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Abstract. A computational method based on Chebyshev series to rigorously compute solutions
of initial and boundary value problems of analytic nonlinear vector fields is proposed. The idea is
to recast solutions as fixed points of an operator defined on a Banach space of rapidly decaying
Chebyshev coefficients and to use the so-called radii polynomials to show the existence of a unique
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1. Introduction. In this paper, we propose a rigorous numerical method based
on the Chebyshev polynomials to compute solutions of nonlinear differential equa-
tions. More explicitly, the field of rigorous numerics develops algorithms that provide
approximate solutions to a problem together with precise bounds within which exact
solutions are guaranteed to exist in the mathematically rigorous sense. In this con-
text, the main idea of our proposed approach is to expand the solution of a given
differential equation using its Chebyshev series, plug the expansion in the equation,
obtain an equivalent infinite dimensional problem of the form f(x) = 0 to solve in
a Banach space of rapidly decaying Chebyshev coefficients and to get the existence,
via a fixed point argument, of a genuine solution of f(x) = 0 nearby a numerical
approximation of a finite dimensional projection of f . The fixed point argument is
solved by using the radii polynomials (e.g. see [1]), which provide an efficient way of
constructing a set on which the contraction mapping theorem is applicable.

Before proceeding further, it is worth mentioning that a similar approach based
on Fourier series is widely used in the field of rigorous numerics to compute solutions
of differential equations with periodic profiles. For instance, time periodic solutions
of ODEs [2, 3], stationary solutions of PDEs with periodic or Neumann boundary
conditions [4, 5, 6, 7], time periodic solutions of delay differential equations [8, 9] and
invariant sets of infinite dimensional maps [10] have been successfully computed using
Fourier series and rigorous numerics. However, to the best of our knowledge, this
is the first time that a method based on Chebyshev series is presented to rigorously
compute solutions of nonlinear differential equations. Since a large class of solutions of
differential equations are non periodic (e.g. solutions of initial value problems (IVPs)
and boundary value problems (BVPs) with non periodic boundary values), we believe
that our proposed approach is a valuable contribution to the field of rigorous numerics.
Also, since Chebyshev series are Fourier series in disguise [11], the mathematical
machinery developed in the last ten years to prove existence of solutions with periodic
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profiles can directly be transferred to prove existence of non periodic solutions. To
give a few examples, the analytic estimates introduced in [4, 6, 10, 12] and the Banach
space of rapidly decaying coefficients used in [3, 4] can be used here. Finally, let us
mention the work [13] where the authors develop Chebyshev interpolation polynomial-
based tools for rigorous computing. However, it seems that they have not yet applied
their methods to rigorously solve nonlinear differential equations.

In the present work, we focus our attention to analytic vector fields of the form

du

dt
= Ψ(u), Ψ : Rn → Rn, (1.1)

where we aim at computing rigorously solutions of IVPs and BVPs associated to
(1.1). Even if we present the method in this context, we strongly believe that a
similar approach could be adapted to directly prove existence of solutions of higher
order differential equations.

The Chebyshev polynomials are defined by T0(t) = 1, T1(t) = t and Tk+1(t) =
2tTk(t)−Tk−1(t) for k ≥ 1. They lead to an analogue of the Fourier expansion for non
periodic functions on an interval and, as mentioned earlier, they are Fourier series in
disguise, as Tk(cos θ) = cos(kθ). The following standard result can be found in [14].

Theorem 1.1. Every Lipschitz continuous function v : [−1, 1]→ R has a unique
representation as an absolutely and uniformly convergent series v(t) =

∑∞
k=0 akTk(t).

The following result, which can also be found in [14], shows that the coefficients
ak of the Chebyshev series of an analytic function v decay exponentially fast to zero.

Theorem 1.2. Let a function v analytic in [−1, 1] be analytically continuable to
the open ρ-ellipse Eρ for some ρ > 1 where it satisfies |v(z)| ≤ M for all z ∈ Eρ for
some M . Then its Chebyshev coefficients satisfy |ak| ≤ 2Mρ−k, with |a0| ≤M in the
case k = 0.

Eρ (with foci at ±1) is defined by fixing ρ > 1 and considering the image of the
circle with radius ρ in the complex plane C under the map w = 1

2 (z + z−1). This
consequence of Theorem 1.1 and Theorem 1.2 plays a fundamental role in the design
of our approach.

Corollary 1.3. Assume that Ψ : Rn → Rn is real analytic and let u : [−1, 1]→
Rn be a solution of (1.1). Then each component uj of u is real analytic and has a
unique representation as an absolutely and uniformly convergent series of the form
uj(t) =

∑∞
k=0(aj)kTk(t). Also, for each j ∈ {1, . . . , n}, the sequence of Chebyshev

coefficients {(aj)k}k≥0 of uj decreases to zero faster than any algebraic decay, that
is, for any decay rate s > 1, there exists a constant Cj = Cj(s) < ∞ such that
|(aj)k| ≤ Cj

ks , for k ≥ 1.
Consider a Chebyshev expansion of a solution u of the analytic vector field (1.1)

u(t) = a0 + 2
∑
k≥1

akTk(t), (1.2)

where ak =
(
(a1)k, (a2)k, · · · , (an)k

)T ∈ Rn. Letting ‖ak‖∞ = maxj=1,...,n{|(aj)k|}
and defining the weights

ωsk
def=

{
1, if k = 0
|k|s, if k 6= 0,

(1.3)

one has by Corollary 1.3 that for any given s > 1

‖a‖s def= sup
k≥0
{‖ak‖∞ωsk} <∞. (1.4)
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The philosophy of our method is therefore to rigorously compute solutions u of an
IVP or a BVP associated to (1.1) first by recasting them as solutions of an operator
equation

F (u) = 0, (1.5)

and then to use Chebyshev series to transform (1.5) into an equivalent problem of the
form

f(x) = 0, (1.6)

to solve in a Banach space Xs of algebraically decaying Chebyshev coefficients. We
now introduce the operators (1.5) and (1.6), first for IVPs and then for BVPs.

Initial value problems. The first class of problems we address in the present work
are initial value problems associated to the vector field (1.1). Integrating (1.1) from
−1 to t, one has that finding a solution u with initial condition u(−1) = p0 ∈ Rn
is equivalent to finding a solution u of F (u) = 0, where the nonlinear operator F is
given by

F (u)(t) def= p0 +
∫ t

−1

Ψ(u(s))ds− u(t), t ∈ [−1, 1]. (1.7)

The fact that t ∈ [−1, 1] is not a restriction since in the autonomous vector field (1.1), a
re-scaling of time could be considered. The goal is to develop a rigorous computational
method based on Chebyshev series to compute solutions of (1.7). Given the Chebyshev
expansion (1.2) of u with a = (ak)k≥0 the infinite vector of Chebyshev coefficients,
consider the Chebyshev expansion of Ψ(u) given by

Ψ(u(t)) = c0 + 2
∑
k≥1

ckTk(t), (1.8)

where ck = ck(a) =
(
(c1)k, (c2)k, · · · , (cn)k

)T ∈ Rn. In particular, if Ψ(u) is a polyno-
mial vector field, then since Chebyshev polynomials satisfy Tk(cos θ) = cos(kθ), ck is
given by discrete convolutions involving the coefficients of a. Plugging (1.2) and (1.8)
in (1.7), and using the properties Tk(−1) = (−1)k and Tk(1) = 1 for all k,

∫
T0(s)ds =

T1(s),
∫
T1(s)ds = (T2(s)+T0(s))/4 and

∫
Tk(s)ds = 1

2

(
Tk+1(s)
k+1 − Tk−1(s)

k−1

)
for k ≥ 2,

one gets that

F (u)(t) = f̃0 + 2
∑
k≥1

f̃kTk(t),

where f̃0
def= p0 − a0 + c0 − c1

2 − 2
∑
j≥2

(−1)j

j2−1 cj and f̃k
def= ck−1−ck+1

2k − ak, for k ≥ 1.
Denote x = a and define f(x) = (fk(x))k≥0 component-wise by

fk(x) def=


p0 − a0 + c0 −

c1
2
− 2

∑
j≥2

(−1)j

j2 − 1
cj , k = 0,

2kak + ck+1 − ck−1, k ≥ 1.

(1.9)

Note that fk = −2kf̃k for k ≥ 1. f given by (1.9) is called the IVP-operator and
finding a solution u of (1.7) is equivalent to finding a zero of the IVP-operator.
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Boundary value problems. A second class of problems that we address in the
present work are boundary value problems associated to the vector field (1.1), that
is solutions u satisfying the differential equations (1.1) in [−1, 1] while satisfying the
boundary condition

G(u(−1), u(1)) = 0, (1.10)

where G : R2n → Rp is an affine map, with p the number of boundary conditions.
Letting p1 = u(1), integrating the vector field (1.1) from t to 1 and appending the
boundary condition (1.10) results in the integral operator defined by

F (θ, u)(t) def=

 G(u(−1), u(1))

u(t) +
∫ 1

t

Ψ(u(s))ds− p1

 , (1.11)

where G(u(−1), u(1)) and/or p1 depend on a parameter θ ∈ Rp which ensures that the
operator (1.11) is not overdetermined. Denote by x = (θ, a) the infinite dimensional
vector of unknowns. Following the same approach as the one used to derive the IVP-
operator, we plug (1.2) and (1.8) in (1.11), use standard properties of the Chebyshev
polynomials and then we define the operator f(x) = (fk(x))k≥−1 given component-
wise by

fk(x) =


η(θ, a), k = −1,

a0 + c0 +
c1
2
− 2

∑
j≥2

1
j2 − 1

cj − p1, k = 0,

2kak + ck+1 − ck−1, k ≥ 1,

(1.12)

where η ∈ Rp is a function of a = (ak)k≥0 and possibly of θ that represents the
boundary condition (1.10) expressed using the Chebyshev expansion of u. We call
the operator f(x) = (fk(x))k≥−1 given by (1.12) the BVP-operator. Hence, finding a
solution u of the boundary value problem (1.11) is equivalent to finding a zero of the
BVP-operator.

Let us introduce the notation x = (xk)k≥k0 and f = (fk)k≥k0 , with k0 ∈ {−1, 0}.
If x is the vector of unknowns of the IVP-operator (1.9), then k0 = 0 and x = (xk)k≥k0 ,
with xk = ak ∈ Rn for k ≥ 0. If x is the vector of unknown of the BVP-operator
(1.12), then k0 = −1 and x = (xk)k≥k0 , with x−1 = θ ∈ Rp and xk = ak ∈ Rn
for k ≥ 0. Similarly, if f is the IVP-operator (1.9), then k0 = 0 and if f is the
BVP-operator (1.12), then k0 = −1 and f = (fk)k≥k0 , with f−1 = η ∈ Rp.

Given θ ∈ Rp, let ‖θ‖∞ = max{|θ1|, |θ2|, . . . , |θp|}. Recall the weights (1.3). As a
consequence of Corollary 1.3, we define the IVP-operator and the BVP-operator on
the Banach space of decaying Chebyshev coefficients given by

Xs = {x = (xk)k≥k0 : ‖x‖s def= sup
k≥k0

{‖xk‖∞ωsk} <∞}, (1.13)

with k0 = 0 in case of the IVP-operator and with k0 = −1 in case of the BVP-
operator. The rest of the paper aims at introducing the rigorous method to prove
existence of solutions of f(x) = 0 within Xs using the notion of the radii polynomials.

The paper is organized as follows. In Section 2, we introduce the rigorous com-
putational method to prove existence of solutions of f(x) = 0 within Xs, where f is
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either the IVP-operator (1.9) or the BVP-operator (1.12). In Section 3, we present
some applications. In Section 3.1, rigorous computations of IVPs in the Lorenz equa-
tions are introduced while in Section 3.2, we compute symmetric connecting orbits
for the Gray-Scott equation. Note that the symmetric connecting orbits are obtained
by computing solutions of a BVP with one of the boundary values in the stable man-
ifold. We conclude the paper in Section 4 by presenting some possible extensions and
improvements.

2. Rigorous computations. In this section, we introduce the rigorous compu-
tational method to compute x ∈ Xs that are solutions of f(x) = 0, where the operator
f is either the IVP-operator (1.9) or the BVP-operator (1.12). Let us formalize the
definition of the operator f on Xs.

Lemma 2.1. Consider the Banach space Xs with s > 1, the vector field (1.1), let
x = (xk)k≥k0 ∈ Xs and define u(t) = a0 + 2

∑
k≥1 akTk(t), where ak = xk for k ≥ 0.

Assume that the coefficients (ck)k≥0 of the Chebyshev series of Ψ(u) given by (1.8)
satisfy

‖c‖s = sup
k≥0
{‖ck‖∞ωsk} <∞. (2.1)

Consider f either the IVP-operator (1.9) or the BVP-operator (1.12). Then, f :
Xs → Xs−1. Also, if x ∈ Xs is a solution of f(x) = 0, then x ∈ Xs0 for any s0 > 1.
Finally, u(t) = a0 + 2

∑
k≥1 akTk(t) is a solution of F = 0 where F is the integral

operator (1.7) (respectively (1.11)) if and only if x = (xk)k≥k0 ∈ Xs solves f(x) = 0
where f is the IVP-operator (1.9) (respectively the BVP-operator (1.12)).

Before presenting the proof of Lemma 2.1, it is important to remark that the
hypothesis (2.1) is met for all polynomial vector fields, since for any s > 1, Ωs def=
{a = (ak)k∈N : ak ∈ R, ‖a‖s < ∞} is an algebra under the discrete convolution.
More precisely for any a, b ∈ Ωs, there exists a constant α = α(a, b) < ∞ such that
|(a ∗ b)k| = |

∑
k1+k2=k
ki∈Z

a|k1|b|k2|| ≤ α
ωsk

(e.g. see [4] for the case s ≥ 2 and see [15] for

the case s ∈ (1, 2)). This implies that a ∗ b ∈ Ωs, and hence that (Ωs, ∗) is an algebra.
For ease of notation we will henceforth omit the ∗.

Proof. (of Lemma 2.1) Consider x = (xk)k≥k0 ∈ Xs and define u(t) = a0 +
2
∑
k≥1 akTk(t), with ak = xk for k ≥ 0. In case k0 = −1, one clearly has that

‖fk0(x)‖∞ = ‖η(x)‖∞ < ∞. Consider the Chebyshev coefficients (ck)k≥0 of Ψ(u)
that satisfy ‖c‖s < ∞. Hence, ‖ck‖∞ ≤ ‖c‖s

ωsk
and therefore ‖∑j≥2

cj
j2−1‖∞ ≤

‖c‖s
∑
j≥2

1
js(j2−1) <∞. That implies that ‖f0(x)‖∞ <∞. Now, there exists a con-

stant α1 <∞ such that ‖fk(x)‖∞ = ‖2kak + ck+1− ck−1‖∞ ≤ 2‖a‖s
ωs−1
k

+ ‖c‖s
ωsk+1

+ ‖c‖s
ωsk−1

≤
α1

ωs−1
k

for all k ≥ 1. It follows that ‖f(x)‖s−1 <∞ and therefore that f(x) ∈ Xs−1.

Assume now that x ∈ Xs is a solution of f(x) = 0. Hence, for any k ≥ 1,
fk(x) = 2kak + ck+1 − ck−1 = 0 which implies that ak = − 1

2k (ck+1 − ck−1). Since
c = (ck)k≥0 satisfies (2.1), there exists a constant α2 <∞ such that

sup
k≥1
{‖ak‖∞ωs+1

k } ≤ sup
k≥1
{ 1

2k
(‖ck+1‖∞ + ‖ck−1‖∞)ωs+1

k } ≤ α2.

That shows that x = (xk)k≥k0 ∈ Xs+1. Repeating the same argument inductively
and using the fact that Xs1 ⊂ Xs2 for any s1 ≥ s2, one gets that x ∈ Xs0 for all
s0 > 1. Finally, the fact that u(t) = a0 + 2

∑
k≥1 akTk(t) is a solution of F = 0 where

F is the integral operator (1.7) (resp. (1.11)) if and only if x = (xk)k≥k0 ∈ Xs solves
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f(x) = 0 where f is the IVP-operator (1.9) (resp. the BVP-operator (1.12)) is trivial
by construction.

A consequence of Lemma 2.1 is that if one shows the existence of x ∈ Xs such
that f(x) = 0 (for some s > 1) where f is the IVP-operator (1.9) (resp. the BVP-
operator (1.12)), then the coefficients (ak)k decay faster than any algebraic decay and
u(t) given by (1.2) is a solution of the initial value problem (1.7) (resp. the boundary
value problem (1.11)).

The strategy to find solutions of (1.6) is to consider an equivalent fixed point
operator T : Xs → Xs whose fixed points are in one-to-one correspondence with
the zeros of f . More precisely, the operator T is a Newton-like operator about an
approximate solution x̄ of f . In order to compute this numerical approximation
we introduce a Galerkin projection. Let m > 1 and define the finite dimensional
projection Πm : Xs → Xs

m by Πmx = (xk)m−1
k=k0

. The Galerkin projection of f is
defined by

f (m) : Xs
m → Xs

m : xF 7→ Πmf(xF , 0∞), (2.2)

where 0∞ = (I − Πm)0. Identifying (xF , 0∞) with xF ∈ Xs
m
∼= Rp+nm we think of

f (m) : Rp+nm → Rp+nm. Now assume that we have computed x̄F ∈ Rp+nm such that
f (m)(x̄F ) ≈ 0 and let x̄ = (x̄F , 0∞) ∈ Xs. Let Bx̄(r) = x̄ + B(r), the closed ball in
Xs of radius r centered at x̄, where

B(r) =
{
x ∈ Xs : ‖x‖s = sup

k≥k0

{‖xk‖∞ωsk} ≤ r
}

=
∏
k≥k0

[
− r

ωsk
,
r

ωsk

]d(k0)

, (2.3)

where d(−1) = p and d(k) = n for k ≥ 0. In order to define the fixed point operator
T , we introduce Am ≈

(
Df (m)(x̄F )

)−1
a numerical inverse of Df (m)(x̄F ). Assume

that the finite dimensional matrix Am is invertible (this hypothesis can be rigorously
verified with interval arithmetic). Define the linear invertible operator A : Xs → Xs+1

by

(Ax)k =

{
(Am(Πmx))k, k = k0, . . . ,m− 1(

1
2k

)
xk, k ≥ m. (2.4)

Finally define the Newton-like operator T : Xs → Xs about the numerical solution x̄
by

T (x) = x−Af(x). (2.5)

The goal is to determine (if possible) a positive radius r of the ball Bx̄(r) so
that T : Bx̄(r) → Bx̄(r) is a contraction. Assuming that such an r > 0 exists, an
application of the contraction mapping theorem yields the existence of a unique fixed
point x̃ of T within the closed ball Bx̄(r). By invertibility of the linear operator A,
one can conclude that x̃ is the unique solution of f(x) = 0 in the ball Bx̄(r). By
construction, this unique solution represents a solution u(t) of the IVP-operator (1.7)
or the boundary value problem (1.11), depending on the situation. Hence, all we
need to do is to find r > 0 such that T : Bx̄(r) → Bx̄(r) is a contraction. This task
is achieved with the notion of the radii polynomials (originally introduced in [1] to
compute equilibria of PDEs), which provide an efficient way of constructing a set on
which the contraction mapping theorem is applicable. Their construction depends
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on some bounds that we introduce shortly. Before that, we introduce the notation
� to denote component-wise inequality, that is given two vectors u, v, u � v if and
only if uk ≤ vk for all k. The same notation holds for ≺. Consider now the bound
Y = (Yk)k≥k0 satisfying ∣∣∣[T (x̄)− x̄

]
k

∣∣∣ � Yk, k ≥ k0, (2.6)

where Yk ∈ Rn+ for k ≥ 0. If k0 = −1, then Yk0 ∈ Rp+. Consider the bound
Z(r) = (Zk(r))k≥k0 satisfying

sup
ξ1,ξ2∈B(r)

∣∣∣[DT (x̄+ ξ1)ξ2
]
k

∣∣∣ � Zk(r), k ≥ k0, (2.7)

where Zk(r) ∈ Rn+ for k ≥ 0. If k0 = −1, then Zk0(r) ∈ Rp+. If the vector field (1.1)
is polynomial, then it is possible to obtain a polynomial expansion in r for Zk(r). As
a matter of fact, in this case, the degree of the polynomial Zk(r) is the same than
the degree of the polynomial vector field Ψ(u). Otherwise, that is if the analytic
vector field Ψ(u) is not polynomial, a Taylor expansion can be considered in order to
obtain a polynomial expression in r for Zk(r). We make now the following important
assumption. Assume that there exists a number M ≥ m where m is the dimension
of the Galerkin projection (2.2) such that the bounds Y and Z satisfying (2.6) and
(2.7) are such that

A1. Yk = 0 ∈ Rn for all k ≥M .

A2. There exists a uniform polynomial bound Z̄M (r) ∈ Rn+ such that for all k ≥M ,

Zk(r) � Z̄M (r)
ωsk

. (2.8)

Before introducing the radii polynomials, let us briefly talk about the two above
assumptions. If the vector field Ψ(u) is polynomial, then the nonlinear terms ck(ā)
are convolutions terms of the form (ā(j1)ā(j2) · · · ā(j`))k which are eventually equal to
zero for large enough k since āk = 0 for k ≥ m. Hence, by construction of A defined
in (2.4) and of the bound Y as in (2.6), there exists an M such that Yk can be defined
to be 0 ∈ Rn for k ≥ M . Again in case the vector field Ψ(u) is polynomial, there
are some analytic convolution estimates (e.g. the ones developed in [4]) that allow
computing Z̄M (r) satisfying (2.8). The computation of the uniform polynomial bound
Z̄M (r) is presented explicitly in the examples of Section 3.

Definition 2.2. Denote by 1n ∈ Rn the vector whose components are all 1. We
define the finite radii polynomials (pk(r))M−1

k≥k0
by

pk(r) = Yk + Zk(r)− r

ωsk
1n, k = k0, . . . ,M − 1, (2.9)

and the tail radii polynomial by

pM (r) = Z̄M (r)− r1n. (2.10)

The following result justifies the construction of the radii polynomials of Defini-
tion 2.2.
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Theorem 2.3. If there exists r > 0 such that pk(r) ≺ 0 for all k = k0, . . . ,M ,
then T : Bx̄(r)→ Bx̄(r) is a contraction and therefore there exists a unique x̃ ∈ Bx̄(r)
such that T (x̃) = x̃. Hence, there exists a unique x̃ ∈ Bx̄(r) such that f(x̃) = 0.

Proof. See Corollary 3.6 in [4].
The strategy to rigorously compute solutions of the IVP-operator f given in (1.7)

and the BVP-operator f given in (1.11) is therefore to construct the radii polynomials
of Definition 2.2, to verify (if possible) the hypothesis of Theorem 2.3, and to use the
result of Lemma 2.1 to conclude that u(t) = a0 +2

∑
k≥1 akTk(t) is a solution of F = 0

where F is either the integral operator given by (1.7) or the operator given by (1.11)
While the computation of the bound Y satisfying (2.6) is rather straightforward,

the computation of the polynomial bound Z(r) satisfying (2.7) is more involved. In
order to simplify its computation, we introduce the linear invertible operator A† :
Xs → Xs−1 by

(A†x)k =

{
(Df (m)(x̄F )(Πmx))k, k = k0, . . . ,m− 1
(2k)xk, k ≥ m. (2.11)

and we use the factorization T (x) = x−Af(x) = (I−AA†)x−A(f(x)−A†x). Letting
ξ1 = wr, ξ2 = vr with w, v ∈ B(1), one has that

DT (x̄+ ξ1)ξ2 = (I −AA†)ξ2 −A
(
Df(x̄+ ξ1)ξ2 −A†ξ2

)
=
[
(I −AA†)v

]
r −A

(
Df(x̄+ wr)vr −A†vr

)
,

(2.12)

where the first term is of the form εr, for ε = (I −AA†)v ∈ Xs very small, and where
the coefficient of r in [Df(x̄ + wr)vr − A†vr]k should be small as the dimension of
the Galerkin projection m is large. Hence, for m large enough, the coefficient in r
of Zk(r) should be small. That should increase the chances of the coefficient of r in
the radii polynomials defined in Definition 2.2 to be negative, and therefore increase
the chances of verifying the hypothesis of Theorem 2.3. We are now ready to present
some applications.

3. Applications. In this section, we present two applications. The first applica-
tion, presented in Section 3.1, concerns initial value problems in the Lorenz equations.
More precisely, we use the notion of radii polynomials to compute rigorously solutions
of the IVP-operator f given by (1.9). This yields rigorous enclosures of solutions of
the integral operator (1.7), where Ψ(u) is the vector field arising in the Lorenz equa-
tions. The second application, presented in Section 3.2, concerns projected boundary
value problems in the Gray-Scott equation. More precisely, we use the notion of radii
polynomials to compute rigorously solutions of the BVP-operator f given by (1.12)
where one of the boundary value is in the stable manifold of a steady state. This
yields rigorous enclosures of several symmetric connecting orbits for the Gray-Scott
equation.

3.1. Initial value problem in the Lorenz equations. Consider the Lorenz
equations re-scaled by a time factor L given by

du

dt
= Ψ(u) = L

 σ(u2 − u1)
ρu1 − u2 − u1u3

u1u2 − βu3

 (3.1)

at the classical parameter values σ = 10, ρ = 28 and β = 8/3.
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The Chebyshev coefficients (1.8) of (3.1) are given explicitly by

ck = L

 σ((a2)k − (a1)k)
ρ(a1)k − (a2)k − (a1a3)k

(a1a2)k − β(a3)k

 (3.2)

with

(anam)k =
∑

k1+k2=k
ki∈Z

(an)|k1|(am)|k2|

for n = 1, m = 1, 2 and k ≥ 0. Given an initial condition p0, this results in an explicit
expression f(x) for the IVP-operator (1.9). We now present rigorous numerical results
illustrating the performance of our method.

Theorem 3.1. Consider

p1
0 = (8.102574164767477, 9.551574461919124, 24.429705657930224)
p2

0 = (−0.3074083926082352, 0.3943349846945122, 0)
p3

0 = (4.102702069909453, 8.936495309135337, 0.5789130478426856).

Let s = 2. For p0 ∈ {p1
0, p

2
0, p

3
0} consider the IVP-operator f given by (1.9) with ck as

in (3.2). For each L in Table 3.1 or Table 3.2 there exists a unique solution x̃ ∈ Xs

of f(x) = 0 in a ball Bx̄(rp1,2,3
0

) ⊂ Xs of radius rp1,2,3
0

centered at an approximate
solution x̄.

L 0.1 0.2 0.3 0.4 0.5 0.54
mp2

0
300 300 300 300 300 300

rp2
0

2.01× 10−12 3.21× 10−12 5.80× 10−11 1.95× 10−10 5.12× 10−9 4.52× 10−8

Table 3.1: Given p2
0 and for a fixed L, these are corresponding values of the Galerkin

projection dimension mp2
0

and the radius rp2
0

around the approximate solution x̄ in
Xs for which the radii polynomials approach was successful.

L 0.5 1 1.5 2 2.5 3
mp1

0
50 100 200 250 300 500

mp3
0

150 200 300 400 500 600
rp1

0
2.61× 10−9 1.27× 10−8 2.85× 10−8 8.77× 10−8 4.53× 10−7 1.03× 10−6

rp3
0

1.07× 10−7 1.31× 10−7 6.29× 10−7 1.09× 10−6 1.40× 10−6 5.17× 10−6

Table 3.2: Given p1,3
0 and for a fixed L, these are corresponding values of the Galerkin

projection dimension mp1,3
0

and the radius rp1,3
0

around the approximate solution x̄ in
Xs for which the radii polynomials approach was successful.

Before we discuss the proof via an application of Theorem 2.3 we comment on
the choice of the initial conditions. p1

0 is chosen to lie approximately on the unstable
manifold of the positive eye equilibrium (

√
β(ρ− 1),

√
β(ρ− 1), ρ−1), p2

0 lies approx-
imately on the unstable manifold of the origin whereas p3

0 is taken randomly. As one
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can see in Tables 3.1 and 3.2, the data of the verification method depends strongly
on the choice of the initial condition. We assume that this stems from the presence of
poles of the complex extension of the solutions u : [−1, 1] → R3 of (3.1) whose posi-
tion in the complex plane changes depending on the initial condition and the scaling
factor L. By Theorem 1.2 this influences the decay rate of the Chebyshev coefficients.
This is illustrated in Figure 3.1. We refer to Figure 3.2 for a representation in phase
space of two solutions of Theorem 3.1.

The proof of Theorem 3.1 can be found in the MATLAB programs proofLo-
renz1.m, proofLorenz2.m and proofLorenz3.m at [16]. It relies on Theorem 2.3 and
uses the package Intlab [17] for the interval computations and the package Chebfun
[18]. In order to apply Theorem 2.3 the construction of the radii polynomials as de-
fined in (2.9) and (2.10) is crucial. After the following remark we aim to give some
details about the derivation of the bounds defined in (2.6), (2.7) and (2.8) involved in
the construction of the polynomials.

1 0.5 0 0.5 1
20

10

0

10

20

30

t/L

u 1
(t)

1 0.5 0 0.5 1
40

20

0

20

40

60

t/L

u 2
(t)

1 0.5 0 0.5 1
10

0

10

20

30

40

50

t/L

u 3
(t)

0 50 100 150
10 20

10 10

100

1010

0 50 100 150
10 20

10 10

100

1010

0 50 100 150
10 20

10 10

100

1010

Fig. 3.1: Comparison of the componentwise solution profiles of a solution u : [−1, 1] → R3

of the Lorenz equations for the initial condition p1
0 (blue), p2

0 (red) and p3
0 (green) for L = 1

and of the decay rates of their Chebyshev coefficient sequences.

Remark 3.1. Consider an approximate solution x̄ and a corresponding unique
genuine solution x̃ ∈ Bx̄(r) ⊂ Xs of f(x) = 0 for a decay rate s > 1 and a radius
r > 0. Via the expansion (1.2) the sequences of Chebyshev coefficients x̄ and x̃
correspond to functions ū and ũ respectively, where ũ solves (3.1) with respective
initial condition p0. Given s > 1, the inequality ‖x̄− x̃‖s ≤ r can be used to get that

‖ū− ũ‖C0
def= sup

t∈[−1,1]

‖ū(t)− ũ(t)‖∞ ≤ ‖ā0 − ã0‖∞ + 2 sup
t∈[−1,1]

∞∑
k=1

‖āk − ãk‖∞ |Tk(t)|︸ ︷︷ ︸
≤1

≤
(

1 + 2
∞∑
k=1

1
ωsk

)
r ≤

(
3 +

2
s− 1

)
r.

We now turn to the computations of the bounds involved in the construction of the
radii polynomials.
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(a)
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−10

0

10

20

30

−10−5051015202530
0

5

10

15

20

25

30

35

40

45

50

u1

u1

u2

u2

u3

u3

(b)

Fig. 3.2: Profile in phase space of the solution (u1, u2, u3) of the Lorenz equations starting
at (a) the initial condition p1

0; (b) the initial condition p3
0.

3.1.1. Bounds required to construct the radii polynomials. Note here
that k0 = 0, p = 0 and n = 3. Choose a time scaling factor L. Consider f
the IVP-operator (1.9) with ck given in (3.2). Recalling (2.2), consider a Galerkin
projection dimension m and an approximate solution x̄ = ā = (āF , 0∞), that is
f (m)(āF ) ≈ 0. Set the computational parameter M arising in hypotheses A1 and
A2 to M = 2m − 1. With this choice, A1 is fulfilled and we can directly compute
Y0, . . . , YM−1 from (2.6) using interval arithmetic. Concerning the computation of
Z1(r), . . . , ZM−1(r) satisfying (2.7) and Z̄M (r) satisfying (2.8), the first step is to use
(2.12) and to compute polynomials zk(r) = zk1 r + zk2 r

2 for k ≥ 0 with zkl ∈ R3, such
that

[
Df(x̄+ rw)rv −A†rv

]
k

= zk(r), where w, v ∈ B(1). Note that B(1) is given
by (2.3) with r = 1. The derivation of an upper bound for |zk(r)| is a major step
to obtain Zk(r) and is postponed to a separate consideration. We remark that we
have to distinguish the cases k = 0, 1 ≤ k ≤ m − 1 and m ≤ k. A straightforward
calculation leads to the expressions summarized in Table 3.3. Note that vIi is defined
for i = 1, 2, 3 by

(vIi )k =

{
0, k = 0, . . . ,m− 1

(vi)k, k ≥ m.

Our next goal is to compute polynomials Z̃k(r) = Z̃k1 r + Z̃k2 r
2 ∈ R3 such that∣∣zkl ∣∣ � Z̃kl , for l = 1, 2 and k = 0, . . . ,M − 1 (3.3)

and Z̃M (r) = Z̃M1 r + Z̃M2 r2 ∈ R3 such that

|zkl | �
Z̃Ml
ωsk

, for l = 1, 2 and k ≥M. (3.4)

To obtain the bounds Z̃k1 for k = 0, . . . ,M − 1 define the finite sums

Σk,Ii
def=

m−1∑
k1=−m+1

(|āi|)|k1|
1

ωs,Ik−k1

, for k = 0, . . . ,M − 1,

Σki
def=

m−1∑
k1=−m+1

(|āi|)|k1|
1

ωsk−k1

, for k = 0, . . . ,M,
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k = 0

z0
1

L

264
0B@ 0
−(ā3v

I
1)0 − (ā1v

I
3)0

(ā1v
I
2)0 + (ā2v

I
2)0

1CA − 1

2

0B@ 0
−(ā3v

I
1)1 − (ā1v

I
3)1

(ā1v
I
2)1 + (ā2v

I
2)1

1CA − 2
m−1X
j=2

1

j2 − 1

0B@ 0
−(ā3v

I
1)j − (ā1v

I
3)j

(ā1v
I
2)j + (ā2v

I
2)j

1CA

−2
M−1X
j=m

1

j2 − 1

264
0B@σ((v2)j − (v1)j)
ρ(v1)j − (v2)j
−β(v3)j

1CA +

0@ 0
−(ā3v1)j − (ā1v3)j
(ā1v2)j + (ā2v2)j

1A
375 − 2

∞X
j=M

1

j2 − 1

264
0B@σ((v2)j − (v1)j)
ρ(v1)j − (v2)j
−β(v3)j

1CA +

0@ 0
−(ā3v1)j − (ā1v3)j
(ā1v2)j + (ā2v2)j

1A
375

375
z0

2 L

240@ 0
−(w3v1)0 − (w1v3)0
(w1v2)0 + (w2v1)0

1A − 1
2

0@ 0
−(w3v1)0 − (w1v3)0
(w1v2)0 + (w2v1)0

1A − 2
∞X
j=2

1

j2 − 1

0@ 0
−(w3v1)j − (w1v3)j
(w1v2)j + (w2v1)j

1A35
k = 1, . . . ,m− 1

zk1 L

264
0B@ 0
−(ā3v

I
1)k+1 − (ā1v

I
3)k+1

(ā1v
I
2)k+1 + (ā2v

I
2)k+1

1CA −
0B@ 0
−(ā3v

I
1)k−1 − (ā1v

I
3)k−1

(ā1v
I
2)k−1 + (ā2v

I
2)k−1

1CA
375

zk2 L

240@ 0
−(w3v1)k+1 − (w1v3)k+1
(w1v2)k+1 + (w2v1)k+1

1A −
0@ 0
−(w3v1)k−1 − (w1v3)k−1
(w1v2)k−1 + (w2v1)k−1

1A35
k ≥ m

zk1 L

264
264

0B@σ((v2)k+1 − (v1)k+1)
ρ(v1)k+1 − (v2)k+1

−β(v3)k+1

1CA +

0@ 0
−(ā3v1)k+1 − (ā1v3)k+1
(ā1v2)k+1 + (ā2v2)k+1

1A
375 −

264
0B@σ((v2)k−1 − (v1)k−1)
ρ(v1)k−1 − (v2)k−1

−β(v3)k−1

1CA +

0@ 0
−(ā3v1)k−1 − (ā1v3)k−1
(ā1v2)k−1 + (ā2v2)k−1

1A
375

375
zk2 L

240@ 0
−(w3v1)k+1 − (w1v3)k+1
(w1v2)k+1 + (w2v1)k+1

1A −
0@ 0
−(w3v1)k−1 − (w1v3)k−1
(w1v2)k−1 + (w2v1)k−1

1A35

Table 3.3: Formulas for zl
k

where

ωs,Ik
def=

{
0, 0 ≤ k ≤ m− 1
ωsk, k ≥ m.

To define the uniform bound Z̃M1 for k ≥M we set for i = 1, 2, 3

ΣM−1
i = (|āi|)0 +

m−1∑
k1=1

(|āi|)k1

(
1 +

1
(1− k1

M−1 )s

)
.

In order to compute Z̃k2 for k = 0, . . . ,M and Z̃M2 we employ estimates whose
detailed explanation can be found in [4]. For M ≥ 6 and s ≥ 2, define the constant

γM = 2
(

M

M − 1

)s
+
(

4 ln(M − 2)
M

+
π2 − 6

3

)(
1
M

+
1
2

)s−2

,

and in addition define

α2,M
k =



1 + 2
M∑
k1=1

1
ω2s
k1

+ 2
M2s−1(2s−1) , k = 0

M∑
k1=1

2ks

ωsk1
ωsk+k1

+ 2ks

(k+M+1)s(M−1)s(s−1) + 2 +
M∑
k1=1

2ks

ωsk1
ωsk−k1

, 1 ≤ k ≤M − 1

2 + 2
M∑
k1=1

1
ωsk1

+ 2
Ms−1(s−1) + γM , k ≥M.

This yields that ∣∣∣∣∣ ∑
k1+k2=k

1
ωk1ωk2

∣∣∣∣∣ ≤ α2,M
k

ωsk
, for k ≥ 0.
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k = 0

Z̃0
1

L

264
0B@ 0

Σ0,I
3 + Σ0,I

1
Σ0,I

1 + Σ0,I
2

1CA +
1

2

0B@ 0

Σ1,I
3 + Σ1,I

1
Σ1,I

1 + Σ1,I
2

1CA + 2
m−1X
j=2

1

j2 − 1

0B@ 0

Σj,I3 + Σj,I1
Σj,I3 + Σj,I1

1CA

+2
M−2X
j=m

1

j2 − 1

264 1

ωs
j

0@ 2|σ|
|ρ| + 1
|β|

1A +

0B@ 0

Σj3 + Σj1
Σj2 + Σj2

1CA
375 +

2

((M − 1)2 − 1)(s − 1)(M − 2)s−1

264
0@ 2|σ|
|ρ| + 1
|β|

1A +

0B@ 0

ΣM−1
3 + ΣM−1

1
ΣM−1

1 + ΣM−1
2

1CA
375

375
Z̃0

2 L

264 2α2,M
0
ωs0

+
α

2,M−1
1
ωs1

+ 2
M−1X
j=2

2α2,M−1
j

(j2 − 1)ωs
j

+
4α2,M−1
M−1

((M − 1)2 − 1)(s − 1)(M − 2)s−1

375
0@0

1
1

1A
k = 1, . . . ,m− 1

Z̃k1 L

264
0B@ 0

Σk+1,I
3 + Σk+1,I

1
Σk+1,I

1 + Σk+1,I
2

1CA +

0B@ 0

Σk−1,I
3 + Σk−1,I

1
Σk−1,I

1 + Σk−1,I
2

1CA
375

Z̃k2 L

264α2,M−1
k+1
ωs
k+1

+
α

2,M−1
k−1
ωs
k−1

375
0@0

2
2

1A
k = m, . . . ,M − 1

Z̃k1 L

264 1
ωs
k+1

0@ 2|σ|
|ρ| + 1
|β|

1A +

0B@ 0

Σk+1
3 + Σk+1

1
Σk+1

1 + Σk+1
2

1CA
375 + L

264 1
ωs
k−1

0@ 2|σ|
|ρ| + 1
|β|

1A +

0B@ 0

Σk−1
3 + Σk−1

1
Σk−1

1 + Σk−1
2

1CA
375

Z̃k2 L

264α2,M−1
k+1
ωs
k+1

+
α

2,M−1
k−1
ωs
k−1

375
0@0

2
2

1A
k = M

Z̃M1 L

264(1 + ( M
M−1 )s)

0@ 2|σ|
|ρ| + 1
|β|

1A + (1 + ( M
M−1 )s)

0B@ 0

ΣM−1
3 + ΣM−1

1
ΣM−1

1 + ΣM−1
2

1CA
375

Z̃M2 L
h
(1 + ( M

M−1 )s)α2,M−1
M−1

i 0@0
2
2

1A

Table 3.4: Formulas for Z̃l
k

Combining these definitions a direct reasoning leads to the bounds of Table 3.4.
We are now in position to take the last step in defining Zk(r) = Zk1 r + Zk2 r

2 for
k = 0, . . . ,M − 1 specified in (2.7) and Z̄M (r) = Z̄M1 r + Z̄M2 r2 given by (2.8). As
previously mentioned, by definition of A and A†, there is a small ε such that for all
k ≥ 0, ∣∣[(I −AA†)rv]

k

∣∣ � rε13.

In particular for k ≥ m we have ε = 0 by definition of A and A† given respectively
by (2.4) and (2.11). We let Vl = (Z̃0

l , . . . , Z̃
m−1
l ) ∈ R3m for l = 1, 2 to obtain for

k = 0, . . . ,m− 1

Zk1 = [|Am|V1]k + ε13

Zk2 = [|Am|V2]k ,
(3.5)

where the absolute value is taken component-wise and for k = m, . . . ,M − 1

Zkl =
1
2k
Z̃kl , for l = 1, 2. (3.6)

Finally we set

Z̄Ml =
1

2M
Z̃Ml , for l = 1, 2. (3.7)

Combining the bounds Y0, . . . YM−1 and the bounds (3.5), (3.6) and (3.7) completes
the construction of the radii polynomials defined in (2.9) and (2.10).
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3.2. The Gray-Scott equation. Consider the Gray-Scott equation re-scaled
by a time factor L given by{

v′′1 = L2
(
v1v

2
2 − λ(1− v1)

)
v′′2 = L2

(
1
γ (v2 − v1v

2
2)
)
,

(3.8)

where γ and λ are real parameters. The Gray-Scott model serves as a model for a
continuously fed unstirred autocatalytic reaction. The homoclinic solutions we seek
represent non-trivial stationary spatial patterns in the form of pulses. See [19] and
the references therein for more details on the significance of the equation. Letting
u1 = v1, u2 = v′1, u3 = v2, u4 = v′2 and u = (u1, u2, u3, u4)T , we re-write (3.8) as the
vector field

du

dt
= Ψ(u) =


u2

L2
(
λu1 + u1u

2
3 − λ

)
u4

L2
(

1
γu3 − 1

γu1u
2
3

)
 . (3.9)

Hence, the Chebyshev coefficients (1.8) of (3.9) are given explicitly by

ck =


(a2)k

L2
(
λ(a1)k + (a1a

2
3)k − λδk,0

)
(a4)k

L2
(

1
γ (a3)k − 1

γ (a1a
2
3)k
)

 , (3.10)

where δk,0 is the Kronecker delta function and where

(a1a
2
3)k =

∑
k1+k2+k3=k

ki∈Z

(a1)|k1|(a3)|k2|(a3)|k3|.

We are interested in computing symmetric homoclinic orbits at p = (1, 0, 0, 0)T .
Consider P (θ) to be a parameterization of the local stable manifold W s

loc(p) at the
steady state p. In order to compute P we employ the parametrization method de-
veloped in [20], [21] and [22]. The philosophy is to use a power series expansion to
solve an invariance equation for P and thereby compute a multivariate polynomial
approximation PN to P . In addition the a-posteriori verification enables to find a
domain V and a bound δ such that ‖P (θ) − PN (θ)‖∞ < δ for all θ ∈ V . For details
on the implementation and the a-posteriori verification we refer the reader to [23].

We interpret symmetric homoclinic orbits as solutions of a BVP with the bound-
ary value u(1) = P (θ), that is u(1) ∈ W s

loc(p). We impose the even symmetry condi-
tion of the orbit (v1, v2) with v′1(−1) = u2(−1) = 0 and v′2(−1) = u4(−1) = 0. Hence,
the boundary condition (1.10) reads as G(u(−1), u(1)) = (u2(−1), u4(−1))T ∈ R2,
p1 = P (θ) and then the operator (1.11) is given by

F (θ, u)(t) =


u2(−1)
u4(−1)

u(t) +
∫ 1

t

Ψ(u(s))ds− P (θ)

 . (3.11)
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To obtain the first component η of (1.12), we use that Tk(−1) = (−1)k for all k ≥ 0
to get

η(θ, a) =

(
(a2)0 + 2

∞∑
k=1

(−1)k(a2)k, (a4)0 + 2
∞∑
k=1

(−1)k(a4)k

)T
. (3.12)

Together with (3.10) we obtain an explicit expression f(x) = fγ,λ(x) for the BVP-
operator (1.12) tailored to the problem of finding even homoclinics in the Gray-Scott
system (3.9).

It is shown in [19] that for parameter values γλ = 1 and λ > 4 there exists a
family of even symmetric homoclinics. More precisely for all (λ, γ) in the parameter
set

C0 =
{

(γ,
1
γ

) : 0 < γ <
2
9

}
,

the functions given by

v1(t) = 1− 3γ
1 +Q cosh( t√

γ )
and v2(t) =

3
1 +Q cosh( t√

γ )
, (3.13)

with Q(γ) =
√

1− 9γ
2 , are even symmetric homoclinic orbits of (3.9). Furthermore

in Theorem C of [19] it is ensured that the homoclinics persist if λγ = 1 + ε for some
small ε and in [23] to a certain extent the magnitude of ε for γ = 0.15 is investigated.
More concretely the authors of [23] show in Theorem 1.1 the existence of 30 homoclinic
orbits on the line γ = 0.15 in parameter space. We take a similar approach but extend
the considered region in parameter space. Before presenting the result, note that there
is a theoretical constraint in using the parameterization method to compute W s

loc(p)
in parameter space. This constraint comes from the presence of resonances between
the eigenvalues ± L√

γ and ±
√
λL of DΨ(p). A resonance occurs when λγ = n2 or

λγ = (1/n)2 for some n ∈ N. Denote Cn def= {(λ, γ) : λγ = (n + 1)2} for n ≥ 0
and C1/n def= {(λ, γ) : λγ = (1/n)2} for n ≥ 2. The parameterization method uses a
power series representation of W s

loc(p) and will fail to converge at resonances. As a
matter of fact our rigorous numerical method combining Chebyshev series and the
parameterization method will necessarily fail at those parameter values located on Cn
(n ≥ 1) and C1/n (n ≥ 2). Let us now formulate a result guaranteeing the existence
of 297 homoclinics for γ ∈ {0.14, 0.15, 0.16}, and for several different values of λ.

Theorem 3.2. Define

Λ±I,∆λ
(γ) =

{
(γ, λ) : λ =

1± k∆λ

γ
, k ∈ I

}
,

over an index set I. Let ∆λ = 0.03 and γi = 0.14 + (i − 1)0.01 for i = 1, 2, 3. Set
I+(γi) = {1, . . . , 90} for i = 1, 2, 3 and I−(γi) = {1, . . . ,K−(γi)} where K−(γi) is
specified in Table 3.5 for i = 1, 2, 3. If

(λ, γ) ∈
3⋃
i=1

Λ+
I+(γi),∆λ

(γi) ∪ Λ−I−(γi),∆λ
(γi),

there exists a ball Bx̄(rγ,λ) ⊂ Xs (with fγ,λ(x̄) ≈ 0) containing a unique solution
x̃ = (θ̃, ã) of fγ,λ(x) = 0 corresponding to an even homoclinic solution of (3.8).
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Fig. 3.3: Thirty-nine homoclinics from Theorem 3.2, where (λ, γ) ∈ Λ+
{1,...,30},0.03(0.15) on

the left and (λ, γ) ∈ Λ−{1,...,9},0.03(0.15) on the right. The red solution corresponds to the

exact homoclinic given by (3.13). Each couple (v1, v2) is the center of a ball in function
space in which an exact solution is guaranteed to exist. The blue part over [0, 1

2
] corresponds

to the interval [−1, 1] for the operator (3.11), which in turn corresponds to the rescaling of
[0, L±(0.15)]. The green part is added by using the conjugacy relation (see equation (57) in
[23]) fulfilled by the parametrization P of W s

loc(p), where we integrate for 2 time units on
the time scale of (3.11) and then rescale [−1, 3] to the interval [0,1]. The part over [−1, 0] is
obtained using the symmetry.
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100

Fig. 3.4: (Left) Components v1 (black) and v2 (blue) of the homoclinic solution

of Theorem 3.2 corresponding to the parameter value (γ, λ) = (0.15, 1+89(0.03)
0.15

) ∈
Λ+
I+(0.15),0.03

(0.15). The interval [0, 1] corresponds to the rescaled interval [−1, 1] of (3.11),

corresponding itself in turn to a rescaling of [0, 0.6]. The interval [−1, 0] is added by symme-
try. (Right) The Chebyshev coefficients of v1 (black) and v2 (blue). Notice the fast decay
of the coefficients to zero.

For a geometric representation of the result of Theorem 3.2, we refer to Figure 3.3
and Figure 3.4.

Beside these rigorously verified homoclinic solutions we investigated a bigger re-
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gion in parameter space by constructing the radii polynomials p1(r), . . . , pM (r) with-
out interval arithmetic and finding an r > 0 such that pi(r) ≺ 0 for all i = 1, . . .M .
The results are marked in black in Figure 3.5. More precisely set ∆λ = 0.03 and
γi = 0.10 + (i − 1)0.1 for i = 1, . . . , 11 and let K±(γi) be specified by Table 3.5.
Define I+

nr(γi) = {1, . . . , 90} ∪ {110, . . . ,K+(γi)} for i ∈ {1, 2, 3, 4, 5, 8, 9, 10, 11},
I+

nr(γi) = {110, . . . ,K+(γi)} for i = 6, 7, 8 and I−nr(γi) = {1, . . . ,K−(γi)}. Note
that “nr” stands for non rigorous. We found symmetric homoclinic solutions for

(γ, λ) ∈
11⋃
i=1

(
Λ+

I+
nr(γi),∆λ

(γi) ∪ Λ−I−nr(γi),∆λ
(γi)

)
.
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0
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35

40

45

�

�
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C1

�

�

C 1
2

Fig. 3.5: The green points indicate the region in parameter space at which the rigorous proof
of existence of symmetric homoclinics was obtained by computing the radii polynomials with
interval arithmetic. The red points indicate the region investigated in [23]. The black points
are investigated using the radii polynomials computed without the use of interval arithmetic.
Based on the discussion about resonances, we portrait the curve C1 and C 1

2
at which our

rigorous method will necessarily fail. Note that C0 is the curve on which the exact homoclinics
(3.13) exist.

γ 0.10 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.20
L+(γ) 0.45 0.50 0.55 0.60 0.60 0.60 0.65 0.70 0.75 0.75 0.75
L−(γ) 0.50 0.55 0.55 0.55 0.60 0.70 0.65 0.65 0.70 0.70 0.7
K+(γ) 114 128 143 158 172 187 202 217 231 246 261
K−(γ) 18 16 15 12 11 9 7 6 3 2 1

Table 3.5: Values of the rescaling factor L and the number of steps K± we take in the λ
direction in dependence of the different values of γ.

These computations are carried out by the MATLAB program nonrigoroushomo-
clinics.m. The rigorous verification of Theorem 3.2 can be found in the MATLAB
programs proofLambdaplusγ.m and proofLambdaminusγ.m with γ = 014, 015, 016, and
relies on Theorem 2.3. All codes can be downloaded from [16]. The programs make
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use of the package Intlab [17] for the interval computations and of the package Cheb-
fun [18]. Chebfun is used to compute the Chebyshev coefficients of the exact solutions
(3.13) from which a continuation is performed. The main prerequisite for applying
Theorem 2.3 is the construction of the radii polynomials (2.9) and (2.10). We now
give some details on their derivation.

3.2.1. Bounds required to construct the radii polynomials. We are in the
case k0 = −1, p = 2 and n = 4. Consider a dimension m for the Galerkin projection
(2.2) and an approximation x̄ = (θ̄, ā) = (θ̄, āF , 0∞) such that f (m)(θ̄, āF ) ≈ 0,
where f is the BVP-operator (1.12), ck is given in (3.10) and the boundary conditions
η : Xs → Rp is given by (3.12). For instance if (γ, λ) ∈ Λ+

I+(0.15),∆λ
we choose m = 37

and set L = 0.6. For (γ, λ) ∈ Λ−I−(0.15),∆λ
we choose m = 47 and let L = 0.7. Note

that if we set M = 3m−2 assumption A1 is satisfied and Y1, . . . , YM can be computed
by (2.6). The strategy to construct the bounds Z1(r), . . . , ZM−1(r) and Z̄M (r) defined
in (2.7) and (2.8) is analogue to the Lorenz example. Note that ξ1, ξ2 in (2.12) are now
given by ξ1 = r(θ, w) and ξ2 = r(φ, v) with (θ, w), (φ, v) ∈ B(1) ⊂ Xs. In addition we
assume that we have a bound Λ ∈ R4

+ such that for every θ, φ corresponding to ξ1,2

|DP (θ̄ + rθ)φ| � Λ

for all r with 0 < r < r∗, where r∗ is an apriori bound on r that we set to r∗ = 0.004.
The explicit construction of Λ in the context of the Gray-Scott equations is presented
in Section 5 in [23]. In particular, at (γ, λ) ∈ Λ+

I+(0.15),∆λ
we choose N = 13 as the

order of the polynomial approximation PN and at (γ, λ) ∈ Λ−I−(0.15),∆λ
, we choose

N = 15. For more details on the choice of m and N at γ = 0.14, 0.16 we refer to the
code at [16]. A central step is to compute the polynomials Z̃k(r) =

∑3
l=1 Z̃

k
l r
l ∈ R4

and Z̃M (r) =
∑3
l=1 Z̃

M
l rl ∈ R4 fulfilling the analogue of (3.3) and (3.4). We only

present Z̃kl and Z̃Ml for k = 0, . . . ,M − 1 and l = 1, 2, 3 in Tables A.1 and A.2 in the
Appendix.

Our main technical tool to compute these bounds is given by the following Lemma
which is a simplified combination of Lemmas A.3 and A.4 in [4]. In order to explain
its usefulness in our context, we recall that given three sequences a, b, c ∈ Ωs, the
cubic convolution sums (abc)k can be split as

(abc)k = (abc)Mk +
∑

k1+k2+k3=k
max{|k1|,|k2|,|k3|}≥M

ki∈Z

a|k1|b|k2|c|k3|,

where

(abc)Mk
def=

∑
k1+k2+k3=k
|ki|≤M,i=1,2,3

ki∈Z

a|k1|b|k2|c|k3|.

One of the aims of the following result is to bound the infinite tail sum.
Lemma 3.3. Let a, b, c ∈ Ωs and M ≥ 6. Set A = ‖a‖s, B = ‖b‖s and C = ‖c‖s.

Then there exist computable numbers ε(3)
k = ε

(3)
k (M) for k = 0, . . . ,M such that∑

k1+k2+k3=k
max{|k1|,|k2|,|k3|}|≥M+1

ki∈Z

|a||k1||b||k2||c||k3| ≤ 3(ABC)ε(3)
k .
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In addition there is a computable number α(3)
M−1 such that for k ≥M − 1

∑
k1+k2+k3=k

ki∈Z

|a||k1||b||k2||c||k3| ≤ (ABC)
α

(3)
M−1

ωsk
.

For a proof and for details on the computation see [4] as well as the code at [16].
Defining A1,3 = ‖ā1,3‖s and for i = 1, 3 and j = 3

ΣM−1
ij =

m−1∑
k1=−m+1

m−1∑
k2=−m+1

(|āi|)|k1|(|āj |)|k2|max
{

Ms

(M − 1− k1 − k2)s
, 1
}

completes the ingredients for Tables A.1 and A.2.

4. Conclusion. Let us conclude this paper by presenting some potential exten-
sions and improvements of our proposed rigorous computational method to solve IVPs
and BVPs of ODEs.

First, our method could probably be generalized to compute rigorously solutions
of higher-order differential equations without re-writing them as first order vector
fields. For example, we believe that computing solutions of BVPs associated to the
Gray-Scott equations (3.8) could be obtained by integrating twice each equation which
could then be solved rigorously by moving to the space of Chebyshev coefficients. The
improvement would be twofold. First, the linear part of the equations would grow
as O(k2) (as opposed to O(k) in the BVP-operator (1.12)), hence facilitating the
use of a contraction mapping argument based on a Newton-like operator. Second,
the size of the finite dimensional projection would be twice smaller. A downside is
that we would obtain more complicated formulas of the Chebyshev expansions of the
equations resulting from the double integration.

A second extension of the method would be to use a multiple shooting approach
to solve the integral operators over long periods of time. Indeed, the theory of the
Chebyshev series presented in Section 1 suggests that integrating over long periods
of time (e.g. compute solutions with large scaling factor L) has the disadvantage of
bringing the (potentially existing) poles closer to the ρ-ellipse mentioned in Theo-
rem 1.2. This implies that the Chebyshev coefficients of the solutions decay to zero
at a slow rate. Therefore, an advantage of a multiple shooting approach based on in-
tegrating over many short intervals (with corresponding short scaling factor L) would
push away the poles, hence bringing a faster decay rate to the Chebyshev coefficients
of the solutions. We could then potentially take smaller Galerkin projection dimen-
sions to perform our rigorous computations, thanks to the fast decay rates of the
solutions on each sub-intervals. The downside would again be a more complicated
formulation of the operators which would need to take care of solving simultaneously
many parallel problems.

A third extension of the method would be to combine the rigorous pseudo arc
length continuation method of [15, 24] to compute global smooth branches of solutions
of BVPs.

A fourth and slightly more challenging improvement consists of modifying the
proposed approach to vector fields with nonlinearities that are non polynomial. That
would require extending the already existing convolution estimates to the non poly-
nomial case.



20

A final and most ambitious extension would be to attempt to rigorously compute
solutions of spatially periodic PDEs combining a Chebyshev series expansion in time
and a Fourier series expansion in space.
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[21] X. Cabré, E. Fontich, and R. de la Llave. The parameterization method for invariant manifolds.
II. Regularity with respect to parameters. Indiana Univ. Math. J., 52(2):329–360, 2003.
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Appendix A. Formulas for Z̃k for k = −1, . . . , M in the Gray-Scott
equations. We give an overview of the bounds Z̃k for k = −1, . . . ,M involved in the
construction of the radii polynomials for the proof of Theorem 3.2.
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I
3 |)
M
1 )

0
L2
γ

h
(|ā3|
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M
j )

0
L2
γ

h
(|ā3|
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0 + 2(|ā3|w1||v3|)

M−1
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j + 2(|ā3|w1||v3|)

M
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2(|ā3||w3||v1|)

M
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Table A.1: Formulas for Z̃kl , k = −1, 0
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k = 1, . . . ,m− 1
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I
3 |)
M
k+1

i
1CCCCA + ε

(3)
k+1

0BBB@
0

L2(A3 + 2A1A3)
0

L2
γ

(A3 + 2A1A3)

1CCCA

+

0BBBB@
0

L2((|ā3|
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M
k+1)

0
L2
γ

h
2(|ā3||w3||v1|)

M
k+1 + 2(|ā3||w1||v3|)

M
k+1 + 2(|ā1||w3||v1|)

M
k+1

i
1CCCCA + 2ε(3)

k+1

0BBB@
0

L2(4A3 + 2A1)
0

L2
γ

(4A3 + 2A1)

1CCCA

+

0BBBB@
0

L2(2(|ā3||w3||v1|)
M
k−1 + 2(|ā3|w1||v3|)

M
k−1 + 2(|ā1||w3||v1|)

M
k−1)

0
L2
γ

h
2(|ā3||w3||v1|)

M
k−1 + 2(|ā3||w1||v3|)

M
k−1 + 2(|ā1||w3||v1|)

M
k−1

i
1CCCCA + 2ε(3)

k−1

0BBB@
0

L2(4A3 + 2A1)
0

L2
γ

(4A3 + 2A1)

1CCCA
377775

Z̃k3

266664
0BBBB@

0
L2((|w3|

2|v3|)
M
k+1 + 2(|w1||w3||v3|)

M
k+1)

0
L2
γ

h
(|w3|

2|v3|)
M
k+1 + 2(|w1||w3||v3|)

M
k+1

i
1CCCCA + 9ε(3)

k+1

0BBB@
0
L2

0
L2
γ

1CCCA +

0BBBB@
0

L2((|w3|
2|v3|)

M
k−1 + 2(|w1||w3||v3|)

M
k−1)

0
L2
γ

h
(|w3|

2|v3|)
M
k−1 + 2(|w1||w3||v3|)

M
k−1

i
1CCCCA +

9ε(3)
k−1

0BBB@
0
L2

0
L2
γ

1CCCA
37775

m ≤ k ≤M − 1

Z̃k1

266664
1

ωs
k+1

0BBB@
1

L2λ
1
L2
γ

1CCCA +

0BBBB@
0

L2((|ā3|
2|v1|)

M
k+1 + 2(|ā1||ā3||v3|)

M
k+1)

0
L2
γ

h
(|ā3|

2|v1|)
M
k+1 + 2(|ā1||ā3||v3|)

M
k+1

i
1CCCCA + ε

(3)
k+1

0BBB@
0

L2(A3 + 2A1A3)
0

L2
γ

(A3 + 2A1A3)

1CCCA

+
1

ωs
k−1

0BBB@
1

L2λ
1
L2
γ

1CCCA +

0BBBB@
0

L2((|ā3|
2|v1|)

M
k−1 + 2(|ā1||ā3||v3|)

M
k−1)

0
L2
γ

h
(|ā3|

2|v1|)
M
k−1 + 2(|ā1||ā3||v3|)

M
k−1

i
1CCCCA + ε

(3)
k−1

0BBB@
0

L2(A3 + 2A1A3)
0

L2
γ

(A3 + 2A1A3)

1CCCA
377775

Z̃k2

266664
0BBBB@

0
L2(2(|ā3||w3||v1|)

M
k+1 + 2(|ā3|w1||v3|)

M
k+1 + 2(|ā1||w3||v1|)

M
k+1)

0
L2
γ

h
2(|ā3||w3||v1|)

M
k+1 + 2(|ā3||w1||v3|)

M
k+1 + 2(|ā1||w3||v1|)

M
k+1

i
1CCCCA + 2ε(3)

k+1

0BBB@
0

L2(4A3 + 2A1)
0

L2
γ

(4A3 + 2A1)

1CCCA

+

0BBBB@
0

L2(2(|ā3||w3||v1|)
M
k−1 + 2(|ā3|w1||v3|)

M
k−1 + 2(|ā1||w3||v1|)

M
k−1)

0
L2
γ

h
2(|ā3||w3||v1|)

M
k−1 + 2(|ā3||w1||v3|)

M
k−1 + 2(|ā1||w3||v1|)

M
k−1

i
1CCCCA + 2ε(3)

k−1

0BBB@
0

L2(4A3 + 2A1)
0

L2
γ

(4A3 + 2A1)

1CCCA
377775

Z̃k3

266664
0BBBB@

0
L2((|w3|

2|v3|)
M
k+1 + 2(|w1||w3||v3|)

M
k+1)

0
L2
γ

h
(|w3|

2|v3|)
M
k+1 + 2(|w1||w3||v3|)

M
k+1

i
1CCCCA + 9ε(3)

k+1

0BBB@
0
L2

0
L2
γ

1CCCA +

0BBBB@
0

L2((|w3|
2|v3|)

M
k−1 + 2(|w1||w3||v3|)

M
k−1)

0
L2
γ

h
(|w3|

2|v3|)
M
k−1 + 2(|w1||w3||v3|)

M
k

i
1CCCCA +

9ε(3)
k−1

0BBB@
0
L2

0
L2
γ

1CCCA
37775

k = M

Z̃M1 (1 + ( M
M−1 )s)

266664
0BBB@

1
L2λ

1
L2
γ

1CCCA +

0BBBB@
0

L2(ΣM−1
33 + 2ΣM−1

13 )
0

L2
γ

(ΣM−1
33 + 2ΣM−1

13 )

1CCCCA
377775

Z̃M2 (1 + ( M
M−1 )s)α(3)

M−1

0BBB@
0

L2(4A3 + 2A1)
0

L2
γ

(4A3 + 2A1)

1CCCA

Z̃M3 (1 + ( M
M−1 )s)3α(3)

M−1

0BBB@
0
L2

0
L2
γ

1CCCA

Table A.2: Formulas for Z̃kl , k = 1, . . . ,M


