Project MM - XNA Framework | Report

Daniel Loran & Stefan van de Kaa

2008 - 2009

Faculty of Computer Science

Vrije Universiteit Amsterdam

Contents

A 11 Yo [T o T o U 3
2 XNA Game Development ENVIFONMENTcccuuiieeniiienertenierteniereenereenerenseerensessessessnssessnnens 4
3 Creating Windows Game Project with Visual Studio 2005.........cc.cccceerimiiieecrieencrenencnennens 5
L 0 T - T o - 10
LT £ T T L= 15
6 Creating virtual Worldccovveeiiiiiiiiiiiiiiiiiiinnrnrrs s reaa s s s e saasans 17
6.1 Importing 3D Models into Maya in 3DS FOrmatccoccviiieiiiieeecciee et e 17
6.2 Exporting 3D Models from Maya to XNA in FBX FOrmatcccceeeeiieeieciiee e eevee e 17
6.3 L0 4 T=T = PP 18
6.4 Loading 3D Model and Simple ANIMationuiiiiieii i 19
7 Advanced Animation TEChNIQUESccceteerereeniereeneetenerteeereaneerensereesserensesssssesssssessnsesenne 24
8 Lighting and Special EffectS.....ccceeiieeieiieniiiinierieniereeeeteeertenrerenneeresserenseessssesssssessasessnnens 33
9 Appendix A: Maya to FBX EXPOIt.....ccciveiiieiieeeienereeireeneeeeraneroneraserescsesssssssensssnsssnsssasssens 36
10 Bibliography and Refe@rences........cccceveeerreniiienierenniereeerteenerreneereaseeeeserenseessssesssssessassses 38
Y014V T T TP U ST PO PRR PR 38
R 1Y o Te =] ST TSTUSUPPPRRPRR 38
XINA BOOKS ...ttt ettt sttt ettt e b e bt s bt ettt et e e s bt e sheesaeesane e bt e b e e bt e nbeeeneeeaeeeneenreens 38
XINA TULOTIALS ettt st ettt et e s bt e shee st e sate s b e e b e e beesbeesmeeeaneenneenseens 38

1 Introduction

XNA Framework was developed by Microsoft to provide a managed runtime environment and a set of
tools that promotes rapid game development process.

In this project we explore the fundamentals of XNA Framework by discussing code examples organized
in labs, providing tips and "knowabouts" that simplify development tasks and lead to efficient object
oriented game architecture.

This report includes the following chapters:

XNA Game Development Environment - describes the tools and technological environment required to
develop XNA applications for Windows and Xbox 360 game console.

Creating Windows Game Project with Visual Studio 2005 — describes creation of a basic XNA project.
Drawing — explores the theory of drawing XNA primitives.
Shaders — provides introduction into Graphics Pipeline, rendering and shader definition language.

Creating virtual world - describes the process of importing 3D models into Maya, exporting models from
Maya to XNA, setting up the camera, loading models into XNA environment and simple animation.

Advanced Animation Techniques - describes how to animate all parts of a model separately from each
other and how to implement elliptical motion path animation with focus on object oriented techniques.

Lighting and Special Effects — adds lighting and fog to the scene.

Appendix A: Maya to FBX Export — describes in detail the steps of exporting Maya models to FBX format
that can be loaded into XNA environment.

Bibliography and References - provides references to tools, study material, books, relevant websites,
free model archives and XNA tutorials.

2 XNA Game Development Environment

Microsoft XNA Game Studio 2.0 [XNA] is a free add-on to a commercial product Visual Studio 2005 or
to a free Visual Studio C# 2005 Express Edition [C# IDE]. The .Net Framework version 2.0 is traditionally
required for all this software to run and in most of the cases already present on any modern version of
Windows.

The fact that both XNA Game Studio 2.0 and Visual Studio 2005 C# Express are provided for free makes
it possible for anyone to develop games for Windows and Xbox 360 without any substantial investment.
XNA is designed to be written once and run on both Windows and Game console. There are however
some slight compiler differences between the two, e.g. Windows supports mouse input, while Xbox
does not. With that being said, although XNA development for Windows platform can be made
completely free, the same for Xbox requires purchasing the Xbox (priced around 350 USD) and if you
would like to make your game available to the game players worldwide, also purchasing the subscription
to the Xbox 360 Creators Club (priced 99 USD per year). Putting this together one can conclude that
Microsoft did really make XNA Game Development very accessible.

In this project all the development and testing will be done with Vista. Since we don't have an Xbox and
did not pay Xbox 360 Creators Club membership fee we are also not able to check potential Xbox
compatibility issues. In general, if everything works with Vista, it is safe to assume that it can be easily
recompiled for Xbox (perhaps with some minor changes in the code if Xbox compiler complains about
variable declarations and similar. It may complain because it is known to be stricter in nature.).

There are 2 types of Game projects in Visual Studio 2005: Xbox Game project and Windows Game
project. Debugging an Xbox Game project with Visual Studio 2005 as the name suggests literally requires
you to have Xbox connected to your PC and having your membership active. This is because when you
press the debug button in Visual Studio 2005 your project is deployed to Xbox for compilation. The
process is completely automated and controlled by Visual Studio 2005. If you work with Windows Game
project instead, it does not require Xbox or any membership fees, and your code will be compiled and
executed on Windows.

Except of these minor differences, the code of Windows Game and Xbox Game projects will most likely
be the same.

3 Creating Windows Game Project with Visual Studio 2005

The source code for this chapter can be found at Labs/ WindowsGame1 folder.

Installing XNA Game Studio 2.0 on Vista after Visual Studio 2005 already has been installed adds new
Game project definitions as shown in Figure 3.1 below.

As mentioned above, there are two different project types under the XNA Game Studio 2.0 project
group: Windows Game (2.0) project and Xbox 360 Game (2.0) project. In the same place the
corresponding Library projects can be found.

For the purpose of this lab we create a basic Windows Game (2.0) project which is by default called
"WindowsGamel" as shown in Figure 3.1 below. The output of compiling this project is an empty
window as shown in Figure 3.2 further in this text.

Figure 3.1 Creating New Game Project with Visual Studio 2005

New Project Em I
Project types: Templates:
=- Visual C# Visual Studio installed templates
- Windows Elwindows Game (2.0) A Windows Game Library (2.0)
- NET Framework 3.0 Bl xbox 360 Game (2.0) Pl Xbox 360 Game Library (2.0)
- Office ﬂContent Pipeline Extension Library (2.0) g,:' Spacewar Windows Starter Kit (2.0)
- Smart Device 1 Spacewar Xbox 360 Starter Kit (2.0)
- Database
.. Starter Kits My Templates
- Test 2 Search Online Templates...
.. Web

- XMA Game Studic 2.0

- Other Languages

- Distributed Systern Solutions
[#- Other Project Types

[#- Test Projects

WindowsGamel
FADocuments\Visual Studio 20054Projects Browse...

WindowsGamel Create directory for solution

When new game project is created by default the following files are added automatically:
Gamel.cs - contains the game loop
Program.cs — execution starts here in the main() function where Game1l object is instantiated

Game.ico — this is the small icon in the title bar of the default window generated as an output of this
basic game project (see left-top corner of Figure 3.2 below).

Figure 3.2 WindowsGamel project output

Our game application starting point is located at Program.cs in the Main() function as shown in Figure
3.3 below. This is where we create an instance of Gamel class that represents our game object. Game is
started by executing the Run() method of game object.

Figure 3.3 Program.cs

using System

nanespace W ndowsGanel

{

static class Program
{
/1l <summary>
/Il The nmain entry point for the application.
/1l <l sunmmary>
static void Main(string[] args)

/1 defines a scope at the end of which an object (in this case Ganel) will be disposed
using (Ganel game = new Ganel())

gane. Run();

Our basic game object with all its methods is described in Figure 3.4. Gamel class inherits from the base
Microsoft.Xna.Framework.Game class.

Constructor() - initializes GraphicsDevice and ContentManager object.

Initialize() - this is where all the initialization logic is located, in other words: window and application
properties, views, loading and initializing resources such as shaders, vertices, audio and similar.

LoadContent() —is called once per game and therefore is the best place to load all the content necessary
for the game before it starts.

UnloadContent() — similarly to the LoadContent() this function is called once per game only now all the
content participating in the game will be unloaded so that the game can gracefully exit and release its
resources.

Update() - allows the game to run logic such as updating the world, checking for collisions, gathering
input, and playing audio.

Draw() — called each time when the game should (re)draw itself.

Figure 3.4 Gamel.cs

using System

usi ng System Col | ecti ons. Generi c;

usi ng M crosoft. Xna. Franewor k;

usi ng M crosoft. Xna. Franewor k. Audi o;

usi ng M crosoft. Xna. Framewor k. Cont ent ;

usi ng M crosoft. Xna. Fr amewor k. Ganer Ser vi ces;
usi ng M crosoft. Xna. Franewor k. G aphi cs;

usi ng M crosoft. Xna. Franmewor k. | nput ;

using M crosoft. Xna. Franewor k. Net ;

usi ng M crosoft. Xna. Framewor k. St or age;

namespace W ndowsGanel
{
/1] <sumrary>
/1l This is the main type for your gane
/1] </sunmary>
public class Ganel : M crosoft. Xna. Franewor k. Gane
{
Graphi csDevi ceManager graphi cs;
SpriteBatch spriteBatch;

public Ganel()

{
graphi cs = new G aphi csDevi ceManager (thi s);
Content. RootDirectory = "Content";

}

/1] <summary>

111
to run.
111
graphi c
111
conponent s
111
111

Allows the gane to performany initialization it needs to before starting
This is where it can query for any required services and | oad any non-
related content. Calling base.Initialize will enunerate through any

and initialize themas well.
</ summary>

protected override void Initialize()

{

}

111
111
111
111

/1 TODO Add your initialization |logic here

base.Initialize();

<sunmary>

LoadContent will be called once per gane and is the place to | oad
all of your content.

</ sunmmary>

protected override void LoadContent ()

{

}

111
111
111
111

/1l Create a new SpriteBatch, which can be used to draw textures.
spriteBatch = new SpriteBat ch(G aphi csDevice);

/1 TODO use this.Content to | oad your game content here

<sunmary>

Unl oadContent will be called once per ganme and is the place to unload
all content.

</ summary>

protected override void Unl oadCont ent ()

{

}

111
111
111
111
111

/1 TODO Unload any non Cont ent Manager content here

<sunmary>

Al'l ows the gane to run | ogic such as updating the world,

checking for collisions, gathering input, and playing audio.

</ summary>

<param nane="ganeTi ne" >Provi des a snapshot of timng val ues. </ parane

protected override void Update(GaneTi ne ganeTi nme)

/1 Al'lows the game to exit

i f(GanePad. Get St at e(Pl ayer | ndex. One). Buttons. Back == ButtonState. Pressed)

}

111
111
111
111

this.Exit();
/1 TODO Add your update |ogic here
base. Updat e(ganmeTi ne) ;
<sunmary>
This is called when the gane should draw itself.

</ sunmmary>
<par am nane="ganeTi ne" >Provi des a snapshot of tim ng val ues. </ paran

protected override void Draw(GaneTi ne ganeTi ne)

{

gr aphi cs. Graphi csDevi ce. C ear (Col or. Cor nf | ower Bl ue) ;
/1 TODO Add your drawi ng code here

base. Draw ganeTi ne) ;

By now it should be clear how the game loop is implemented, but to make it more explicit we have
included the flowchart in Figure 3.5 describing all the steps necessary to initialize the game, load the
graphics and content, draw the scene, update scene elements, and finally unload the graphics and
content before exiting the application.

Figure 3.5 Flowchart Game Loo

[}
C# Code Draw(]
[Start » Clear screen and set color Shader Code
* Transfomm objects lor diawing
_ » Send output to shader Vertex Shader
Module Declarations 3 -Receive and aller verlex dala
Declare objects for game class Update()
» Update GameTime
Main() * Handle mouse, keyhoard, and v
Start game gamepad events Pixel Shader
¥ « Other continuous user defined » Convert inputs to calored pixels

Constructor() activilies like score racking,

Initialize GraphicsDevice and collision detection, animation

ContentManager object BN

- S~ Technique

Initialize() N _—" Close + Compile vertex shader
User-defined sctup: ~__ Application? _——" + Compile pixel shader "
* Set window properties s T « Trigger passes through each

= Set application properties v shader

+ Set perspective and view

» Load and initialize resources UnloadGraphicsContenty)

(i.e. shaders, vertices, audio) Unload images and models

¥ L5 E J 0 a r{

LoadGraphicsContent() L)
| oad images and models S [Stop] | ‘—|

Source: [XNA Guide]

4 Drawing

In this lab we will draw a primitive shape — a colored triangle as shown at Figure 4.1 below.
Source code for this lab can be found at Labs/DrawingTriagle folder.

Figure 4.1 DrawingTriangle Lab

(©7 Proj MM - XNA Framewa

Shapes are built from series of points, lines, or triangles (see Figure 4.2).

Figure 4.2 Shapes

Trianogle strips Triangle lists

) {5}
(5] £5 3} {4 {5}

Line strips Line lists

£9) % 6" £h '3

e ad Ao g i Bk

;) {33 ‘5" {2} {4

Faint lists
e
i
&5

o St S

i &
Fa A
P2 _ ; 3 }

o

i
i

Fl

e

Source: [XNA Guide]

10

To draw primitive shapes we can use Lists or Strips. Lists can accommodate separate points, lines or
triangles while Strips provide a more efficient way of storing data because vertices can be combined to
create a complex shape. To keep it simple storing a complex 3D model in a Strip will most likely cut the
memory requirements for vertex data in half than storing the same model in a List. XNA platform has
several predefined Common Primitive Types: TriangleStrip, TriangleList, LineStrip, LineList and PointList.

To be able to draw any shape we will also need a Vertex Buffer, which is able to store the X, Y, Z
coordinates, a normal vector and color. XNA platform has several predefined Storage Formats for Vertex
Buffers: VertexPositionColor, VertexPositionTexture, VertexPositionNormal,
VertexPositionNormalTexture.

To draw a shape we have to provide a list of all the vertices, while each vertex stores the data about its
position in space and color attributes. We also need VertexDeclaration object to inform the device about
the Storage Format of our Vertex Buffer so we could draw it later. In the case of triangle we use
VertexPositionColor as a storage format.

The source code for this lab is shown at Figure 4.3 below. Code that was added for the purpose of this
lab to the solution of the previous lab has a gray background.

We did add the following declarations:

G aphi csDevi ce devi ce;

Ef f ect effect;

Vert exPosi tionCol or[] verti ces; /1 vertex buffer
Vert exDecl arati on nyVertexDecl arati on;

Most of these declarations were already explained before. What's new here is the Effect object. In XNA
in order to draw something we must define the Effect in a special file with .fx extension in which we
specify the Techniques used by our effect. We will discuss the content of effects.fx file in the Shaders
section further in this text.

Initialize() — code to set several graphic device properties was added.

init_triangle() — function that populates triangle vertices with data (coordinates and color of each vertex)
and instantiates VertexDeclaration object.

LoadContent() - device is instantiated, content of effects.fx file is loaded and init_triangle() is executed.

What happens now inside the Draw() method deserves some special attention. As it was aready
mentioned before, inside the effects.fx we define several Techniques we can use to influence the
appearance of our Effect. In this case we use the "Pretransformed" technique. Since effect can be
rendered in multiple passes through the Graphics Pipeline, each pass needs to be drawn separately. This
is why for each Effect we will usually have a block of effect.Begin() statement closed by effect.End()
statement inside which we traverse through the loop of passes we have defined in our Technique.
Similarly inside the loop we have a block of pass.Begin() closed by pass.End(). Inside this block we will
draw all the scene elements.

11

Figure 4.3 DrawingTriangle

usi
usi
usi
usi
usi
usi
usi
usi
usi
usi

ng
ng
ng
ng
ng
ng
ng
ng
ng
ng

System

System Col | ecti ons. Generi c;

M crosoft. Xna. Franewor k;

M crosoft. Xna. Franewor k. Audi o;

M crosoft. Xna. Franewor k. Cont ent ;

M crosoft. Xna. Franewor k. Ganer Ser vi ces;
M crosoft. Xna. Fr anewor k. G- aphi cs;

M crosoft. Xna. Franewor k. | nput ;

M crosoft. Xna. Franewor k. Net ;

M crosoft. Xna. Fr anewor k. St or age;

nanespace Drawi ngTriangl e

{

/1] <summary>

/1] This is the main type for your gane

Il </ sunmary>

public class Ganel : M crosoft. Xna. Franewor k. Gane

{

Graphi csDevi ceManager graphics;
SpriteBatch spriteBatch;

G aphi csDevi ce devi ce;

Ef fect effect;

VertexPositionCol or[] vertices;
VertexDecl arati on myVertexDecl arati on;

public Ganel()

{

111
Iy

to run.

Iy

graphi c

111

conponent s

111
111

graphi cs = new G aphi csDevi ceManager (this);
Content. RootDirectory = "Content";

<sunmary>

Allows the ganme to performany initialization it needs to before starting
This is where it can query for any required services and | oad any non-
related content. Calling base.lnitialize will enunerate through any

and initialize themas well.
</ sunmary>

protected override void Initialize()

{

/1 TODO Add your initialization |ogic here

gr aphi cs. Pref erredBackBuf ferWdth = 500;

gr aphi cs. Pref erredBackBuf f er Hei ght = 500;

graphi cs. I sFul | Screen = fal se;

gr aphi cs. Appl yChanges() ;

Wndow. Title = "Proj MM - XNA Franmewor k: Drawi ngTriangl e";

base.Initialize();

private void init_triangle()

{

vertices = new VertexPositionCol or[3];

12

vertices[0].Position = new Vector3(-0.5f, -0.5f, 0f);
vertices[0].Col or = Col or. Red;

vertices[1].Position = new Vector3(0, 0.5f, 0Of);
vertices[1].Col or = Col or. G een;
vertices[2].Position = new Vector3(0.5f, -0.5f, 0f);
vertices[2].Col or = Col or. Yel | ow,

myVert exDecl arati on = new VertexDecl arati on(
devi ce, VertexPositionCol or.VertexEl enents);

/1]l <summary>

/1l LoadContent will be called once per gane and is the place to | oad
/1] all of your content

/1l <l sunmary>

protected override void LoadContent ()

: devi ce = graphi cs. G aphi csDevi ce;
/1l Create a new SpriteBatch, which can be used to draw textures
spriteBatch = new SpriteBat ch(G aphi csDevice);
ef fect = Content. Load<Effect>("effects");

} init_triangle();

/1]l <summary>

/1l Unl oadContent will be called once per gane and is the place to unload
/1] all content

/1l </ sunmmary>

protected override void Unl oadContent ()

/1 TODO Unl oad any non Cont ent Manager content here
}

/1] <summary>

/11 Al'lows the ganme to run | ogic such as updating the world

/1l checking for collisions, gathering input, and playing audio

/1l <l sunmary>

/'l <param nanme="ganeTi ne">Provi des a snapshot of tim ng val ues. </ paranw
protected override void Update(GaneTi ne gameTi ne)

/1 Al'lows the ganme to exit
if (GanePad. Get St at e(Pl ayer | ndex. One). Buttons. Back == ButtonSt ate. Pressed)
this.Exit();

/1 TODO Add your update |ogic here

base. Updat e(ganeTi ne) ;
}

/1] <summary>

/1]l This is called when the ganme should draw itself

/1l </ sunmary>

/'l <param nane="ganeTi ne">Provi des a snapshot of tim ng val ues. </ paranw
protected override void Draw(GaneTi ne ganeTi ne)

{
gr aphi cs. G aphi csDevi ce. d ear (Col or. Cor nf | ower Bl ue) ;

13

/1 TODO Add your drawi ng code here

ef fect. Current Techni que = ef fect. Techni ques["Pretransforned"];

ef fect. Begi n() ;

foreach (EffectPass pass in effect. Current Techni que. Passes) {
pass. Begi n();

devi ce. Vert exDecl arati on = nyVertexDecl arati on;
device. DrawserPrimtives(PrimtiveType. Triangl eLi st, vertices, 0, 1);

pass. End() ;

}
effect. End();

base. Draw ganmeTi ne) ;

14

5 Shaders

Shaders are responsible for all the colors we see and have full control on how the data passes through
the Graphics Pipeline and what will be rendered as a result of each pass. There are 2 types of shaders:
Vertex Shaders and Pixel Shaders. Pixel shaders are computationally more expensive than vertex
shaders.

Vertex shader does two things:
e transforms 3D position of each vertex into 2D coordinates on screen
e calculates the amount of light the vertex receives

In other words shaders allow you to create any graphical effect you could think of and give you direct
access to the Graphical Processing Unit. Shader programming is done with HLSL - the High Level Shader
Language. If you use vertex shader every vertex on screen will first pass through your shader before
being drawn. Hence pixel shaders should be avoided if it is possible to do the same with vertex shaders
from performance reasons. However some effects can only be done with pixel shaders.

Figure 5.1 Graphics Pipeline

o D S S S S S S »
’
X . 1
g XNA Application '
! |
\
B e i i e R -,
4 Vertex [m==ecmeeeeeeeea - o= ——-
o S Vertex data A
H Stream % i
i (position, color, normal,)
! i
]
' 2 Vertex Shader :
| .5_ :
1 g]
: = Screen Verlex shader output 1
| ﬁ pOSILrOH [ccior. transformed normal, . I:
I
1 = | Rasterizer I | Interpolater | :
-
! g Interpnlated data :
! o (color, transformed normal, ..}
il <)
)
] 3
i [
1 Pixel Shader
|
| I
I
: Pixel shader outpu
i @ = Color (+ depth
I)
‘ Z-buffer test _
l z Graphical
i
i s
' P
!
“'_-:::::::::::. SO S SDS S
l’ \
| :
I i]
1 Monitor]
1\ }

Source: [Riemers]

15

The flowchart at Figure 5.1 above represents the flow of vertex data from our XNA application to the
vertex shader on the graphical card. This chain of events happens each time we need to draw
something.

We are now ready to discuss the content of effects.fx file shown in Figure 5.2 below.

Shader has to pass to the graphical card the following: a structure that holds vertex data and a data
definition. To satisfy those requirements we add VertexToPixel structure that holds 3D position and
Color data. We then define the Pretransformed technique which has 1 pass via the Graphics Pipeline
and uses PretransformedVS() and PretransformedPS() functions to output position and color data to the
graphical card.

Figure 5.2 effects.fx
struct VertexToPi xel

float4 Position . PCSI TI ON;
fl oat4 Col or ;. COLORO;
fl oat LightingFactor: TEXCOORDO;
fl oat 2 TextureCoords: TEXCOORD1;

}s
struct Pi xel ToFranme

float4 Color : COLORO;
}s

[]------- Techni que: Pretransformed --------
Vert exToPi xel PretransfornedVS(float4 inPos : POSITION, float4 inColor: COLOR)
{

Vert exToPi xel Qutput = (VertexToPixel)O;

Qut put . Posi tion = inPos;
Qut put . Col or = inCol or;

return Cutput;

}
Pi xel ToFrane PretransfornedPS(VertexToPi xel PSIn)
{
Pi xel ToFrane Qut put = (Pi xel ToFrane) 0O;
Qut put . Col or = PSI n. Col or;
return CQutput;
}
t echni que Pretransformed
{
pass PassO
{
Vert exShader = conpile vs_1 1 PretransfornmedVs();
Pi xel Shader = conpile ps_1 1 PretransformedPS();
}
}

16

6 Creating virtual world

Populating XNA universe with believable 3D models usually requires using one of the 3D modeling
software packages that has the ability to export models into the FBX format supported by the XNA. For
our project we did choose Autodesk Maya 2008. Instead of creating models ourselves we have decided
to spare some time by importing freely available models into Maya and then exporting them into FBX as
described in the following sections.

6.1 Importing 3D Models into Maya in 3DS Format

In our world we did use various 3D models available online for free in 3ds format. In order to import 3ds
models into Maya 2008 we have downloaded the corresponding version of Bonus Tools for Maya 2008
available as a free download from Autodesk website [Bonus Tools]. Then using the Plug-in Manager in
Maya we did load 3dsimport.mll that comes with Bonus Tools to enable 3ds import. For free 3D models
please refer to [Klicker] and [Turbosquid].

Figure 6.1 represents the initial world setup in Maya. Important at this point to make sure that all the
imported models first brought to their intended size (while staying at the origin) and that those changes
are made final by selecting "Freeze Transformations" for each model in Maya. So for instance if a tree
was originally 10 times bigger than the intended size, we would want Maya to remember the size of the
tree after it was resized and before we start to move and rotate it. This is because we need to
remember the translation from the origin and local rotation of each model in order to correctly position
them in the XNA environment. We can still resize trees in XNA to allow for some variation in size of the
duplicated trees, so some of them will be higher than the others.

Figure 6.1 World setup in Maya

6.2 Exporting 3D Models from Maya to XNA in FBX Format

XNA platform supports loading 3D models made with 3D applications in .x or .fbx formats. It is
theoretically possible to load other formats as well but it requires writing a custom model loader. Before
exporting the models to fbx some preparations have to be made. First of all we did position all the

17

models on separate layers in Maya. This makes our job easier because we will need to bring each model
to be exported back to the origin (insure that its pivot point is exactly at the origin) but before we do
that we will write down its intended size, location and rotation attributes. Bringing model to the origin
insures that we will have all the control we need when it comes to positioning of models inside the XNA
environment without unwanted transform anomalies that will be introduced if we leave models (and
their pivot points) at their desired locations as shown in Figure 6.1 above. The advantage of this
approach is that in our XNA universe each model will have exactly the same coordinates as in our Maya
universe. See also "Appendix A: Maya to FBX Export" for technical details.

6.3 Camera

Camera defines what part of the virtual world we see on a screen. That part is called a View. Camera
view of the world defines what will be actually rendered. Before rendering takes place we have to
specify the position and the view of our camera. In other worlds in order to render we need the View
and Projection matrices of the camera. View matrix is defined by Position, Target and Up vectors of the
camera, while Projection matrix holds only the part of the world that is actually seen by the camera.

Lab QuakeCamera presents a Quake-Style camera as seen in First-Person Shooter games. The code for
the QuakeCamera class is too large to be included in this text, that's why we will only provide the Class

Diagram shown at Figure 6.2 below and briefly discuss this class's functionality.

Figure 6.2 QuakeCamera Class Diagram

|

| QuakeCamera
Class

= Fields

¢ cameraPosition
g leftrightRot

¢ criginalMouseState
¢ projectionMatrix
g rotationSpeed

g updownRot

o viewMatrix

viewPort

]
-

Properties

Forward
LeftRightRot
Positicn
ProjectionMatrix
SideVector
TargetPosition
UpDownRot
UpVector
ViewMatrix

]
=
m
=
(=]
B

&"* AddToCameraPosition

W QuakeCamera [+ 1 overload)
% Update

2* UpdateViewMatrix

18

Private properties and methods are indicated with a lock, while everything unlocked is public.

As expected from a first-person shooter camera, this QuakeCamera has the ability to respond to user
input (from both kyaboard and mouse). Pressing the Up and Down arrows will move camera forward
and back, pressing the Left and Right arrows will move camera to the left and to the right. Moving the
mouse will rotate the camera. Notice that mouse pointer is hidden at all times, so in chance you will
wander how to close the screen if you have no mouse pointer — it will react on ESC button as well as the
traditional ALT + F4 or similar facilities to close any window without a mouse.

6.4 Loading 3D Model and Simple Animation

XNA framework has a built-in Content Pipeline which makes it relatively simple to load a 3D model into
the scene. The Content Pipeline is described in detail on Microsoft website. For more information please
refer to the [Content Pipeline].

The source code for this lab can be found at Labs/Ferrari_1 folder. For the purpose of this lab we will
need a model that we can load. We will use the Ferrari Enzo model from [Turbosquid].

The final result of this Lab is a FerrariEnzo car rotating around the Y-axis on the screen as shown at
Figure 6.3 below.

Figure 6.3 FerrariEnzo car rotating around the Y-axis

JRI=ET

After creating a new project called Ferrari_1 in Visual Studio, the directory structure inside Solution
Explorer will look as presented at Figure 6.4 below.

19

Figure 6.4 Solution Explorer

@0 Ferrari_1 - Microsoft Visual Studio O] x|
File Edit View Project Build Debug Data Tools Test Window Community Help
(G- EHd | %R0 - 8- b b - %85 - | B - SR B
i Start Page - x H Explorer -Ferrari_1 - & X
g ' FEEE
T j. M-‘ﬂgiﬂﬂ' 2 - L: Solution 'Ferrari_1' (1 project)
m . —_—— -
€ - S
4 o Visual Studio2005 | . &
=) / I |=d] Properties
) —
% Recent Projects MSDM: Visual Studio
)
=1
= :ﬁFerrarLl Visual Studio Team System: Work Together Effectively ot
= [ElFerrari_3 \ied, 24 Sep 2008 11:37:23 -0700 - Learn how Microsoft Visual Studia Team System 2008 :
EFerran 2 can help all members of your team improve their skills and work together more effectively. i] Program.cs
- Test drive Visual Studio Team System in our new virtual labs and see how it enables team
members to collaborate and communicate efficently with other members of the team, in
Visual Studio 2008 SP1
Thu, 21 Aug 2008 09:51:12 -0700 - Visual Studio 2008 5P 1introduces full support for SQL
Server 2008, improved performance in the IDE and WPF designers, improved Web
Open: Project... | web site... development and site deployment, as well as many Team Foundation Server enhancements.
Create: Project... | web site... How Do I: Create a Basic Language Service Using the Managed Babel System?
L ¥ 7 Tue, 12 Aug 2008 18:35:33 -0700 - In this video, Hilton Giesenow demonstrates how to
create a basic language service by using the Managed Babel System infrastructure provided
Getting Started in the Visual Studio 2008 SDK. The video indudes incorperating the syntax for your language SlSolution Explorer 7 Class View
using the Managed Package Lex Scanner Generator (MPLex) and Managed Package Parser —| ———
What's new in Visual Studio 20057 Generator {MPPG) tools and setting up and registering your language service into the Visual —
Samples and Wakthroughs Studio emvironment. i
Use a Starter Kit How Do I Read and Write Selected Text from a Visual Studio 2008 Source Cod...
New Project From Existing Code... Tue, 22 Jul 2008 18:07:53 -0700 - This video shows you how to read and write selected text
How Do L..7 and position within a source code window. In addition to manipulating the selection and text B Misc
Developer Center it also shows how to subscribe to notifications to track the current document using the B £ Fil F 1
Running Document Table {(SVsRunningDocumentTable service), as well as how to subscribe to LI roject File errari_1.csproj
W J Project Folder | C:\Documents and 5
| |2 Policy
Poy e
— E XNA Framework
. - - i a) = | [
ghon output from: | ? | a5 | o | = XNA Framework | Windows
XMA Framework [v2.0
Misc
_"‘d Error List | =] Cutput
Ready 4

One of the folders that has been generated by default is the Content folder. Inside the Content folder
we will add a new folder Models to store our Ferrari model.

Since we are going to use an existing model, all we have to do to make it part of our project, is selecting
Add > Existing Item while right-mouse clicking the Models folder. The Content Pipeline will then import
the file and convert it into a generic format which can be loaded dynamically. The advantage of this is
that all the imported files (e.g. images, 3D models, 2D models) can be loaded in the same way. This gives
us the ability to disregard file extension when we load a model into the game resulting in source code
that needs less maintenance when modifications take place.

If we than click on the Ferrari_Enzo.fbx file we see the properties of this file in the Properties panel. The
only thing left to do is to change the Asset Name to the intended name which in our case is FerrariEnzo.
This way we can create a reference to the model in our source code.

The source code of the Gamel class in which we load FerrariEnzo model is shown at Figure 6.5 below.

Figure 6.5 Gamel.cs loading the FerrariEnzo model

using System

using System Col | ections. Ceneric;

usi ng M crosoft. Xna. Franewor k;

usi ng M crosoft. Xna. Framewor k. Audi o;

usi ng M crosoft. Xna. Framewor k. Cont ent ;

usi ng M crosoft. Xna. Framewor k. Gamer Ser vi ces;

20

usi ng M crosoft. Xna. Franewor k. G aphi cs;
usi ng M crosoft. Xna. Franewor k. | nput ;
using M crosoft. Xna. Franewor k. Net ;

usi ng M crosoft. Xna. Framewor k. St or age;

nanespace Ferrari _1

{
/1] <sunmmary>
/1l This is the main type for your gane
/1] <lsummary>
public class Ganel : M crosoft. Xna. Franewor k. Gane
{
/1 We added a reference to the Enzo Model
/1 Al'so the position of the nodel and camera shoul d be defined.
G aphi csDevi ceManager gr aphi cs;
SpriteBatch spriteBatch;
Mbdel Enzo;
fl oat aspectRati o;
fl oat nodel Rotation = 0. 0f;
Vect or 3 nodel Position = Vector 3. Zer o;
Vect or 3 caneraPositi on = new Vector3(0.0f, 50.0f, 250.0f);
public Ganel()
{
graphi cs = new G aphi csDevi ceManager (this);
Content. RootDirectory = "Content";
}
/1] <summary>
/1l Al'lows the game to performany initialization it needs to before starting
to run.

/1] This is where it can query for any required services and | oad any non-
graphic

/1l related content. Calling base.Initialize will enunerate through any
conponent s

/1] and initialize themas well.

/1] <l summary>

protected override void Initialize()

/1 TODO Add your initialization |logic here

base.Initialize();

}

/1] <summary>

/1l LoadContent will be called once per gane and is the place to | oad
/1l all of your content.

/1] <l summary>

protected override voi d LoadContent ()

/1 Create a new SpriteBatch, which can be used to draw textures.
spriteBatch = new SpriteBatch(G aphi csDevice);

/1 TODO use this.Content to | oad your gane content here
/1l Here we |oad the real nodel with the reference nane we defined.
Enzo = Content. Load<Model >(" Model s\\ Ferrari Enzo");

aspect Rati o = (fl oat)graphics. G aphi csDevice. Viewport. Wdth /
(fl oat)graphi cs. G aphi csDevi ce. Vi ewport . Hei ght ;
}

/1] <summary>

21

/1l Unl oadContent will be called once per gane and is the place to unload
/1l all content.

/1] <l summary>

protected override void Unl oadCont ent ()

{
/1 TODO Unl oad any non Cont ent Manager content here
/1 TODO Unl oad any ResourceManagenent Mode. Aut onati c cont ent
Cont ent . Unl oad() ;

}

/1] <summary>
/1l Al'lows the game to run | ogic such as updating the world,
/'l checking for collisions, gathering input, and playing audio.
/1] <l summary>
/'l <param nanme="ganeTi ne" >Provi des a snapshot of tim ng val ues. </ paranw
protected override void Update(GaneTi ne gameTi ne)
{
/1l Allows the gane to exit
if (GanePad. Get Stat e(Pl ayerl ndex. One) . Buttons. Back == ButtonSt ate. Pressed)
this. Exit();

/1 TODO Add your update |ogic here
/1 To do nmore than only | oading the nodel we want to do sonething with it.
/1 W added the nodel Rotation variable with which we will rotate the nodel
nodel Rot ati on += (fl oat) ganmeTi me. El apsedCGaneTi ne. Total M | | i seconds *

Vet hHel per. ToRadi ans(0. 1f) ;

base. Updat e(ganeTi ne) ;
}

/1] <sumrary>
/1l This is called when the ganme should draw itself.
/1] </sunmary>
/'l <param nane="ganeTi ne">Provi des a snapshot of tim ng val ues. </ paranw
protected override void Draw(GaneTi ne ganeTi ne)
{
gr aphi cs. Graphi csDevi ce. O ear (Col or. Weat) ;
Matrix[] transfornms = new Matri x[Enzo. Bones. Count];
Enzo. CopyAbsol ut eBoneTr ansf or nsTo(transf orns) ;

foreach (Model Mesh mesh in Enzo. Meshes)

/1 This is where the nesh orientation is set, as well as our canera and projection.
foreach (BasicEffect effect in nesh. Effects)

ef f ect. Enabl eDef aul t Li ghting();
ef fect. Wrld = transforns[nesh. Par ent Bone. | ndex]
* Matrix. Creat eRotationY(nodel Rot ati on)
* Matri x. CreateTransl ati on(nodel Posi tion);
ef fect. View = Matri x. Creat eLookAt (caner aPosi ti on,
Vect or 3. Zero, Vector 3. Up);
effect.Projection = Matrix. Creat ePerspectiveFi el dOF Vi ew(
Vet hHel per. ToRadi ans(45. 0f), aspectRatio, 1.0f, 10000.0f);
}
/! Draw the mesh, using the effects set above.
mesh. Draw() ;

base. Draw ganmeTi ne) ;

22

Inside LoadContent() function we load the model using its reference name defined earlier with the
following code:

Enzo = Content. Load<Model >(" Model s\\ Ferrari Enzo");

Then we define the animation inside Update() function which is the place to modify parameters that are
updated on each game clock tick before the drawing of a game window takes place. In this case we
increase the rotation angle stored in global modelRotation variable each time as shown below:

nodel Rotati on += (fl oat)ganeTi ne. El apsedGaneTi ne. Total M | | i seconds *
Mat hHel per . ToRadi ans(0. 1f) ;

Last thing left to do is to bind this rotation variable to the world rotation matrix inside the Draw()
method's ModelMesh loop as shown below:

ef fect. Worl d = transforns[nmesh. Par ent Bone. | ndex]
* Matri x. Creat eRot ati onY(nodel Rot at i on)
* Matri x. CreateTransl ati on(nodel Posi tion);

By observing all the operations that we need to do to animate one model we can soon come to the
conclusion that this will not be the way to program a game. The more models we use the more
complicated the code becomes. This is why a more object oriented approach is needed which we will
discuss in the next section where we introduce advanced animation techniques.

23

7 Advanced Animation Techniques

In this chapter we are going to investigate advanced animation techniques that build up on the simple
animation method introduced in section 6.4 (which results in extensive amount of source code per
model scattered all over the game class). To improve the readability of code we will use object oriented
techniques. We will then discuss how to animate parts of a model separately from each other and how
to animate the entire model that already has partial animations.

The source code for this lab can be found at Labs/Tanks folder.
The final result of this lab is presented in the figure below.

Figure 7.1 Tanks Lab

For the purpose of this lab we have selected a very complex freely available tank model that consists of
multiple parts which will be all animated separately and also as a group. Tank model can be found in
Content/tank.fbx file. In order to animate parts of the tank we first need to examine the model source
file (which can be opened with any text editor). Sins we did not build this tank, we are also not aware of
what names the artist has given to all the parts. In XNA terms those parts are ModelBone objects and
can be referenced in a program as long as their names are known to the programmer.

Tank model file is very long, it contains 37762 lines of code. We are particularly interested in "Object
relations" section located very close to the end of file, to be precise between lines 37616-37672. The
source code is shown in Figure 7.2 below. Luckily enough the artist has given very comprehensive names
to all parts of the tank (in the context of the model source file called meshes). For instance we can
clearly identify 3™ mesh as the right back wheel of the tank given name "r_back_wheel_geo" and
similarly identify all other parts of the tank. In the absence of comprehensive names our task could
become extremely difficult when dealing with models that are built by somebody else.

Figure 7.2 Content/tank.fbx

; Cbject relations

Rel ations: {
Model : " Model : : tank_geo", "Mesh" {

}
Model : " Model : : r_engi ne_geo", "Mesh" {

24

}
Model : " Model : : r_back_wheel _geo", "Mesh" {

I}\/bdel : "Model ::r_steer_geo", "Mesh" {
I}\/bdel : "Model ::r_front_wheel _geo", "Mesh" {
Model : " Model : : 1 _engi ne_geo", "Mesh" {
I}\/bdel : "Model :: 1 _back_wheel _geo", "Mesh" {
I}\/bdel : "Model :: | _steer_geo", "Mesh" {
I}\/bdel . "Model :: 1 _front_wheel _geo", "Mesh" {

Model : "Model : :turret_geo", "Mesh" {

}
Model : " Model : : canon_geo", "Mesh" {

I}\/bdel : "Mbdel :: hatch_geo", "Mesh" {

Model : " Model : : Producer Perspective", "Canera" ({
I}\/bdel . "Model :: Producer Top", "Canera" {

I}\/bdel : "Model :: Producer Bottont', "Canera" {
Model : " Model :: Producer Front", "Canera" {

I}\/bdel . "Mbdel :: Producer Back", "Canera" {

I}\/bdel : "Model :: Producer Right", "Canera" ({

Model : " Model : : Producer Left", "Canera" {

}
Model : " Model : : Canera_Swi tcher", "CaneraSw tcher" {

Material: "Material::turret_phong", "" {

Material: "Material::engi ne_phong", "" {

}I'ext ure: "Texture::filel", "TextureVideodip" {

}I'ext ure: "Texture::steanroller_tank6l file3", "TextureVideodip" {

}
Video: "Video::filel", "dip" {

}
Vi deo: "Video::steanroller_tank6l file3", "dip" {

}

Instead of loading the model in its entirety as we did earlier with FerrariEnzo in section 6.4 we will have
to load all meshes from which the model is composed. We can then reference each mesh (each
ModelBone) individually in order to animate it. This suggests that we need to create a generic class that
will be responsible for loading all models this way, in other words a class that will treat a model as a set
of bones rather than a single peace. We did call this class WorldModel and its source code is presented
in Figure 7.3 below.

25

Figure 7.3 WorldModel.cs

usi ng System

usi ng System Col | ecti ons. Generi c;

usi ng System Text;

usi ng M crosoft. Xna. Franewor k;

usi ng M crosoft. Xna. Franewor k. G- aphi cs;

namespace Wrl dl

{
cl ass Wor| dvbdel
{
publ i c Model nodel;
public Matrix[] boneTransforns;
public void Initialize(Mdel in_nodel)
{
nodel = in_nodel;
boneTransforms = new Matri x[nodel . Bones. Count] ;
nodel . CopyAbsol ut eBoneTr ansf or nsTo(boneTr ansf or ns) ;
foreach (Mddel Mesh nmesh in nodel . Meshes) {
foreach (BasicEffect effect in mesh. Effects) {
ef f ect . Enabl eDef aul t Li ghti ng();
}
}
}
public void Update(GanmeTi ne ganeTi ne)
{
}
public void Draw GaneTi ne gameTi ne, Matrix projectionMatri x,
Matrix viewMatrix, Matrix worl dMatri x)
foreach (Mddel Mesh mesh in nodel . Meshes) {
foreach (BasicEffect effect in nmesh. Effects) {
ef f ect . Enabl eDef aul t Li ghti ng();
ef fect. Worl d = boneTransf orns[nesh. Par ent Bone. | ndex]
* worl dMvatri x;
effect.View = vi ewMatri x;
effect.Projection = projectionMatri x;
}
nmesh. Draw) ;
}
}
}
}

Ech model needs to be initialized, then its parameters can be optionally updated before the model is
drawn.

Initialize() - loads all meshes and stores them in bonTransforms Matrix array.

26

Update() - intentionally left empty, represents optional parameter updates (e.g. animation parameters)
that will vary per model.

Draw() - draws all meshes.

For the purpose of this lab we are going to load two tanks, each in a different way. Tank #1 is going to be
static and loaded using the WorldModel class while tank #2 will be animated and loaded with a special
class Tank that derives from the WorldModel class. This way we can use the code already available in
our base class to initialize and draw the meshes with the addition of class properties unique to our tank
model so we could animate each ModelBone of tank #2 separately inside the overriden Update()
method as shown in Figure 7.4 below.

Figure 7.4 Tank.cs

usi ng System

usi ng System Col | ecti ons. Generi c;

usi ng System Text;

usi ng M crosoft. Xna. Franewor k;

usi ng M crosoft. Xna. Franewor k. G- aphi cs;
usi ng System Di agnosti cs;

namespace Wrl dl

{
class Tank : Wor| divbdel

{
/'l constants
public const float ELLIPSE W= 14.0f; /1 elliptical animation path wi dth
public const float ELLIPSE H = 10. Of; /1 elliptical animtion path height
public const float TANK TIME = 1000.0f; // tine it takes to conplete the
ani mation path

/1 Animation paraneters

float tine;

float tank tine;

public float rotation_y; // entire nodel
public float position_x; // entire nodel
public float position_z; // entire nodel
public float wheel Rotati on;

//public float steerRotation;

public float turretRotation;

public float cannonRotati on;

public float hatchRotation;

/! Bones

Model Bone | ef t Back\Wheel Bone;
Model Bone ri ght BackWheel Bone;
Model Bone | ef t Fr ont Wheel Bone;
Model Bone ri ght Fr ont Wheel Bone;
Model Bone | ef t St eer Bone;

Model Bone ri ght St eer Bone;
Model Bone t urr et Bone;

Model Bone cannonBone;

Model Bone hat chBone;

// Bone transforns

27

Mat ri x | ef t BackWheel Tr ansf orm
Matri x ri ght BackWeel Tr ansf or m
Mat ri x | eft Front Wheel Transform
Matri x ri ght Front Wheel Tr ansf or m
Matrix | eftSteerTransform
Matri x right Steer Tr ansf orm
Matrix turretTransform
Mat ri x cannonTr ansf or m
Mat ri x hat chTransform
public new void Initialize(Mdel nodel)
{
rotation_y = 0.0f;
position_x = 0.0f;
position_z = 0.0f;
time = 0.0f;

publ

tank time = 0.0f;

/1 Set bones (their nanes are taken fromtank.fbx file)
| ef t BackWheel Bone = nodel . Bones["| _back_wheel _geo"];

ri ght Back\Weel Bone = nodel . Bones["r_back_wheel geo"];

| ef t Front Wheel Bone = nodel . Bones["| _front _wheel _geo"];
ri ght Front Wheel Bone = nodel . Bones["r _front _wheel _geo"];
| ef t St eer Bone = nodel . Bones["| _steer_geo"];

ri ght St eer Bone = nodel . Bones["r_steer_geo"];

turret Bone = nodel . Bones["turret_geo"];

cannonBone = nodel . Bones[" canon_geo"] ;

hat chBone = nodel . Bones["hat ch_geo"];

/! Set bone transfornms

| ef t BackWheel Tr ansf orm = | ef t BackWheel Bone. Tr ansf or m

ri ght BackWeel Transf orm = ri ght BackWheel Bone. Tr ansf or m

| ef t Fr ont Wheel Tr ansf orm = | ef t Fr ont Wheel Bone. Tr ansf orm

ri ght Front Wheel Transf orm = ri ght Fr ont Wheel Bone. Tr ansf orm
| eft Steer Transform = | ef t St eer Bone. Tr ansf or m

ri ght St eer Transf orm = ri ght St eer Bone. Transf orm

turret Transform = turret Bone. Transform

cannonTransform = cannonBone. Tr ansf or m

hat chTr ansf or m = hat chBone. Tr ansf or m

base. I nitialize(nodel);

i c new void Updat e(GaneTi ne ganeTi ne)
time = (float)ganeTi me. Tot al GaneTi ne. Tot al Seconds;

/1 Aninmation paraneters

wheel Rotation = tine * 5;

//steerRotation = (float)Math. Sin(tine * 0.75f) * 0.5f;
turretRotation (float)Math. Sin(time * 0.333f) * 1.25f;

cannonRot ati on (float)Math. Sin(time * 0.25f) * 0.333f - 0.333f;
hat chRot ati on = Mat hHel per. d anp((float)Math. Sin(time * 2) * 2, -1,

float tenp;

float t;

float tank theta;

float tank_theta_degrees;
float tank theta radi ans;

t = tine;
tenmp =t - tank_tine;

0);

28

if (tenmp > TANK TI ME) {
tank time = t;
while (tenp > TANK TIME) {
tenp -= TANK_TI MVE;
}

}

/1 elliptical tank notion

tank_theta = (tenp / TANK_TI ME) * 360. Of;

tank_t heta_degrees = (tank_theta * 360.0f) / (2.0f * (float)Math.Pl);
tank_t het a_degrees tank_t heta_degrees % 360.0f; // float nodul us

+

tank_theta_degrees += 90.0f; // this is because tank is originally not in
the right angle

tank _theta_radi ans

((float)Math. Pl / 180.0f) * tank_theta_degrees;

tank_t heta_radi ans;
ELLI PSE W* (float)Math. Sin(tank_theta);
ELLIPSE_H * (fl oat) Mat h. Cos(tank_t heta);

rotation_y
posi tion_x
position_z

/*
Debug. Pri nt (
"time=" + tine +
" tank_tinme=" + tank_tine +
" tank_theta=" + tank theta +
" tank_theta_degrees=" + tank_theta_degrees +
" tank_theta radians=" + tank theta radi ans +
" x=" + position_x +
" z=" + position_z
Ik
*/

public new void Draw GaneTi ne ganmeTi me, Matrix projectionMatrix, Mtrix
viewMatrix, Matrix worldMatrix)

/1 Modify bones matrices

| ef t BackWheel Bone. Transform = Matri x. Cr eat eRot ati onX(wheel Rot ati on) *
| ef t BackWheel Tr ansf orm

ri ght BackWeel Bone. Transform = Matri x. Cr eat eRot at i onX(wheel Rot ati on) *
ri ght BackWeel Transform

| ef t Fr ont Wheel Bone. Transform = Matri x. Cr eat eRot at i onX(wheel Rot ati on) *
| ef t Fr ont Wheel Tr ansf orm

ri ght Front Wheel Bone. Transform = Matri x. Cr eat eRot at i onX(wheel Rot ati on) *
ri ght Front Wheel Tr ansf orm

/11 eftSteerBone. Transform = Matri x. Creat eRot ati onY(steerRotation) *
| ef t St eer Tr ansf orm

[/ rightSteerBone. Transform = Matri x. Creat eRot ati onY(steerRotation) *
ri ght St eer Tr ansf orm

turretBone. Transform = Matri x. Creat eRotationY(turretRotation) *
turret Transform

cannonBone. Transform = Matri x. Cr eat eRot ati onX(cannonRot ati on) *
cannonTr ansf or m

hat chBone. Transform = Matri x. Cr eat eRot ati onX(hat chRot ati on) *
hat chTr ansf or m

/1 Look up comnbi ned bone matrices for the entire nodel .

base. nodel . CopyAbsol ut eBoneTr ansf or nsTo(base. boneTr ansf or ns) ;
/1 Draw t he nodel

base. Draw(ganeTi ne, projectionMatrix, viewvatrix, worldMatrix);

29

Tank #2 is going to follow elliptical path (the size of wich is defined by ELLIPSE_W and ELLIPSE_H). It is a
time based animation to make sure that on different machines it will take approximately the same time
(TANK_TIME) for the tank to complete 1 cycle of following its elliptical path. While tank is orbiting
according to its unique elliptical path all of its meshes (ModelBones) will be animated: the left, right,
back and front wheels, the turret, the cannon and the hatch.

Notice that inside the Initialize() method we perform all the necessary initialization of tank animation
parameters (such as tank position, rotation and time). We then initialize each bone reference to its
corresponding mesh using the names defined in tank.fbx file, store the original bone transforms so we
could modify them later in a Draw() method and call the base.Initialize() method to load the meshes.

Update() method contains the animation of all tank parts as well as the calculation of elliptical tank
motion in terms of rotation_y, position_x and position_z animation parameters.

Finally inside the Draw() method the bone transforms are modified to their updated values and
base.Draw() method is invoked.

We are now ready to see what effect this object oriented approach has on our code in Gamel class.

All the initialization, loading, animation and drawing code was encapsulated into WorldModel and Tank
classes resulting in a very clean Gamel class that hides all the implementation details. In fact the only
visible difference between two tanks in this class is the following two lines of code:

Wor | dMbdel tankl = new Wor | dhbdel () ;
Tank tank2 = new Tank();

This is because both tank1 and tank2 have their Initialize(), Update() and Draw() methods. Even the fact
that tank2 is animated and tankl is static, is completely hidden from the Game1 class and can be only
observed by checking the instance of the class.

Figure 7.5 Gamel.cs

using System

usi ng System Col | ecti ons. Generi c;

usi ng M crosoft. Xna. Fr anewor k;

usi ng M crosoft. Xna. Framewor k. Audi o;

usi ng M crosoft. Xna. Fr anewor k. Cont ent ;

usi ng M crosoft. Xna. Fr anewor k. Ganer Ser vi ces;
usi ng M crosoft. Xna. Franewor k. G aphi cs;

usi ng M crosoft. Xna. Franmewor k. | nput ;

usi ng M crosoft. Xna. Franewor k. Net ;

30

usi ng M crosoft. Xna. Fr anewor k. St or age;
nanespace Wrl dl

public class Ganel : M crosoft. Xna. Franmewor k. Gane
{

Graphi csDevi ceManager graphics;

Graphi csDevi ce devi ce;

Basi cEf f ect basi cEf f ect;

QuakeCanera fpsCam

Coor dCross cCross;

VWor | dvbdel tankl = new Worl dModel ();
Tank tank2 = new Tank();

public Ganel()
{

graphi cs = new G aphi csDevi ceManager (thi s);
Content. RootDirectory = "Content";
}

protected override void Initialize()

{
f psCam = new QuakeCaner a(G aphi csDevi ce. Vi ewport, new Vector 3(0,
3, 45), 0, 0);
base.Initialize();
}

protected override void LoadContent ()

{
devi ce = graphi cs. G aphi csDevi ce;
basi cEf fect = new Basi cEffect (device, null);
cCross = new CoordCross(device);

Model nodel ;
nodel = Content.Load<Mbdel >("tank");

tankl.Initialize(nodel);
tank2.Initialize(nodel);

}

protected override void Unl oadContent ()

{
}

protected override void Update(GaneTi ne ganeTi me)

{
GanePadSt at e ganePadSt at e = GanePad. Get St at e(Pl ayer | ndex. One) ;
MbuseSt at e nbuseState = Muse. Get State();
Keyboar dSt at e keyState = Keyboard. Get State();

i f (ganePadSt ate. Buttons. Back == ButtonState. Pressed
|| keyState. | sKeyDown(Keys. Escape))
this. Exit();

31

f psCam Updat e(nouseSt at e, keyState, ganePadState);

t ankl. Updat e(gameTi ne) ;
t ank2. Updat e(ganmeTi n®e) ;
base. Updat e(ganeTi ne) ;

}

protected override void Draw GaneTi ne gameTi ne)

{
device. Cl ear(Cl earOptions. Target | C ear Opti ons. Dept hBuf fer,
Col or. Cornfl owerBl ue, 1, 0);

Matrix worl dMvatri x;

/1l Coordinate system
cCross. Drawf psCam Vi ewvatri x, fpsCam Projecti onMatrix);

/1 tankl :
wor | dvatri x = Matrix. CreateScal e(0.01f, 0.01f, 0.01f)
* Matrix. CreateRotationY(0.5f)
* Matrix.CreateTranslation(5, 0, 0);
tankl. Draw(ganmeTi ne, fpsCam ProjectionMatrix, fpsCam ViewMvatri x,
wor | dMvat ri x) ;

/] tank2 :
wor | dMvatri x = Matrix. CreateScal e(0.01f, 0.01f, 0.01f)
* Matrix.CreateRotationY(tank2.rotation_y)
* Matrix.CreateTransl ati on(tank2.position_x, O,
t ank2. position_z);
t ank2. Dr aw(ganeTi ne, fpsCam Proj ectionMatrix, fpsCam Viewwatri X,
wor | dMvat ri x) ;

base. Dr am ganeTi nme) ;

32

8 Lighting and Special Effects
In this chapter we will add lighting and special effect - fog to the scene.

The source code for this lab can be found at Labs/World3 folder.

Since all objects in our scene, except the floor, are meshes and based on the WorldModel class or inherit
from it like the Tank class, we can use the WorldModel class to add lighting and special effect processing
to affect all those models when they are rendered inside the Draw() method.

The new code of WorldModel class is presented in Figure 8.1 below.

The important new methods in this class are lights() and fog(). Both are using the BasicEffect class to
render the desirable effect.

lights() - disables default lighting and adds directional light to the scene;

fog() - adds fog effect to the scene, with fog color slightly darker than the background "sky" color to
achieve more realistic foggy look and feel;

draw() - instead of effect.EnableDefaultLighting() we now have calls to lights() and fog() methods.
Notice that floor is not affected by fog. This is because floor is a vector based structure which was

manually built in source code. In other words it was not built with Maya and loaded into XNA later. It is
therefore not based on the WorldModel class like all the other models in the scene and passes its own

33

unique rendering routine. If we would like to create a floor which is also affected by fog and custom
lighting we have defined earlier, we will have to load it in the same way we did load all other models.

Figure 8.1 WorldModel.cs with lights and fog

usi ng System

usi ng System Col | ecti ons. Generi c;

usi ng System Text;

usi ng M crosoft. Xna. Fr anewor k;

usi ng M crosoft. Xna. Franewor k. G aphi cs;

nanespace Wrl dl

{
cl ass Wor |l divbdel

{
public Mbdel nodel;

public Matrix[] boneTransforms;

public void Initialize(Mdel in_nodel)

{
nodel = i n_nodel;
boneTransforms = new Matri x[nodel . Bones. Count];
nodel . CopyAbsol ut eBoneTr ansf or nsTo(boneTr ansf or ns) ;
foreach (Model Mesh nesh in nodel . Meshes) {
foreach (BasicEffect effect in mesh.Effects) {
ef f ect. Enabl eDef aul t Li ghti ng();
}
}
}
public void Update(GaneTi ne ganmeTi ne)
{
}
protected void |ights(Basi cEffect effect)
{
ef fect. Li ghti ngEnabl ed = true;
ef f ect . Ambi ent Li ght Col or = new Vector3(0.5f, 0.5f, 0.5f);
effect.Directional Li ght 0. Enabl ed = true;
effect.Directional LightO.Di ffuseCol or = new Vector3(1, 1, 1);
ef fect. Directional Li ght 0. Specul ar Col or = new Vector3(1, 1, 1);
effect.Directional Light0.Direction = new Vector3(1, 1, 1);
}
protected void fog(Basi cEffect effect)
{
Col or fog_color = new Col or (67, 102, 164);
ef f ect. FogEnabl ed = true;
ef fect. FogCol or = fog_col or. ToVector 3();
ef fect. FogStart = 120;
ef fect. FogEnd = 180;
}

34

public void Draw(GaneTi ne ganeTime, Matrix projectionMatrix, Matrix
viewMatrix, Matrix worl dMatrix)
{
foreach (Model Mesh nesh in nodel. Meshes) {
foreach (BasicEffect effect in nmesh.Effects) {
/I ef fect. Enabl eDef aul t Li ghting();
lights(effect);
fog(effect);
ef fect. Wrl d = boneTr ansf or ms[mesh. Par ent Bone. | ndex] *
wor | dMatri x;
effect.View = viewMatri x;
ef fect.Projection = projectionhMtri x;

}
nmesh. Draw() ;

35

9 Appendix A: Maya to FBX Export

This appendix describes the procedure of exporting a Maya model into the FBX file ready to be loaded
into XNA environment.

It is recommended to keep each model on a separate layer in Maya, so it will be possible to easily
isolate it (by hiding all the other layers) when given model needs to be exported.

All textures used in a model must have size (width and height) which is power of 2.

Example A: 128 x 512 — this is a good example because everything is power of 2.

Example B: 200 x 512 — this is a wrong example, this texture will not load into the XNA environment
because 200 is not a power of 2.

If you use an existing model that comes with original textures that do not comply with "power of 2"
requirements, use Photoshop to resize each texture until it does comply. You will usually enlarge width
and height to the closest number which is power of 2. In many cases it does not create visible problems
and does not require texture remapping. To be sure you can reload textures in Maya after you modify
their sizes to see the results.

Before exporting always optimize your model by removing invisible faces. If you leave them they will
only take additional rendering time consuming valuable resources.

Make sure your model is at the origin (X, Y, Z=0) and its scaling ratio is equal to 1.

Finally group all the parts of your model into a single group. Select the group and then do File > Export
Selection. Give your model a name and select the file type FBX. When you hit Export button the window
(presented in Figure 9.1 below) will open where you can specify additional parameters.

Make sure that "Embed textures" and "Export to ASCIl format" are both checked. Also select the
appropriate Conversion Method (if you don't have any animation defined for your model, select here
the None option).

Press the Export button to start exporting.

After FBX file has been created there are still a few issues to keep in mind. Since we exported to the
ASCII format we can open FBX file as a regular text file inside Visual Studio. The "Embed textures" option
we have checked earlier only means that inside your ASCII FBX file the paths (both absolute and relative)
to your textures will be included. You will have to modify the RelativeFilename path of each texture
inside the ASCII FBX file to point to the Textures folder inside the Content folder of your Visual Studio
Game Project.

If your FBX file is located at Content\Models and your textures are located at Content\Textures, then
you would like to make sure that you have: RelativeFilename: "..\textures\mytexturename.bmp".

36

Figure 9.1 Export Options

6] FEX Exporter 2006.11 for Maya 2008.0

File path: F:/...ortkAsforld /Content/todelz/test. fbx

Coordinate and Unit Converzion

Converzion kethod: Nane

Wworld Coordinate:
System Up Az Y ow

Scale Working Units:
1 cm will became: | 1 cm j

Scale Factor: |1.00000

Raotation curves uzing quaternion inkerpalation:
(" Fetain quaternion interpalation

" Set as Euler interpalation

* Fesample az Euler interpolation

[v &pply Constant Key Beducer filtering
Rezampling frame rate [fps)] 24.000
Ewport animation only

Split mesh for per-vertes normals

<1 7171

Ewport Edge Smoothing

Export Blind Drata

Export conztraints

Ewport character definition
Embed textures

Convert to portable format [TIFF)
Ewport to ASCI format

<71 1717

[Bake complex animation
Stat |1 End |43

Step |1
[Export Quick Select Set az Geometry Cache File(s)

| K

Ewport to wersion; | FES200511 j

Ewport nurbs sufaces as: | Wurhs j

[v Show the Wwarnings and Eraors dialog box

Ewpart | Reset | Cancel |

Check for web updates

FB#-bd aya impartexport plug-in.
Copyright (2 2000-2007 Autodesk, Inc.
anddor itz licenzors. All Rights Reserved.
Build nurnber; 200617071

37

10 Bibliography and References

Software

[Bonus Tools] Bonus Tools for Maya is a free download from:
http://area.autodesk.com

[C# IDE] Free Microsoft Visual C# 2005 Express Edition
http://www.microsoft.com/express/2005/

[XNA] Microsoft XNA Game Studio 2.0:
http://www.microsoft.com/downloads/details.aspx?Familyld=DF80D533-BA87-40B4-ABE2-1EF12EA506B7&displaylang=en

[XNA 2.0 Project Upgrade Wizard] This utility converts and upgrades an existing XNA Game Studio 1.0 game project and saves
it as a new XNA Game Studio 2.0 game project.
http://creators.xna.com/en-us/utilities/project upgrade wizard

[XNA 2.0 Changes] XNA Framework Changes in XNA Game Studio 2.0
http://msdn.microsoft.com/en-us/library/bb975648.aspx

3D Models

[Klicker] Free 3D Plants in 3DS format
http://www.klicker.de/plants.html

[Turbosquid] Free 3D Models
http://www.turbosquid.com/

XNA Books

[XNA Guide] Microsoft® XNA™ Game Studio Creator’s Guide - An Introduction to XNA Game Programming,
by Stephen Cawood, Pat McGee, 2007

[XNA Recipes] XNA 2.0 Game Programming Recipes A Problem-Solution Approach, by Riemer Grootjans, 2008

XNA Tutorials

[Riemers] HLSL Introduction Tutorial
http://www.riemers.net/eng/Tutorials/XNA/Csharp/Series3/HLSL introduction.php

[Ziggyware] Terrain generation
http://www.ziggyware.com/readarticle.php?article id=132&rowstart=0

38

http://area.autodesk.com/
http://www.microsoft.com/express/2005/
http://www.microsoft.com/downloads/details.aspx?FamilyId=DF80D533-BA87-40B4-ABE2-1EF12EA506B7&displaylang=en
http://creators.xna.com/en-us/utilities/project_upgrade_wizard
http://msdn.microsoft.com/en-us/library/bb975648.aspx
http://www.klicker.de/plants.html
http://www.turbosquid.com/
http://www.riemers.net/eng/Tutorials/XNA/Csharp/Series3/HLSL_introduction.php
http://www.ziggyware.com/readarticle.php?article_id=132&rowstart=0

	Introduction
	XNA Game Development Environment
	Creating Windows Game Project with Visual Studio 2005
	Drawing
	Shaders
	Creating virtual world
	Importing 3D Models into Maya in 3DS Format
	Exporting 3D Models from Maya to XNA in FBX Format
	Camera
	Loading 3D Model and Simple Animation

	Advanced Animation Techniques
	Lighting and Special Effects
	Appendix A: Maya to FBX Export
	Bibliography and References
	Software
	3D Models
	XNA Books
	XNA Tutorials

