
1

Asynchronous JavaScript and XML

Literature study on Ajax as part of the project ‘AJAX for Content Management’.

By: Teunis van Wijngaarden (teunis@few.vu.nl)

Abstract

[Voor dit document een aparte abstract schrijven?]

1 Contents

Asynchronous JavaScript and XML ..1

Abstract ..1

1 Contents ...1

2 Introduction ...2

3 Ajax history ...2

3.1 Introduction of Javascript ..2

3.2 Introduction of frames ...2

3.3 Ansynchronous requests with ‘old’ techniques ..2

3.4 An easier way to perform Asynchronous requests ...3

3.5 The new approach: Ajax ...3

3.6 Ajax’s context: Web 2.0 ..4

3.7 Real life examples ...5

4 Ajax into practice ...6

4.1 The Document Object Model ..6

4.2 XMLHttpRequest ...8

4.3 Data formats: XML and JSON .. 10

5 Discussion ... 12

6 References ... 12

2

2 Introduction

[Voor dit document een aparte introduction schrijven?]

3 Ajax history

 [Mag ik XHTML en CSS als voorkennis beschouwen?]

In the early years of the world wide web, it was just a huge collection of static HTML-pages,

interconnected by hyperlinks. There were a few web browsers to access these pages, by

pointing to their Unified Resource Locator (URL). In order to read a page, the user enters the

URL into the webbrowser. The URL is used to invoke the server and request that specific

page or file. The server sends the requested data and the browser displays it.

The (X)HTML format provides a way to format the page [1]. In time, more and more

attention was paid to this formatting, using HTML in combination with images. It became

common to use some basic elements on a website, e.g. a header and a menu. These elements

were the same for most related pages, but needed to be included in every page. This

redundancy problem was later resolved by the introduction of frames, see section 3.2.

3.1 Introduction of Javascript

Netscape was the first to introduce scripts at client side: LiveScript [2]. These small programs

build into HTML pages made it possible to do simple tasks, like form validation. Before

scripting, form validation was done server side. Later on, a similar script called ECMA script

became a standard and the currently well known JavaScript was based on that.

[Uitzoeken wat het verschil is met ECMA Script, JScript? Ik kan hier geen academische bron

van vinden.]

3.2 Introduction of frames

In the HTML4.0 specification (1998), frames were introduced to split pages in multiple pages

[3]. The frameset HTML entity was the new element that could turn a page into a framework

for other pages. This is useful to separate the static from the dynamic content: the menu could

be on a different page than the content, but in the same framework. A click on a menu link

causes the page in the content frame to change. Now, the webdesigner did not need to add the

menu to every HTML page – which was very profitable for maintainance – and the amount of

data to send over was reduced.

3.3 Ansynchronous requests with ‘old’ techniques

Frames together with JavaScript gave developers the opportunity to contact the server

asynchronously [4][2]. A hidden frame – with width or height of zero pixels – was used as a

communication channel. Forms on a page in this hidden frame could be filled out and sent

with JavaScript. Response could be extracted from the hidden page with JavaScript too. So,

the page in the main frame did not reload, only the hidden page did.

3

Microsoft was the first to introduce the Document Object Model (DOM) in a new form of the

old markup language: Dynamic HTML [2]. Although DHTML never made it to a standard,

the DOM did in 1997 [5]. The DOM is a way to access parts of a page by their path in the

HTML tree or by using DOM-functionality, for instance by using an entity’s id attribute. The

DOM is now an essential part of Ajax.

In the same year that the DOM became a standard, a new element was introduced to HTML:

the iframe. This element could in itself contain a webpage. The frameset became superfluous

(for our purpose) and the hidden frame technique could be carried out with a zero by zero

iframe. Great advantage was that such an iframe could be created on-the-fly using JavaScript

and the DOM. This made asynchronous calls possible without having to plan a hidden frame

in the HTML design (which encourages separation of ‘code’ and presentation).

3.4 An easier way to perform Asynchronous requests

Microsoft was the first to ‘legalize’ asynchronous requests with the introduction of an

ActiveX object XMLHttp [2]. This made it possible to do HTTP requests with JavaScript,

which became very popular. Mozilla introduced XMLHttpRequest as a JavaScript object [6],

with the same functionality but not using ActiveX. Other browsers followed Mozilla and in

the end even Microsoft added Mozilla’s implementation to Internet Explorer 7
1
.

The XMLHttpRequest is at the time writing not a W3C Recommendation, but its draft is in a

final state [7]. The formal description of XMLHttpRequest maintained by W3C is: “The

XMLHttpRequest object can be used by scripts to programmatically connect to their

originating server via HTTP.” [8]

3.5 The new approach: Ajax

The introduction of XMLHttpRequest completed the set of technologies that together forms

Ajax. In 2005, Jesse James Garrett was the first to combine these technologies and he

invented the term Ajax: Asynchronous JavaScript and XML. According to him it incorporates

the following [9]:

• XHTML and CSS

• The DOM

• XML and XSLT (a stylesheet for XML)

• XMLHttpRequest

• JavaScript

This definition of Ajax does not include the server side, that plays a central role in handling

the requests. Like Garrett’s publication, this thesis also emphasizes client side technology.

Server side scripts, written in some kind of language (PHP, ASP or else) probably with a

connection to a database, will be discussed on the side. These scripts do not use any new

1
 MSDN, XMLHttpRequest object: http://msdn.microsoft.com/en-us/library/ms535874(VS.85).aspx

4

technology (like XMLHttpRequest in Javascript), only the output format XML is relatively

new.

Ajax changes the communicationmodel for

web applications[9][2]. Without Ajax the user

requests a page (HTTP Request by the

browser), waits, and receives a page (HTML

and CSS). The real work is done at server

side: using a database, form validation

etcetera. Now, with Ajax the user requests a

page, containing an Ajax application (the Ajax

engine). Once the application (HTML, CSS

and JavaScript) is received, further HTTP

Requests are done by the Ajax engine in the

background. Whereas the ‘old’ web

application relies heavily on the server, the

new web application moves functionality to

the clients side. Figure 0-1 shows this model.

Why should developers convert their

traditional web application to Ajax based

applications? A reason could be the new

(better?) interaction model. The old applications cause the user to work on a page, request a

new page or send a form, and wait until it is loaded. This repetition of working and waiting is

called the work-wait model[9][4]. Ajax applications break through this traditional model.

They allow the user to work on client side, while the sending and loading happens most of the

time behind the scenes by the Ajax engine. In fact Ajax applications behave more like desktop

applications.

Another reason to start programming Ajax is the range of new possibilities. Ansynchronous

request do not only change the interaction with current web applications, but new applications

or websites can be designed. With requests in the background it is possible to reload parts of

page, i.e. actualize the news headlines at a pages sidebar while the user reads an article.

Preloading pages, for instance the next chapter of an e-book, can be done by Ajax. Other

patterns are: pre-submitting parts of a form (i.e. a file) while the user fills out the rest, or

buffering submitted information (submission throttling) [10]. More innovative functionality

can be found in the examples in the next paragraph or in the chapter on design decisions.

3.6 Ajax’s context: Web 2.0

Up until now we discussed Ajax as technology on its own, but it is part of a technological

shift. According to Tim O’reilly Ajax is a key component of web2.0. Although some

companies use it as a buzzword, the term web2.0 does define the ‘new internet’ with a

specific type of website – although the characteristics are not clear [11]. At least, web2.0

websites or applications share some characteristics: rich user experience, user participation,

Figure 0-1. The traditional and Ajax model for Web

applications according to Jesse James Garett [9].

[mag ik dit model zomaar overnemen?]

5

dynamic content, metadata, web standards and scalability[12]. O’reilly adds to this:

lightweight programming and the end of software lifecycles. He mentions Ajax under the

header rich user experience.

Macromedia invented a term for web applications that accomplish a rich user experience:

Rich Internet Applications (RIA). Technologies to build such applications are not only Ajax,

but also Flash/Flex and Java Applets. Their driving forces are: the introduction of broadband,

increasing computing power of clients, demand of responsive applications, choice of big

companies (like Google) and the emergence of web services and Service Oriented

Architectures (and XML) [13].

The use of asynchronous requests is not the only thing that makes a richer experience. The

design – that achieves most of the look-and-feel – also adds to this. In fact the techniques used

to create an enhanced graphical layout have nothing to do with asynchronous communication,

but it does include the some of the Ajax contained techniques: HTML, CSS and XSLT.

Another web2.0 thing are (third party) webservices. Google for instance provides access to

their applications (Google Maps, Picase Webalbums and more) by providing an API
2
. Yahoo

does the same for their Flickr photoalbum
3
. These API’s allow developers to include parts of

the services in their website, embedded in their own layout. They also allow some sort of

creativity: mashups. An example mashup is photos from a Flickr album to locations on a

Google Map. A similar example is traffic information (from a third party or from your own

company) on a Google Map. Combining several services creates thousands of new

possibilities.

3.7 Real life examples

Form validation, for instance checking an emailfield on the ‘@’ and dot extension, is not real

Ajax. No communication takes place. An advanced example of Ajax is Google Suggest.

While the user types search keywords, the application contacts Google in the back and

requests suggestions. See the example in Fout! Verwijzingsbron niet gevonden.: the user

typed ‘Aj’ and suggestions like ‘ajax’, ‘ajc’, ‘ajc jobs’, ‘ajilon’ pop up.

2
 http://code.google.com/

3
 http://www.flickr.com/services/api/

Figure 0-2. Google Suggest uses

Ajax to suggest search terms.

Google Suggest:

http://www.google.com/webhp?com

plete=1&hl=en

6

Another Ajax example is Google Maps, launched in 2005
4
. The maps shown by Google Maps

are just images, but ajax comes in when moving the map. As the world is round it should be

possible to move into infinite, never reaching an end. Loading the world (in full detail, on a

high zoom level) would take a lot of time. Google Maps therefore only loads the visible parts

of the maps and near regions. While moving around, the ajax engine in the back loads new

near regions that ‘might be needed in future’.

A much more complex example

of Ajax is the online e-mail

application Google Gmail (see

Figure 0-3). Without reloading

the page, new e-mails popup.

Attachments to e-mails upload

while users type their mail.

When they click ‘send’, the

message is out in the web

immediately. Google made

much more complex ajax

applications in Google Docs.

Other companies that bring Ajax

to a high level are Yahoo

[MEER TOEVOEGEN, niet

alleen Google apps, ook

voorbeeld van Mashup toevoegen].

4 Ajax into practice

This chapter handles how to program Ajax: the basics of an HTTP Request, basic DOM

manipulation and some practical information on dataformats. The basics of XHTML and CSS

are considered to be known. If not, W3 Schools might be helpful
5
.

4.1 The Document Object Model

The DOM, short for Document Object Model, provides a way to handle structured

documents, like (X)HTML documents. According to W3C, the DOM is “a platform- and

language-neutral interface that will allow programs and scripts to dynamically access and

update the content, structure and style of documents. The document can be further processed

and the results of that processing can be incorporated back into the presented page.” [5] The

DOM’s history at W3C starts in 1998 with DOM level 1. Development stopped in 2004 with

DOM Level 3. We will use the DOM to access and manipulate XHTML documents.

4
 http://www.google.com/corporate/history.html

5
 W3 Schools, http://www.w3schools.com

Figure 0-3. The Google Gmail application behaves like a desktop

application. Google Gmail: http://www.gmail.com

7

The DOM views an XHTML document as a tree, with the XHTML elements as nodes
6
. A

way access a node is by navigating through the tree. A node’s attributes to do this are:

parentNode, childNodes (which returns a list of nodes), firstChild, lastChild,

previousSibling and nextSibling. Another way of navigating is by retrieving a list

of nodes with a certain tag by using getElementsByTagName(). In addition, an easy

way to access a node with a known id attribute is getElementById().

JavaScript programmers are probably

not satisfied with read-only access and

want to manipulate the document or

nodes. Therefore, the DOM provides

ways to add and remove nodes, for

instance insertBefore(),

removeChild() or

appendChild(). In addition there

is a way to manipulate the nodes itself

by changing their inner HTML or

attributes.

Our focus is on using the DOM in

JavaScript to access (XHTML) pages.

W3Schools
7
 offers an overview of

functionality to do so. The best way to

get to know the DOM is learning by

doing. Figure 0-4 shows some simple

JavaScript functions that manipulates

the XHTML webpage of Figure 0-5.

6
 http://www.w3.org/TR/2004/REC-DOM-Level-3-Core-20040407/core.html

7
 http://www.w3schools.com/js/js_obj_htmldom.asp

Figure 0-4. Some simple JavaScript functions that change the XHTML

source of a page.

8

4.2 XMLHttpRequest

Most popular browsers have implemented XMLHttpRequest in their newest versions
8
, but for

older versions Microsoft’s implementation differs. In Internet Explorer 6 and before, the

object was not a native part of the browser, see section 3.4. Instead ActiveX was used. This is

why the else clause is added to the example in Figure 0-6.

Figure 0-6. Using XMLHttpRequest or the IE6 equivalent.

8
 Firefox, http://developer.mozilla.org/en/XMLHttpRequest

 Internet Explorer, http://msdn.microsoft.com/en-us/library/ms535874(VS.85).aspx

 Opera, http://www.opera.com/docs/specs/opera9/xhr/

 Safari, http://developer.apple.com/internet/safari/faq.html#anchor19

Figure 0-5. An XHTML page with a reference to the script of the previous figure. The hyperlinks

invoke the functions of the script and thereby change or add elements and attributes.

9

Once the object is created, requests can be send. Figure 0-7 shows an example of a GET and a

POST request. Both use the similar syntax. The open() function of the XMLHttpRequest

object is called. Any HTTP command could be used, but GET and POST are most useful for

Ajax purposes. There are other types of open functions that require more parameters, but

those are not discussed here to keep the example simple.

Figure 0-7. Example of a GET and a POST request. The POST request send its variables in the send function. It

is also possible to route formfields directly to this function.

There are some more functions and variables in the XMLHttpRequest object, having to do

with headers, status and MIME types. Please consult the W3C website for information about

this
9
.

The variables of the example POST request are probably send to a server side script (at the

same domain as where the script came from). That script might consult a database and return

an answer. All kinds of databases and PHP, ASP or other scripts can be used to generate the

respond, but this is not covered in this thesis. Just assume that the response is there. Figure

0-8 shows how the function handleResponse() handles the respond.

Figure 0-8. This function handles the Ajax call response. The text contained in the returned package is put into

an HTML element's inner HTML.

The onreadystatechange-function will not only be invoked when the request is finished

and the result is there, but also in intermediate states: when open has not been called (0), when

open has been executed (1), when send has been executed (2), when the server has returned a

chunk of data (3) and when the request is complete and the server is finished sending data (4)

[4]. Furthermore the status property of the XMLHttpRequest object contains the HTTP status,

i.e. 200 for success or 404 in case the file is not found.

9
 http://www.w3.org/TR/2008/WD-XMLHttpRequest2-20080930/#references

10

Important to remark is the cross-domain issue. Browser do not allow a script that is acquired

from one server to communicate with a another server. So, the developer is bound to his own

server with his own services. There are some ways to overcome this, for instance when a

(third party) service ‘knows you’ and allows your requests. In example, the services of

Google use a identification key for every domain. Another solution is using a (simple) proxy,

for instance a server side PHP script that downloads and displays the requested page.

4.3 Data formats: XML and JSON

The term Ajax, in which the ‘x’ stand for XML, suggests that XML is the only data format

used for communication. This is not true, every format is possible. Though, XML is a good

choice, because it is a standard data format[14] and programming languages on both client

and server side already contain XML parsers, or those are made available by third parties.

Another data format, covered by some programming languages, is JavaScript Object Notation

(JSON), which has the advantage of being lightweight.

There is a lot of discussion on the web about which technique, JSON or XML, is best in what

situation. This thesis will not cover that topic, except when it comes to the choice of

techniques for the final content management system.

4.3.1 eXtensible Markup Language (XML)

The eXtensible Markup Language (XML) is a simple text format that Ajax applications can

use to communicate with the server. Two of W3C’s design goals for XML are that it should

“support a wide variety of applications” and it should be “be easy to write programs which

process XML documents” [14]. These goals are met when it comes to Ajax applications,

which are very various and

which are based on many sorts

of server side languages that

support XML. The scripting

language PHP for instance

provides an extension for

processing XML
10

.

XML, like HTML, is derived

from SGML, which is a system

for defining markup languages.

Each SGML application

contains a reference to a

document type definition (DTD)

that defines the syntax of

markup constructs, like the

XHTML example in section 4.1

[15]. See Figure 0-9 for an

10

 PHP: XML Parser, http://nl2.php.net/manual/en/book.xml.php

Figure 0-9. An example XML file.

11

example DOCTYPE declaration in an XML file. The DTD syntax is out of scope for this

thesis, please consult the W3C website for more information
11

. The example XML document

in the figure shows that XML is very similar to XHTML, which is in fact XML and which is

also derived from SGML.

The root element in the example in Figure 0-9 is news. This elements contains one or more

news-items. Those items have some properties, saved in child nodes. The definition of

what elements news and new-item can contain is in the DTD. This agreement on the

format is useful when communication takes place between different applications (i.e. written

in different languages, running on different platforms).

The browsers Internet Explorer and Firefox display XML documents as a tree, with

collapsible nodes, unless the creator refers to a stylesheet (as in the example). The stylesheets

in XSLT format define the style of elements and thereby determine the layout. Stylesheets are

part of Ajax, according to the definition of Jesse James Garrett [9], but this technology will

not be used in this thesis.

4.3.2 JavaScript Object Notation

JavaScript Object Notation (JSON) is a lightweight data-interchange format[15], according to

David Crockford, who proposed this new data format [2]. In fact, JSON exists as long as

JavaScript does, but it was not used before Ajax. [Over JSON op zich is nauwelijks een

wetenschappelijke bron te vinden, ook W3C niet echt.]

JSON is based on a subset of Javascript, containing object and array. Objects contain pairs of

property and value. Arrays contain values. A value could be a string, number, object array,

true, false or null[15]. On average, JSON requires less characters, and so less bytes, than the

same data in XML. Because it uses JavaScript syntax, it requires less parsing than XML when

used in Ajax Applications [2].

Figure 4-10. An example JSON file. Objects are enclosed by curly brackets ({}) and arrays by squared brackets

([]). Name-value pairs are separated by a colon (:) and separated by comma’s (except the last one). A

sequence of news-items can be created by placing a comma behind the last curly bracket and repeating the

news-item syntax (between the highest level curly brackets).

The example in Figure 4-10 shows almost the same information as the XML example in

Figure 0-9. JSON is probably less readable, because there is no description of what the objects

stand for, like the news-item element in XML tells you something about the content.

11

 http://www.w3.org/TR/REC-html40/sgml/dtd.html

12

JSON is also covered by server side technology like PHP.

5 Discussion

[Moet er bij dit aparte document ook een soort afsluiten? Bijvoorbeeld een discussion?]

6 References

[1] W3C [World Wide Web Consortium]. XHTML™ 1.0 The Extensible HyperText

Markup Language (Second Edition). [Online] 08 01, 2002. [Cited: 09 24, 2008.]

http://www.w3.org/TR/xhtml1.

[2] Zakas, Nicholas C, Jeremy, McPeak and Joe, Fawcett. Professional Ajax. 2nd edition.

Indianapolis : Wiley Publishing, Inc, 2007.

[3] W3C [World Wide Web Consortium]. HTML 4.0 changes. [Online] 04 24, 1998.

[Cited: 09 24, 2008.] http://www.w3.org/TR/1998/REC-html40-

19980424/appendix/changes.html.

[4] Crane, David, Bibeault, Bear and Sonneveld, Jord. Ajax in Practice. Greenwich :

Manning Publications Co., 2007.

[5] W3C [World Wide Web Consortium]. Document Object Model (DOM). [Online] 01

19, 2005. [Cited: 09 26, 2008.] http://www.w3.org/DOM/.

[6] Mozilla. XMLHttpRequest. Mozilla developer center. [Online] 09 18, 2008. [Cited: 09

26, 2008.] http://developer.mozilla.org/en/XMLHttpRequest.

[7] W3C [World Wide Web Consortium]. W3C Technical Reports and Publications.

[Online] [Citaat van: 2008 09 26.] http://www.w3.org/TR/#last-call.

[8] —. The XMLHttpRequest Object. [Online] 10 26, 2007. [Cited: 09 26, 2008.]

http://www.w3.org/TR/2007/WD-XMLHttpRequest-20071026/#xmlhttprequest.

[9] Garrett, Jesse James. Ajax: A New Approach to Web Applications. [Online] 02 18,

2005. [Cited: 10 01, 2008.]

http://www.adaptivepath.com/ideas/essays/archives/000385.php.

[10] Mahemoff, Michael. Ajax Design Patterns. sl : O'Reilly Media, Inc., 2006.

[11] O'Reilly, Tim. What Is Web 2.0. [Online] 09 30, 2005. [Cited: 10 01, 2008.]

http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/what-is-web-20.html.

[12] Best, David. Web 2.0: Next Big Thing or Next Big Internet Bubble? Eindhoven :

Technische Universiteit Eindhoven, 11 01 2006.

13

[13] Noda, Tom en Helwig, Shawn. Rich Internet Applications: Technical Comparison and

Case Studies of AJAX, Flash and Java based RIA. Wisconsin : UW Business

Consortium, UW E-Business Consortium, 2005.

[14] W3C [World Wide Web Consortium]. Extensible Markup Language (XML) 1.0

(Second Edition). [Online] 10 06, 2000. [Cited: 10 08, 2008.]

http://www.w3.org/TR/2000/REC-xml-20001006#sec-origin-goals.

[15] —. Introduction to SGML. On SGML and HTML. [Online] 1999. [Cited: 10 15, 2008.]

http://www.w3.org/TR/REC-html40/intro/sgmltut.html#h-3.1.

[16] JSON.org. JSON The x in Ajax. Introducing JSON. [Online] 2006. [Cited: 10 08, 2008.]

http://www.json.org/json.pdf.

