕi of the π-pulses for the generalized spin-echo (GSE) sequence and universal rotation sequence with 10 rephasing
pulses (UR10).

Sequence Phases ϕi Repetition n

GSE (1,−1) π/2 2
UR10 (0, 4, 2, 4, 0, 0, 4, 2, 4, 0) π/5 10

The total Hamiltonian of the state is the sum of the Hfree and Hcoup according to Htot = Hfree +Hcoup. In
the interaction picture and after applying the rotating-wave approximation, the Hamiltonian becomes

Htot = δω Jz +κ J2z +Ω
[
Jx cos(ϕ)− Jy sin(ϕ)

]
. (3)

In the following sections we investigate composite rf pulse sequences that suppresses the influence from
δω to extend the coherence time and accurately measure κ.

2.2. Modeling Ramsey-type experiments with dynamical decoupling
The response of a quantum system to a specific rf pulse sequence is modeled by calculating the final state
|Ψf⟩ after applying the rf sequence to an initial state |Ψi⟩. This is done numerically by applying a
combination of free evolution operators Tt and rf pulse operators Ut,ϕ to |Ψi⟩. We denote τ 0 as the time at
which the previous state was calculated, and ϕ as the phase of the rf pulse.

For a specific dark time t = tw, the state evolves freely as

|Ψ(τ0 + tw)⟩ = Ttw |Ψ(τ0)⟩ = exp [−i h̄ twHtot (Ω = 0,ϕ)] |Ψ(τ0)⟩ , (4)

and during a rf pulse of pulse duration t = tp, the state evolves according to

|Ψ
(
τ0 + tp

)
⟩ = Utp,ϕ|Ψ(τ0)⟩ = exp

[
−i h̄ tpHtot (Ω,ϕ)

]
|Ψ(τ0)⟩ . (5)

Here, we assume that changes in κ and δω are slow compared to tw and tp. A superposition ofmJ

substates is first created with a π/2-pulse of duration tp = π/(2Ω) by applying the operator Uπ/2,0. Then the
state evolves freely by applying the operator Ttw , after which a π-pulse of duration tp = π/Ω with a specific
phase ϕi is applied using the operator Uπ,ϕi and another dark time of tw follows. The phases of the n rf pulses
in the specific sequences investigated in this work are given in table 1. The composite rf pulse sequences
consist of n repetitions of the combination [Ttw] – [Uπ,ϕi] - [Ttw]. After the composite rf pulse sequence, a
final π/2-pulse with a phase of π with respect to the first π/2-pulse is applied with the operator Uπ/2,π to
measure the acquired phase during the dark time via the fraction of the population that is retrieved back into
the initialmJ state. Thus we can write the final state as

3
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Figure 2. Bloch sphere representation of the GSE and the UR10 sequences with one repetition Nrep = 1. The rf detuning δω is
scaled to the rf Rabi frequencyΩ as ηω = δω/Ω and pulse duration error δt is scaled to the π-pulse duration tπ as ηt = δt/tπ .
The states |Ψ0⟩ and |Ψ1⟩ are denoted in red and black, respectively. The purple circle indicates the start of the first π-pulse.
Figures (a) and (c) show the state evolution of the GSE and the UR10 sequences, respectively, with ηω = −0.03 and ηt = 0.
Figures (b) and (d) show the state evolution of the GSE and UR10 sequences, respectively, with ηω,t = −0.03. For figures (a) and
(b), the state starts off at the equator at the red dot and after a combination of three periods of free evolution and two π-pulses
with specific phases, lands at the location shown with the black dot. The sequence introduces an error of εGSE = 3× 10−3. For
(c) and (d), the state starts off at the equator at the red dot and after a combination of eleven periods of free evolution and ten
π-pulses with specific phases. A simulation with tw = 100µs shows that the sequence introduces an error of εUR10 = 2× 10−16.

|Ψf⟩ = Uπ/2,π ·
n∏

i=1

(Ttw ·Uπ,ϕi ·Ttw) ·Uπ/2,0|Ψi⟩ . (6)

In order to extend the Ramsey dark-time to several seconds, the modulation sequence is repeated Nrep times.
The final state is thus given by

|Ψf⟩ = Utot|Ψi⟩ = Uπ/2,π ·
Nrep∏
N=1

n∏
i=1

(Ttw ·Uπ,ϕi ·Ttw)N ·Uπ/2,0|Ψi⟩ . (7)

The total Ramsey dark time TD = 2n ·Nrep · tw is given by free evolution time, i.e. the sum of all the tw.
The pulse sequence cancels dephasing from the linear contribution in the Hamiltonian, proportional to δω,
and the phase that is acquired during the dark time is only dependent on energy shifts induced by the
quadratic part proportional to κ. The value of tw that allows for successful rephasing of the state vector is
determined by the ambient magnetic field noise in the experimental environment. In our case, tw was limited
to tw ≲ 200µs.

2.3. Simulation of robustness against rf pulse imperfections
In order to use this method for a sensitive test of LLI in the 2F7/2 state of Yb

+ and to extract the quadrupole
moment of this state, a Ramsey dark time of on the order of one second should be reached, in which case
several thousands of rephasing pulses are applied. Small imperfections in these rf pulses, such as a detuning
or a pulse duration error, accumulate quickly and induce dephasing of the atomic state before the required
dark time is reached. Therefore, we characterize the robustness of the studied sequences against these types
of pulse errors.

To describe the influence of pulse errors on the rf sequence in an intuitive manner, the state
evolution is shown on the Bloch sphere, see figure 2. Here, |Ψ0⟩ = Uπ/2,0|Ψi⟩, is shown in red, and
|Ψ1⟩ =

∏n
i=1 (Ttw ·Uπ,ϕi ·Ttw) |Ψ0⟩, is shown in black. The state vector is considered to be rephased

4
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successfully if the position on the Bloch sphere is the same for |Ψ0⟩ and |Ψ1⟩. A rf detuning δω is scaled to
the rf Rabi frequency Ω as ηω = δω/Ω and a pulse duration error δt is scaled to the π-pulse duration tπ as
ηt = δt/tπ . The purple circle indicates the start of the first π-pulse. Figure 2(a) shows the state evolution
with the GSE sequence for ηω = −0.03 and ηt = 0, while in figure 2(b) both pulse errors are set to
ηω,t = −0.03. Figures 2(c) and (d) shows the state evolution with the UR10 sequence for the same values of
ηω,t as in (a) and (b), respectively. At Nrep = 1, tw = 100µs and with a pulse error of ηω,t = −0.03, the GSE
sequence introduces an error of εGSE = 1− |⟨Ψ1|Ψ0⟩|2 = 3× 10−3. The error would accumulate as Nrep

increases and the spin can no longer be rephased. For the UR10 sequence, the spin rephasing only introduces
an error of εUR10 = 2× 10−16. Therefore, this sequence can be used to suppress first order dephasing effects
while having detuning and pulse duration errors.

To investigate the tolerance of the rf sequences to these types of pulse errors quantitatively, the fidelity
can be calculated according to

F (ηω,ηt) = |⟨Ψideal|Utot (ηω,ηt) |Ψi⟩|2 , (8)

where the frequency detuning ηω and the pulse duration error ηt are introduced in each evolution operator
and |Ψideal⟩= Utot(ηω = 0,ηt = 0)|Ψi⟩ is the ideal outcome of an experiment. For the numerical
implementation of equation (7) in Python, the QuTip package [27, 28] was used to provide the generalized
Pauli matrices Jx/y/z for arbitrary states J. In the following sections, the fidelity will be simulated for different
ηω,t and compared with experimental results to investigate the robustness of the composite rf pulse
sequences.

3. Investigation of the robustness of rf pulse sequences

For accurate spectroscopic measurements using the rf sequence in the 2F7/2 manifold, coherent population
transfer to and from the 2F7/2 manifold via the highly forbidden electric octupole (E3) transition from the
electronic ground state 2S1/2 is required. Excitation of the ion via the E3 transition is slow; at a typical Rabi
frequency of Ω = 2π×10 Hz, full population transfer takes about tπ = π/Ω = 50ms [29]. To gather
enough statistics, each measurement is repeated 50 times, during which significant drifts of the rf power and
the quantization B-field occur. Therefore, it is impractical to map out the stability of the rf sequences
experimentally in the 2F7/2 manifold. Instead, we first investigated the sequences in the spin-1/22S1/2
electronic ground state of the 172Yb+ ion, where state preparation is simple and no ultra-stable laser is
required. We then implement and test the sequence that meets the requirements in the 2F7/2 manifold.

For simplicity, from now on, the notations |S,mJ⟩, |D,mJ⟩ and |F,mJ⟩ will be used for the Zeeman
sublevels of the 2S1/2,

2D5/2 and
2F7/2 manifolds, respectively.

3.1. Experimental setup
We carried out the experimental investigation of the rf sequences with an 172Yb+ ion that is trapped in a
segmented rf Paul trap, for details of the trap see [30]. Figure 3(a) shows a reduced energy level diagram with
the relevant transitions. The ion is cooled to the Doppler temperature of T ≈ 0.5mK via the dipole allowed
2S1/2 → 2P1/2 transition near 370 nm. Spontaneous decay occurs from the 2P1/2 state to the

2D3/2 state. Via
the 2D3/2 → 3[3/2]1/2 transition near 935 nm, the population is pumped back to the cooling cycle. The same
cycle is used for fluorescence detection of the internal state of the ion. A circularly polarized σ± laser beam
on resonance with the 370 nm transition, propagating parallel to the quantization B-field, is used for
selective optical pumping into either one of the |S,±1/2⟩ states. The electric quadrupole (E2) transition near
411 nm can be used to excite the ion to the 2D5/2 state. The 411 nm beam of P411 ≈ 0.4 mW is focused down
to a waist of w411 ≈ 83µm at the position of the ion to reach a Rabi frequency of ΩE2 ≈ 2π× 31.3 kHz.
From this state, there is a probability that the ion decays to the 2F7/2 state, which has a very long lifetime of
approximately 1.6 years [12]. Therefore, the 2F7/2 → 1[5/2]5/2 and

2D5/2 → 2P3/2 transitions near 638 nm
and 1650 nm are used as repumpers to bring the population back the electronic ground state. The E3
transition near 467 nm is used to coherently transfer the population to and from the 2F7/2 state.

For the orientation of the quantization B-field and the probe beams near 411 nm and 467 nm, see
figure 3(b). The B-field lies in the xz plane at an angle of β =26.8(4.0)◦ with the trap axis ẑ. The magnitude
of the field can be tuned between B =50 – 250µT. The 467 nm (411 nm) laser beam points in the−ŷ (+ŷ)
direction and is polarized parallel (perpendicular) to the B-field.

For interrogation of the E3 transition, a beam of 6 mW is focused down to a waist of
(wx,wy) ≈ (26,38)µm at the ion to reach a Rabi frequency of ΩE3 ≈ 2π×10 Hz. At this Rabi frequency, the
full-width-half-maximum (FWHM) linewidth of the |S,±1/2⟩ → |F,±1/2⟩ E3 transition is
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Figure 3. (a) Reduced energy level diagram of 172Yb+. Doppler cooling and repumping are carried out on the transitions near
370 nm and 935 nm, respectively. Optical pumping into either one of the |S,±1/2⟩ states is done via a σ±-polarized 370 nm laser
beam parallel to the magnetic field (B-field). Repumpers near 1650 nm and 638 nm are used to bring the population back to the
ground state after excitation to the 2D5/2 or

2F7/2 state on the transitions near 411 or 467 nm, respectively. (b) Laser and
quantization B-field orientation. The B-field lies in the xz plane at an angle of β = 26.8(4.0)◦ with the trap axis ẑ. The 467 nm
(411 nm) beam points in the−ŷ (+ŷ) direction with a polarization parallel (perpendicular) to the B-field. The resonant circuit
including an antenna coil used for rf spectroscopy has a diameter of dc =4.5 cm and is mounted hc =5.5 cm above the ion. (c)
Reduced experimental sequence for rf spectroscopy in the 2S1/2 manifold (‘2S1/2 seq.’) and in the

2F7/2 manifold (‘2F7/2 seq.’). ‘C’
denotes Doppler-cooling via the 370 nm transition, ‘O’ denotes optical pumping, and ‘rf ’ is the rf sequence. ‘E2’ and ‘E3’
represent the excitation via the electric quadrupole and electric octupole transitions, respectively. ‘R’ is the repumping via
transitions near 1650 nm and 638 nm.

νFWHM ≈20 Hz, while this transition has a Zeeman sensitivity of δν(∆m = 0) = 6GHz/T. Therefore, the
B-field noise needs to be reduced to the level of δB < 1 nT to achieve coherent E3 excitation within
τπ =50–100 ms. We reach the required stability at frequencies of up to 550 Hz by applying active feedback
on the B-field. A magnetic field sensor4 mounted hs ≈ 8.5 cm above the ion is used in the feedback loop. A
resonant circuit including an antenna coil is used for rf spectroscopy. It has a diameter of dc = 4.5 cm and is
mounted hc = 5.5 cm above the ion to produce a field along the−ŷ direction (see figure 3(b)) at a resonance
frequency of νc = 3.5147(7)MHz with a temperature sensitivity of dν/dT =7.3 kHz ◦C−1. The pulses are
generated by a AD9910 direct digital synthesizer in the Sinara hardware5. The phases of the pulses have to be
a rational number in units of π, which facilitates the implementation of the UR10 sequence.

3.2. RF resonance frequency and Rabi frequency
To implement the rf sequences, we first measure the resonance frequency of the Zeeman splitting and the rf
Rabi frequency in both the 2S1/2 and the

2F7/2 manifolds. The sequences used for these measurements are
shown in figure 3(c). In both cases, the ion is first cooled to Doppler temperature and then the population is
optically pumped to the |S,−1/2⟩ state. In the case of the 2S1/2 sequence, a single rf pulse is then applied,
followed by excitation on the |S,−1/2⟩ → |D,−5/2⟩ E2 transition to shelve the population to the 2D5/2 state
for state selective fluorescence detection. For the 2F7/2 sequence, a |S,−1/2⟩ → |F,−1/2⟩ E3 excitation pulse
is applied before and after the rf pulse. In both cases, fluorescence detection is used to determine the internal
state of the ion and a repumping sequence is applied to prepare the ion for the next measurement run.

Figures 4(a) and (b) show typical measurements in the 2S1/2 manifold with each measurement point
averaged over 100 repetitions and figures 4(c) and (d) show those in the 2F7/2 manifold with an averaging of
50 repetitions. The y-axis denotes the population that is still left in the initial state after applying a single rf
pulse. Either the pulse duration (figures 4(a) and (c)) or the applied rf frequency (figures 4(b) and (d)) is

4 SENSYS Magnetometer & Survey Solutions, SENSYS FGM3D.
5 https://m-labs.hk/experiment-control/sinara-core/.
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Figure 4. Example of measurements to determine (a) and (c) the Rabi frequency and (b) and (d) the rf center frequency in both
the 2S1/2 and

2F7/2 manifold. For both measurements in the 2S1/2 and
2F7/2 manifolds, the ion is prepared in themJ = −1/2

state. The population that remains in the initial state after applying a single rf pulse is measured, from which the Rabi frequency
and the resonance frequency are extracted. (a) The two-level Rabi frequency in the 2S1/2 state isΩS = 2π× 60.5(4) kHz. (b) The

measured rf center frequency in the 2S1/2 state is ν0 = 3.5942(7)MHz. (c) The multi-level Rabi frequency in the 2F7/2 state is

ΩF = 2π× 28.1(1) kHz. (d) The measured rf center frequency in the 2F7/2 state is ν0 = 3.5510(6)MHz. The fluctuations in (c)
and (d) comes from slow drifts of the E3 transition frequency during the measurement.

varied. The pulse duration is scaled to 1/Ωk, where Ωk is the Rabi frequency in either the 2S1/2 manifold
(k = S) or the 2F7/2 manifold (k = F). The population is transferred fully from themJ = −1/2 state to the
mJ = +1/2 state at νrf = ν0 and trf = π/Ωk. From the measurements shown in figures 4(a) and (b), a Rabi
frequency of ΩS = 2π× 60.5(4) kHz and a resonance frequency of ν0 = 3.5942(7)MHz are extracted at a
quantization field of B ≈ 128µT. From the measurements conducted in the 2F7/2 manifold, a Rabi frequency
and resonance frequency of ΩF = 2π× 28.1(1) kHz and ν0 = 3.5510(6)MHz are extracted, respectively, at
a quantization field of B ≈ 222µT. The finite excitation probability of about 85% on the E2 transition
originates from the 7ms lifetime of the 2D5/2 state, thermal decoherence from average phonon occupation
number of n̄ = 15 and imperfect polarization and pulse duration of the 411 nm beam. The fluctuations in
figures 4(c) and (d) are caused by slow drifts of the E3 transition frequency during the measurement.

In figures 4(b) and (d), the FWHM linewidth of the rf center frequency in the 2S1/2 manifold is
νFWHM,S ≈ 60 kHz at ΩS = 2π× 60.5(4) kHz, while in the 2F7/2 manifold it is νFWHM,F ≈ 10 kHz at
ΩF = 2π× 28.1(1) kHz. The ratio of these quantities, νFWHM,S/ΩS ≈ 2.8× νFWHM,F/ΩF, shows that the
relative width of the 2F7/2 resonance is 2.8 times smaller compared to that in the 2S1/2 manifold at similar
Rabi frequencies. Hence, the state in the 2F7/2 manifold is more sensitive to fluctuations in rf power and
magnetic field environment causing pulse errors.

3.3. Comparison between simulations and experiments in the 2S1/2 state
We now investigate the fidelity of a rf pulse sequence as a function of the relative pulse errors, ηω and ηt in a
spin-1/2 quantum system. For comparison, we perform measurements in the 2S1/2 electronic ground state of
172Yb+ to characterize various regions of the stability diagram experimentally.

The sequence used for the measurements (see ‘2S1/2 seq.’ in figure 3(c)) is similar to the one described in
section 3.2, but now the single rf pulse is replaced with the full composite rf pulse sequence and the E2
shelving pulse addresses the |S,+1/2⟩ → |D,+5/2⟩ transition. The experimental fidelity of the rf sequences
is defined in the following way. If the ion appears bright with fluorescence detection, shelving via the E2
transition was not successful and the population is in the |S,−1/2⟩ state as intended, in which case F = 1
(see equation (8)). In the opposite case, the ion appears dark, meaning that the population was transferred to
the |S,+1/2⟩ state and then shelved to the 2D5/2 manifold, i.e. F = 0. Note that the final Ramsey π/2-pulse
has a phase of ϕ = π, which brings the population back to the initial |S,−1/2⟩ state at the end of the rf
sequence. Each measurement point is averaged over 50 repetitions. The finite excitation probability of about
85% on the E2 transition originates from the 7ms lifetime of the 2D5/2 state, thermal decoherence from
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Figure 5. Simulation and experimental verification of the GSE and UR10 sequences in a spin-1/2 system at a Ramsey dark time of
TD =10 ms. Figure (a) shows the stability diagram for pulse errors ηω and ηt for the GSE sequence and figure (b) shows the
UR10 sequence. The grey scale indicates the fidelity from 0 to 1. The colored lines show the region where the sequences are
investigated experimentally in the 2S1/2 electronic ground state of

172Yb+. The yellow box indicates the threshold that was set in
our experiment. Figures (c) and (d) show the experimental results of the GSE and the UR10 sequence, respectively. The colors of
the data points correspond to the region indicated in (a) and (b), and the grey solid areas show the simulated results with a typical
B-field fluctuation of δB =1–2 nT within a measurement time of 4–5min. Each measurement point is averaged over 50
repetitions. From the simulation, the UR10 sequence tolerates 38 and 13 times larger values of ηt and ηω , respectively, compared
to the GSE sequence.

average phonon occupation number of n̄ = 15 and imperfect polarization and pulse duration of the 411 nm
beam. To compare the experimental results with the simulated fidelity, the background of 15% is subtracted
and the data is re-normalized.

For a long coherence time within the 2F7/2 manifold, the fidelity of the rf sequence is required to be high.
The quantitative minimum requirements we set on the robustness of the sequences are given by experimental
parameters. For Ramsey spectroscopy in the 2F7/2 manifold, the excitation probability on the E3 transition
and the fidelity of the rf sequence determines the contrast and, as a result, the measurement sensitivity. Since
the E3 excitation probability is around 0.85, a minimum requirement for the fidelity of F ⩾ 0.85 at
TD ≈ 1 s is set. Furthermore, from the measurements shown in figures 4(c) and (d), the rf resonance
frequency can only be determined with an accuracy of σηω

= ±0.021 and the pulse duration with an
accuracy of σηt = ±0.004. Therefore, we require the fidelity for the rf sequences to be F ⩾ 0.85 in the rf
pulse error range of−0.021 < ηω < 0.021 and−0.004 < ηt < 0.004 in our experiment.

To verify that the simulations of the GSE and the UR10 agree with our experiment, we first show the
simulated fidelity of the rf sequences in the two-level 2S1/2 system at a Ramsey dark time of TD =10 ms in
the stability diagrams of figures 5(a) and (b). Here we simulated fixed pulse errors, i.e. errors that are the
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Figure 6. Simulation of the fidelity of the GSE and UR10 sequences in the eight-level system with 1 s of Ramsey dark time. The
grey scale indicates fidelity from 0 to 1. The stability diagram for (a) the GSE and (b) the UR10 sequence is obtained by varying ηω
and ηt . The yellow box represents the threshold of |ηω | < 0.021 and |ηt| < 0.004 for which we require F ⩾ 0.85. For the GSE
sequence, the requirement is clearly not met, while the UR10 sequence stays above 0.85 for a much larger range of |ηω | < 0.06
and |ηt| < 0.075. Within the yellow box, the maximum error that the UR10 sequence introduces is εUR10 = 3× 10−10.

same for every π-pulse in a sequence throughout an experiment. The grey scale indicates the fidelity from 0
to 1. In these sequences, the wait time was set to tw = 100µs and 50 rephasing pulses were applied.

3.3.1. GSE sequence
The stability diagram of the GSE sequence is shown in figure 5(a). The colored lines in the figure indicate the
range in which the sequence is investigated experimentally. The yellow box indicates the error range that was
set in our experiment. The experimental results are shown in figure 5(c), where the data points are given in
the same colors as the ranges indicated in figure 5(a) and the grey shaded areas are the corresponding
simulated results, where a typical B-field fluctuation of δB =1–2 nT within a measurement time of 4–5min
was taken into account. Overall, the data agrees well with the simulations. During the measurements, the
magnetic field was set to B ≈122µT, at which the rf center frequency was ν0 = 3.423(1)MHz and the Rabi
frequency was ΩS = 2π× 40.0(2) kHz, resulting in a π-pulse duration of tπ = 12.5(1)µs. Note that these
values differ from the ones given in section 3.2 because they were taken at different B-fields.

The simulation shows a clear fringe pattern. Within the center fringe, at a fixed value of |ηω| = 0.021
corresponding to the experimental measurement uncertainty, a fidelity of F ⩾0.85 is reached for
|ηt| < 0.01. Similarly, a fidelity of F ⩾0.85 is reached for |ηω| < 0.03 for a fixed pulse duration error
|ηt| = 0.004. Therefore, the GSE sequence just meets the requirements set at the beginning of section 3.3 in
this case. However, the sequence does not allow for additional drifts of the magnetic field or the rf power.
Furthermore, the simulations and measurements are done with a dark time of only 10 ms. For longer dark
times, as required in the test of LLI, the acceptable stability range becomes even smaller and will be shown in
section 3.4.

3.3.2. UR10 sequence
The stability diagram of the UR10 sequence is shown in figure 5(b). The experimental data (see figure 5(d))
and the simulated curves agree well also for the UR10 sequence. During this measurement, the magnetic field
was B ≈ 128µT, at which the center frequency and the Rabi frequency were measured to be
ν0 = 3.5942(7)MHz and ΩS = 2π× 38.40(6) kHz, respectively, corresponding to a π-pulse duration of
tπ = 13.0(2)µs.

The stability diagram is much more homogeneous than that of the GSE sequence. The simulation shows
that the fidelity F ⩾0.85 for |ηt| < 0.38 at a fixed |ηω| = 0.021. The allowed frequency detuning error is
|ηω| < 0.4 for a fixed |ηt| = 0.004. The UR10 sequence easily meets the experimental requirements of
F ⩾0.85 at |ηω| < 0.021 and |ηt| < 0.004 and, therefore, allows for additional drifts of both the magnetic
field and the rf power. The UR10 sequence tolerates 38 and 13 times larger errors of ηt and ηω , respectively,
compared to the GSE sequence. The UR10 sequence, therefore, enables robust precision rf spectroscopy even
in noisy lab environment in a spin-1/2 system.

3.4. Simulation of the rf pulse sequences in an eight-level system
To characterize the robustness of the GSE and UR10 sequences for high-precision Ramsey spectroscopy in
the 2F7/2 manifold, we simulate the stability diagram in the eight-level system at TD =1 s. The results for the
GSE and UR10 sequence are shown in figures 6(a) and (b), respectively. In both simulations, the wait time
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was set to tw = 100µs and to reach the required Ramsey dark time, a total of 5000 rephasing pulses were
applied. In this case, Nrep = 2500 and Nrep = 500 for GSE and UR10 sequences, respectively.

The stability diagram of the GSE sequence is simulated for a range of−0.025 < ηω < 0.025 and
−0.012 < ηt < 0.012. Even in this small error range, a narrowly spaced fringe pattern is observed. The
stability diagram of the UR10 sequence is simulated for a much larger error range of−0.10 < ηω < 0.10 and
−0.15 < ηt < 0.15 and looks more homogeneous. Given our experimental uncertainties of |ηω|< 0.021
and |ηt|< 0.004, the GSE sequence is clearly not robust enough for our application. This is further illustrated
with the yellow boxes shown in the figure, which indicate the bounds of our experimental uncertainties of ηω
and ηt . The UR10 sequence tolerates much larger errors of |ηω| < 0.06 and |ηt| < 0.075 to maintain a
F ⩾0.85. Within the experimental uncertainties, the error that the UR10 sequence introduces is only
εUR10 = 1−F = 3× 10−10. Hence, the UR10 sequence can be used for rf spectroscopy even at TD =1 s.

4. Ramsey spectroscopy with the UR10 sequence at second-long coherence time

An example of useful implementation of the UR10 sequence is for a test of LLI that is based on a search for a
m2

J -dependent energy shift between the sublevels in the
2F7/2 manifold that oscillates at frequencies related to

Earth’s rotation [18, 24]. Such an energy shift is transferred via the UR10 composite pulse Ramsey sequence
into modulations in the retrieved population in the |F,−1/2⟩ state after the final rf Ramsey π/2-pulse. For
implementation of the UR10 sequence in the 2F7/2 manifold, the experimental ‘2F7/2’ sequence, see
figure 3(c), is used. After the last Ramsey π/2-pulse and de-excitation on the E3 transition, the retrieved
population Pr in the |F,−1/2⟩ state is measured via fluorescence detection. If a phase accumulates during the
Ramsey dark time, this population will be reduced.

Other than a potential Lorentz violation, the quadratic term also contains the QS (see section 2), which is
induced by the electric field gradient in the linear rf Paul trap. From bothm2

J -dependent energy shifts a phase
accumulates during the Ramsey dark time TD. However, the accumulated phase caused by a hypothetical
violation of the LLI will oscillate specifically at the sidereal day frequency (ω⊕ = 2π/23.934 h) and its
harmonics [24]. To get the highest sensitivity to these types of oscillations, TD is set such that |dPr/dTD| is
largest. To find this value, Pr is measured as a function of TD, as shown in figure 7. The different colors
correspond to measurements at different values of κ. The value of κ is modified via the axial trap
confinement. The data points show the experimental results and the curves are obtained from simulations.
The orange and green curves correspond to κ = 130mrad s−1 and κ = 95mrad s−1 with an axial secular
frequency of νax = 237 kHz and νax = 202 kHz, respectively. Both simulated curves agree well with the
measured data, for dark times of up to TD = 2.5 s. The observed coherence time is a factor of 104 longer
compared to a simple Ramsey sequence, i.e. two π/2-pulses, in which case we measured a coherence time of
tcoh ≈ 250µs. The grey dashed line at 75% represents the maximum contrast of the experiment. The
contrast is limited by the excitation and de-excitation probability on the E3 transition of 85%. The optimum
Ramsey dark time for a test of LLI was determined to be TD = 1.15 s for κ = 130mrad s−1, as indicated by
the vertical dash-dotted pink line in the figure. At these operating conditions, we have demonstrated an
unprecedented sensitivity to a potential LLI violation of σκLV = 372(9)/

√
τ mrad·s−1 [24], enabling 10

times shorter averaging times compared to the previous best test of LLI in Yb+ [2]. Here, the quadrupole
momentΘ of the 2F7/2 state was taken to beΘ = −0.0297(5)ea20 [26], where e is the electron charge and a0
is the Bohr’s radius.

Alternatively, we can also determine the QS and extract the quadrupole moment of the 2F7/2 state. The
relation of κ and νax is given as [25]

κ = −2π · 1

4h
·
J(1+ J)− 3m2

J

J(2J− 1)
· dEz
dz

·Θ ·
(
3cos2β− 1

)
, (9)

where h is the Planck’s constant and β is the angle between the trap axis and the quantization magnetic field.
In our case, J = 7/2,mJ = 1/2, β = 26.8(4.0)◦ and dEz/dz is the electric field gradient that can be
determined from the axial secular frequency according to dEz/dz = mYb · (2πνax)2/e, as contributions of the
field gradient from other sources are much lower. Here,mYb is the mass of ytterbium ion. From a fit of the
data at a secular frequency of νax = 235.72(10) kHz, we obtain a fitted value of κ =123(5)mrad s−1. With
these parameters, we can determine the quadrupole moment of the 2F7/2 state asΘ = −0.0298(38)ea20. This
value agrees with the value deduced from clock measurements at 10−18 level in [26] ofΘ = −0.0297(5)ea20.
At this level, the uncertainty ofΘ is governed by the uncertainty of the orientation of the magnetic field
σβ = 4◦. At the current value of β,Θ is most sensitive to σβ . By choosing β = 0, we can sufficiently
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Figure 7. The retrieved population Pr as a function of Ramsey dark time TD at different values of the κ. The colored points
indicate measured data, and the curves are obtained from simulations. The orange and green curves correspond to
κ = 130mrad s−1 and κ = 95mrad s−1 with an axial secular frequency of νax = 237 kHz and νax = 202 kHz, respectively.
Here, the quadrupole momentΘ of the 2F7/2 state was taken to beΘ = −0.0297(5) ea20 [26]. The grey dashed line at 75%
represents the maximum contrast of the experiment. The contrast is limited by the excitation and de-excitation probability on the
E3 transition of 85%. The Ramsey dark time of TD = 1.15 s, as used is our work in [24], is indicated with the vertical dash-dotted
purple line.

suppress the effect from σβ by maximizing (3cos2β− 1). At this extreme point (β = 0), the same
uncertainty of σβ = 4◦ and σκ = 5mrad s−1 already leads to an uncertainty ofΘ as σΘ = 8× 10−4 ea20.

5. Scalability of the rf sequence for multi-ion spectroscopy

For more sensitive Ramsey spectroscopy based on the composite rf pulse sequence with multiple ions, we
need to determine the homogeneity of the quantization B-field and the driving rf-field. This is done via
measurements of the center frequencies of the |S,−1/2⟩ → |D,−5/2⟩ E2 transition and the rf Rabi
frequencies in the spin-1/22S1/2 ground state along an ion Coulomb crystal. From the spread of the center
frequencies of the E2 transition and the spread of the rf Rabi frequencies along the ions, we can deduce the
B-field gradient and the rf-field gradient, respectively.

The measurement is done via simultaneous spectroscopy of six ions along a 120µm Coulomb crystal.
Each ion is represented with a different color. Figure 8(a) shows the excitation probability of the
|S,−1/2⟩ → |D,−5/2⟩ transition. The variation in the observed excitation probability is caused by the finite
waist of the 411 nm laser beam of w411 = 83µm as described in section 3.1. Figure 8(b) shows the differences
of the extracted center frequency compared to a common mean frequency of the E2 transition νc. From a
linear fit, the gradient of the center frequency is determined to be dν/dz = −0.085(61)Hzµm−1,
corresponding to a B-field gradient of dB/dz = −3.0 pTµm−1. The maximum observed difference in the
center frequency is δν =10.2 Hz, which translates to∆ηω = 0.0004 for rf spectroscopy in the 2F7/2
manifold. Figure 8(c) shows the measurement of the population transfer of the ions within the 2S1/2
electronic ground state with respect to the rf pulse duration. The population is optically pumped to the
|S,−1/2⟩ state and state selective fluorescence detection via the |S,−1/2⟩ → |D,−5/2⟩ E2 transition is
applied. To ensure that the state detection is not dependent on the probe light intensities seen by each
individual ion, we apply a long 15 ms laser pulse to transfer the population out of the electronic ground state.
Due to the lifetime of the state of about 7 ms [31–33], inefficient shelving is observed in the measurement.
Figure 8(d) shows the extracted ηt for each ion and a fitted gradient of dηt/dz = 9(11)× 10−6 µm−1. This
gives a maximum of∆ηt = 0.001 along the crystal.

The extracted values of∆ηω,t over a range of 120µm are small compared to the allowed range of
|ηω| < 0.021 and |ηt| < 0.004. Therefore, multi-ion rf Ramsey spectroscopy with on the order of 10 ions in
a linear chain simultaneously could be done with the UR10 sequence to improve the sensitivity of the
measurement by

√
10 and perform a better test of LLI in the future.
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Figure 8. Homogeneity measurement of the quantization magnetic field and the driving rf field for rf spectroscopy. All
measurements are done with simultaneous spectroscopy of six ions along a 120µm Coulomb crystal. (a) The measured center
frequency of the E2 transition. Frequencies are subtracted by mean frequency of the E2 transition νc . (b) The E2 transition
frequency of each ion at different positions of the Coulomb crystal. From a linear fit, the gradient of the center frequency gradient
is determined to be dν/dz = −0.085(61)Hzµm−1, corresponding to a B-field gradient of dB/dz = −3.0 pTµm−1. The
maximum observed difference in the center frequency is δν =10.2 Hz, corresponding to∆ηω = 0.0004 for rf spectroscopy in
the 2F7/2 manifold. (c) The measurement of the population transfer of the ions within the 2S1/2 electronic ground state with
respect to the rf pulse duration from 5 ms to 5.15 ms. (d) The extracted ηt and the fitted gradient of dηt/dz = 9(11)×
10−6 µm−1, corresponding to∆ηt = 0.001.

6. Conclusion

We investigated rf composite pulse Ramsey spectroscopy in the meta-stable eight-level 2F7/2 manifold of a
trapped 172Yb+ ion and implemented the robust the UR10 sequence for a sensitive test of LLI [24]. A
potential Lorentz violation would manifest itself as a modulation of the energy difference between Zeeman
sublevels at a period related to a sidereal day (23.934 h). Therefore, an accurate test of LLI requires
continuous data taking over the course of several weeks, throughout which the experiment needs to operate
stably and reliably. We investigated the robustness of the GSE and UR10 sequences against pulse errors,
specifically rf detuning and pulse duration errors, that accumulate during the measurement sequence. Due to
the slow population transfer via the E3 transition to the 2F7/2 manifold, we first characterize the robustness
of the rf sequences in the spin-1/22S1/2 ground state of

172Yb+.
The stability diagram of two specific sequences, the GSE and the UR10 sequence, were simulated in a

spin-1/2 system as a function of pulse errors. The final state was compared to the desired state to determine
the fidelity (F ) of the sequences. We quantitatively investigate the robustness of a sequence to pulse errors by
comparing them to our experimental uncertainties of δηω = ±0.021 and δηt = ±0.004, where ηω and ηt
are a measure for the detuning and the pulse duration error, respectively. We simulated the sequences at a
Ramsey dark time of TD =10 ms (in total 50 rephasing pulses) and find good agreement with experimental
results. Under these conditions, we found that the GSE sequence performs just within the limit of our
required stability, while the UR10 sequence has 38 and 13 times higher tolerance to pulse duration errors and
detuning errors, respectively. The simulations were extended to an eight-level quantum system and the
robustness of the rf sequences was investigated in the 2F7/2 manifold. The stability diagrams show that the
UR10 sequence only introduces an error of εUR10 = 3× 10−10 even at TD = 1 s.

The UR10 sequence was experimentally implemented in the 2F7/2 manifold and a coherent signal of up
to TD = 2.5 s was observed. For a test of LLI, optimal measurement conditions were found at a Ramsey dark
time of TD = 1.15 s and the highest sensitivity to the validity of LLI in the electron–photon sector to date was
reached [24]. Owing to the robustness of the rf sequence to pulse errors, a further extension of the method to
larger ion Coulomb crystals is possible for more accurate tests of LLI in the future. Initial measurements
show that the gradient of the quantization magnetic field and rf field meet the requirements to extend the
UR10 sequence to a linear Coulomb crystal of 10 ions extended over 120µm without a significant loss of
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fidelity from ion to ion. We also showed that this method can be used to accurately measure quadrupole
moments of meta-stable states, such as that of the 2F7/2 state. With our measurement, we determined the
quadrupole moment of the 2F7/2 state to beΘ = −0.0298(38)ea20. With a rotated axis of the magnetic field
(β = 0), an uncertainty of σΘ = 8× 10−4 ea20 can be achieved with this method, which is competitive to
optical clock measurements at the 10−18 level [26]
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