Table of Contents

Introduction
2
Required development tools
2
Required knowledge
2

Purpose of this document
2
Getting started
3
Initializing and Drawing
4
Adding movement
6
Boundary detection
8
Rectangle collision
9
Per-pixel collision detection
11
Transformed collision
14
Transformed collision in further detail
16
New asteroid types
20
Background
21
Health Bar
22
Sound
23
Conclusion
24
Introduction

What is XNA?
XNA is a set of software development tools (made and distributed by Microsoft) designed to facilitate computer game development and management. The first official build of XNA was released in December 2006. It is based on the .NET Framework 2.0 and contains an extensive set of class libraries, made for use in game development. Because XNA games are written for the runtime, they can be compiled for different platforms with minimal or no modification (provided the platforms support the XNA framework). For example, it is possible to compile a game for both PC and Xbox 360 with relative ease.
In theory, any .NET-compliant programming language could be used to write games that run on the XNA framework. However, only C# and XNA Game Studio Express IDE are officially supported.
Basically, the XNA framework encapsulates the low-level technological details concerning the game code, allowing game developers to focus more on the content and game experience.

Required development tools
To create games using the XNA Game Studio Express IDE, Microsoft .NET 2.0 and Microsoft Visual Studio 2005 (C#) must be installed.
Required knowledge

Some knowledge of programming data structures is required.

The reader should also have some mathematical knowledge about vectors and matrices.

Purpose of this document

The goal of this document is introduce the reader to XNA Game Studio Express IDE, and to give the reader a basic understanding of various 2D game development techniques in XNA. There will also be a brief explanation of how to incorporate sound in a game.

We will start with a basic example and expand this with more techniques as we progress through the document, until we have covered the basis for creating a 2D obstacle avoidance game.
Getting started

We start with the creation of a new project in XNA, using the Windows Game template. The name of our project will be Debris Hazard.

Because this is an obstacle avoidance game, we start with the object that will be moved by the player, and the obstacles. In this case, the object that will be moved by the player will be a spaceship, and the obstacles will be asteroids.

Naturally, we will be needing textures to represent the spaceship and the asteroids. The textures should be saved in .bmp or .png format to avoid artifacts caused by lossy image compression. The default image processor will perform color keying logic, converting the magenta color (100% red, 0% green, 100% blue) to be transparent.
Spaceship:

[image: image1.png]

Asteroid:

[image: image2.png]

We add these images to our project by adding an existing item via the Solution Explorer, and choosing the item type: Content Pipeline Files.
Initializing and Drawing

After adding these two images to the Content of a new Windows Game project in XNA Game Studio, we take a look at the initialization and drawing parts of the code.
These parts of the code can be found in the Game1.cs file. Now we will need to declare some variables and data structures, by adding this to the code:
 // The images to draw

 Texture2D spaceshipTexture;

 Texture2D asteroidTexture;

 // The images will be drawn with this SpriteBatch

 SpriteBatch spriteBatch;

 // Spaceship

 Vector2 spaceshipPosition;

 // Asteroids

 List<Vector2> asteroidPositions = new List<Vector2>();
Before we can use these variables, we must load them in the LoadGraphicsContent method.

protected override void LoadGraphicsContent(bool loadAllContent)

{

 if (loadAllContent)

 {

 // Load textures

 asteroidTexture=

 content.Load<Texture2D>("Content/Asteroid");

 spaceshipTexture =

 content.Load<Texture2D>("Content/Spaceship");

 // Create a sprite batch to draw those textures

 spriteBatch = new SpriteBatch(graphics.GraphicsDevice);

 }

 // TODO: Load any ResourceManagementMode.Manual content

 }
Now we initialize the variables in the Initialize method.

protected override void Initialize()

{

 base.Initialize();

 // Start the player in the center along the bottom of the screen

 spaceshipPosition.X =
 (Window.ClientBounds.Width - spaceshipTexture.Width) / 2;

 spaceshipPosition.Y =
 Window.ClientBounds.Height - spaceshipTexture.Height;

}
We are now ready to draw the textures:

protected override void Draw(GameTime gameTime)

{

 graphics.GraphicsDevice.Clear(Color.CornflowerBlue);

 spriteBatch.Begin();

 // Draw spaceship

 spriteBatch.Draw(spaceshipTexture, spaceshipPosition, Color.White);

 // Draw asteroids

 foreach (Vector2 asteroidPosition in asteroidPositions)

 spriteBatch.Draw(asteroidTexture, asteroidPosition, Color.White);

 spriteBatch.End();

 base.Draw(gameTime);

}
Adding movement

At this point, the spaceship will be visible, but no asteroids would be visible, because the asteroid list is empty. In this section we will add asteroids to the list, and implement movement of the asteroids and the spaceship.

The asteroids and the spaceship will move at fixed rates. The number of asteroids and the position of the asteroids will be random. We’ll need the following variables to implement this behavior.

// Spaceship

Vector2 spaceshipPosition;

const int SpaceshipMoveSpeed = 5;

// Asteroids

List<Vector2> asteroidPositions = new List<Vector2>();

float AsteroidSpawnOdds = 0.01f;

const int AsteroidFallSpeed = 2;

Random random = new Random();

Now we need to modify the Update method, which deals with collisions, gathering input, and playing audio:

 protected override void Update(GameTime gameTime)

 {

 // Get input

 KeyboardState keyboard = Keyboard.GetState();

 GamePadState gamePad = GamePad.GetState(PlayerIndex.One);

 // Allows the game to exit

 if (gamePad.Buttons.Back == ButtonState.Pressed)

 this.Exit();

// Move the player with arrow keys or d-pad

if (keyboard.IsKeyDown(Keys.Left) ||

 gamePad.DPad.Left == ButtonState.Pressed)

{

 spaceshipPosition.X -= SpaceshipMoveSpeed;

}

if (keyboard.IsKeyDown(Keys.Right) ||

 gamePad.DPad.Right == ButtonState.Pressed)

{

 spaceshipPosition.X += SpaceshipMoveSpeed;

}

if (keyboard.IsKeyDown(Keys.Up) ||

 gamePad.DPad.Up == ButtonState.Pressed)

{

 spaceshipPosition.Y -= SpaceshipMoveSpeed;

}

if (keyboard.IsKeyDown(Keys.Down) ||

 gamePad.DPad.Down == ButtonState.Pressed)

{

 spaceshipPosition.Y += SpaceshipMoveSpeed;

}
 // Spawn new falling asteroids

 if (random.NextDouble() < AsteroidSpawnOdds)

 {

 float x = (float)random.NextDouble() *

 (Window.ClientBounds.Width - asteroidTexture.Width);

 asteroidPositions.Add(new Vector2(x, -asteroidTexture.Height));

 }

 // Update each asteroid

 for (int i = 0; i < asteroidPositions.Count; i++)

 {

 // Animate this asteroid falling

 asteroidPositions[i] =

 new Vector2(asteroidPositions[i].X,

 asteroidPositions[i].Y + AsteroidFallSpeed);

 }

 base.Update(gameTime);

 }

Asteroids will now fall, and spawn at random positions, and the spaceship can be moved with the up/down/right/left cursorkeys.

Boundary detection
One problem with the game as it is now, would be that the player can ‘hide’ the spaceship outside the viewable window to avoid asteroids. Another problem would be the fact that all spawned asteroids are never deleted, causing the program to gradually consume all system memory.
To fix these problems, we need to modify the Update method by adding the following code:

// Prevent the spaceship from moving off of the screen

spaceshipPosition.X = MathHelper.Clamp(spaceshipPosition.X,

0, Window.ClientBounds.Width - spaceshipTexture.Width);

spaceshipPosition.Y = MathHelper.Clamp(spaceshipPosition.Y,

0, Window.ClientBounds.Height - spaceshipTexture.Height);
// Update each asteroid

for (int i = 0; i < asteroidPositions.Count; i++)

{

 // Animate this asteroid falling

 asteroidPositions[i] =

 new Vector2(asteroidPositions[i].X,

 asteroidPositions[i].Y + AsteroidFallSpeed);

 // Remove this asteroid if it has fallen off the screen

 if (asteroidPositions[i].Y > Window.ClientBounds.Height)

 {

 asteroidPositions.RemoveAt(i);

// When removing an asteroid, the next asteroid will have the same index

// as the current asteroid. Decrement i to prevent skipping a asteroid.

 i--;

 }

}

This way the X value of spaceShipPosition can never be out of the bounds of the window, and all asteroids the have fallen of the screen are removed from asteroidPositions.
Rectangle collision
Because there are many ways to implement collision detection, we will start with the simplest form (rectangle collision) and modify the code gradually to improve collision detection.

We start with the declaration of a Boolean, which will be used to indicate collision:

// For when a collision is detected

bool spaceshipHit = false;

Then we modify the Draw method to make a collision noticable to the player. At this point the background color will change to red if a collision occurs:

protected override void Draw(GameTime gameTime)

{

 GraphicsDevice device = graphics.GraphicsDevice;

 // Change the background to red when the spaceship is hit by an asteroid

 if (spaceshipHit)

 device.Clear(Color.Red);

 else

 device.Clear(Color.CornflowerBlue);

Now the logic that determines when spaceshipHit should be set to true or false (in the Update method):

// Get the bounding rectangle of the spaceship

Rectangle spaceshipRectangle =

 new Rectangle((int)spaceshipPosition.X, (int)spaceshipPosition.Y,

 spaceshipTexture.Width, spaceshipTexture.Height);

And the for-loop in which each asteroid is updated (new code bold):
// Update each asteroid

spaceshipHit = false;
for (int i = 0; i < asteroidPositions.Count; i++)

{

 // Animate this asteroid falling

 asteroidPositions[i] =

 new Vector2(asteroidPositions[i].X,

 asteroidPositions[i].Y + AsteroidFallSpeed);

 // Get the bounding rectangle of this asteroid

 Rectangle asteroidRectangle =

 new Rectangle((int)asteroidPositions[i].X, (int)asteroidPositions[i].Y,

 asteroidTexture.Width, asteroidTexture.Height);

 // Check collision with spaceship

 if (spaceshipRectangle.Intersects(asteroidRectangle))

 spaceshipHit = true;

 // Remove this asteroid if it has fallen off the screen

 if (asteroidPositions[i].Y > Window.ClientBounds.Height)

 {

 asteroidPositions.RemoveAt(i);

// When removing an asteroid, the next asteroid will have the same index

// as the current asteroid. Decrement i to prevent skipping a asteroid.

 i--;

 }

}

Per-pixel collision detection

We now have a collision detection system based on rectangles, which is not ideal in a game, unless the used textures are all rectangles with no transparent parts.
That is why we are now going to implement a more refined form of collision detection, called per-pixel collision. It is called per-pixel collision because the code examines every overlapping pixel to determine if there is a collision.
To access the individual pixels, we must call Texture2D.GetData. This method copies the pixels into a specified array. The default texture processor will have pixel data of type Color.
First, we specify two Color arrays at the top of our game class:

// The color data for the images; used for per-pixel collision

Color[] spaceshipTextureData;

Color[] asteroidTextureData;
Next, we fill these arrays by modifying the LoadGraphicsContent method (new code bold):
protected override void LoadGraphicsContent(bool loadAllContent)

{

 if (loadAllContent)

 {

 // Load textures

 asteroidTexture = content.Load<Texture2D>("Content/Asteroid");

 spaceshipTexture = content.Load<Texture2D>("Content/Spaceship");

 // Extract collision data

 asteroidTextureData =

 new Color[asteroidTexture.Width * asteroidTexture.Height];

 asteroidTexture.GetData(asteroidTextureData);

 spaceshipTextureData =

 new Color[spaceshipTexture.Width *spaceshipTexture.Height];

 spaceshipTexture.GetData(spaceshipTextureData);

 // Create a sprite batch to draw textures

 spriteBatch = new SpriteBatch(graphics.GraphicsDevice);

 }
}
Now that we have the collision data of both textures, we will write the per-pixel collision detection method. When invoked, this method will return true if a collision occurs, and false otherwise.

The method signature looks like this:

static bool IntersectPixels(Rectangle rectangleA, Color[] dataA,

 Rectangle rectangleB, Color[] dataB)

This method can be described in two steps. First it will determine the intersecting region between rectangleA and rectangleB.
Second, the method will check every pixel in the intersection and test for collision.

As soon as a collision is found, the method will terminate and return true.
When every pixel in the intersection has been checked, and no collision was found, the method will return false.
We will store the intersection in the following variables in the beginning of the IntersectPixels method:
// Find the bounds of the rectangle intersection

int top = Math.Max(rectangleA.Top, rectangleB.Top);

int bottom = Math.Min(rectangleA.Bottom, rectangleB.Bottom);

int left = Math.Max(rectangleA.Left, rectangleB.Left);

int right = Math.Min(rectangleA.Right, rectangleB.Right);
If no intersection exists, right minus left or bottom minus top, or both, will be negative and the method should return false.
Now we the second step of the method at the end:

// Check every point within the intersection bounds

for (int y = top; y < bottom; y++)

{

 for (int x = left; x < right; x++)

 {

 // Get the color of both pixels at this point

 Color colorA = dataA[(x - rectangleA.Left) +

 (y - rectangleA.Top) * rectangleA.Width];

 Color colorB = dataB[(x - rectangleB.Left) +

 (y - rectangleB.Top) * rectangleB.Width];

 // If both pixels are not completely transparent,

 if (colorA.A != 0 && colorB.A != 0)

 {

 // then an intersection has been found

 return true;

 }

 }

}

// No intersection found

return false;

The for loops iterate over the overlapping rectangle one pixel at a time in reading order (left to right, top to bottom). For each pixel coordinate in global space, the coordinate is converted into each rectangles local space by subtracting the upper-left corner of the rectangle. The local coordinate is made linear by multiplying the y-coordinate by the texture width. The linear coordinate is then indexed into the color data. An intersection occurs when both colors are not completely transparent (magenta).

Now that we have a working per-pixel collision method, we can replace the current rectangle collision statements in the Update method (new code bold):

// Update each asteroid

spaceshipHit = false;

for (int i = 0; i < asteroidPositions.Count; i++)

{

 // Animate this asteroid falling

 asteroidPositions[i] =

 new Vector2(asteroidPositions[i].X,

 asteroidPositions[i].Y + AsteroidFallSpeed);

 // Get the bounding rectangle of this asteroid

 Rectangle asteroidRectangle =

 new Rectangle((int)asteroidPositions[i].X, (int)asteroidPositions[i].Y,

 asteroidTexture.Width, asteroidTexture.Height);

 // Check collision with spaceship

 if (IntersectPixels(spaceshipRectangle,spaceshipTextureData,

 asteroidRectangle,asteroidTextureData))

 {

 spaceshipHit = true;

 }

 // Remove this asteroid if it has fallen off the screen

 if (asteroidPositions[i].Y > Window.ClientBounds.Height)

 {

 asteroidPositions.RemoveAt(i);

// When removing an asteroid, the next asteroid will have the same index

// as the current asteroid. Decrement i to prevent skipping a asteroid.

 i--;

 }

}
Transformed collision
In this section, we’ll be adding transformed collision detection to the game, allowing us to detect collisions with transformed (e.g. rotated) objects.
We’ll need to define a data structure, because in addition to position (Vector2), we’ll need to store a value for rotation for every obstacle.
Now we’ll add a new item to our game via the Solution explorer, of type Class, which we’ll name Asteroid.cs.

The class is quite simple, consisting of a few lines:

using System;

using Microsoft.Xna.Framework;

namespace Spacegame

{

 /// <summary>

 /// A falling and spinning asteroid

 /// </summary>

 class Asteroid

 {

 public Vector2 Position;

 public float Rotation;

 }

}

Now we will use an list of these Asteroid objects instead of an array of positions.

To accomplish this, we will need to replace all instances of asteroidPositions and declare a new list of asteroid objects. We’ll also need a variable to describe rotating speed.

List<Asteroid> asteroids = new List<Asteroid>();

const float AsteroidRotateSpeed = 0.005f;
A few examples of replacements are:

asteroidPositions[i] becomes: asteroids[i].Position

Creating a new asteroid:

Vector2 asteroidPosition = new Vector2(x,y); becomes:

Asteroid newAsteroid = new Asteroid;
newAsteroid.Position = new Vector2(x,y);

At this moment, the rotation variable is in place, but it isn’t used yet. To use the variable, we’ll need to modify the Update and Draw methods.
In the Update method we set the rotation variable to a random (float) number:

newAsteroid.Rotation = (float)random.NextDouble() * MathHelper.TwoPi;
Next, in the Draw method the rotation value will be used:
// Animate this asteroid falling

asteroids[i].Position += new Vector2(0.0f, AsteroidFallSpeed);

asteroids[i].Rotation += AsteroidRotateSpeed;

We also need to add an origin variable to keep track of the asteroid’s origin when drawing the asteroid.

Vector2 asteroidOrigin;
We initialize this variable in the LoadGraphicsContent method. The origin is the center of the asteroid texture:

asteroidOrigin = new Vector2(asteroidTexture.Width / 2, asteroidTexture.Height / 2);
Further into the Draw method we use the rotation variable while actually drawing the asteroid sprites :
// Draw asteroids

foreach (Asteroid asteroid in asteroids)

{

 spriteBatch.Draw(asteroidTexture, asteroid.Position, null, Color.White,

 asteroid.Rotation, asteroidOrigin, 1.0f, SpriteEffects.None, 0.0f);

}

The game now correctly rotates the asteroids, but the asteroids suddenly disappear whenever their center passes the bottem edge of the screen.

To fix this problem, we will have to use our new asteroidOrigin variable to modify the code that checks if the asteroid has fallen of the screen (and if so, removes them).

This if-statement can be found in the Update method (addition is bold):

if ((asteroids[i].Position).Y > Window.ClientBounds.Height + asteroidOrigin.Length())
Now the rotation is working, but we will have to change the collision detection again because it doesn’t work correctly anymore.
Transformed collision in further detail
We will have to use matrices to compare transforming objects, because matrices can be used to represent transformations such as scaling, rotation, or translation. A matrix can also be used to transform a vector from one linear coordinate system to another. We will use XNA’s Vector2.Transform method to apply a matrix transformation to a vector.
The following is an example of two sprites overlapping.

[image: image3.png]

The red sprite in this example is called Sprite A, and the the blue sprite is called Sprite B.
As you can see, both sprites are rotated and have an overlapping region. Sprite B is also scaled (notice the larger size colored cubes, compared to Sprite A). To construct an algorithm that determines the position of colliding parts, we will need to simplify the situation a little bit.
[image: image4.png]

In this figure, Sprite A is untransformed. This view uses a coordinate system that is local to sprite A. In other words, in this view, positive X is always one pixel directly to the right and positive Y is always one pixel directly above.
The following figure shows the local coordinate systems of each sprite and the world coordinate system.
[image: image5.png]

The local coordinate systems of both sprites are relative to the world coordinate system. Points that are local to sprite A can be made local to sprite B by first passing through world space and then into the local space of sprite B. The first operation is performed by the transformation matrix of sprite A. The second operation is performed by the inverse of the tranformation matrix of sprite B. Remember: the inverse of a matrix transforms back to the original coordinate system.

Matrix transformAToB = transformA * Matrix.Invert(transformB);

Iterating over every pixel in A and transforming into B yields a point with fractional values that can be rounded to the nearest integer. If this integer lies within the bounds of B, the pixel is compared for collision against the original pixel in A.

We can now add a new method to the game class:
/// <summary>

/// Determines if there is overlap of the non-transparent pixels between two

/// sprites.

/// </summary>

/// <param name="transformA">World transform of the first sprite.</param>

/// <param name="widthA">Width of the first sprite's texture.</param>

/// <param name="heightA">Height of the first sprite's texture.<;/param>

/// <param name="dataA">Pixel color data of the first sprite.</param>

/// <param name="transformB">World transform of the second sprite.</param>

/// <param name="widthB">Width of the second sprite's texture.</param>

/// <param name="heightB">Height of the second sprite's texture.</param>

/// <param name="dataB">Pixel color data of the second sprite.</param>

/// <returns>True if non-transparent pixels overlap; false otherwise</returns>

static bool IntersectPixels(

 Matrix transformA, int widthA, int heightA, Color[] dataA,

 Matrix transformB, int widthB, int heightB, Color[] dataB)

{

 // Calculate a matrix which transforms from A's local space into

 // world space and then into B's local space

 Matrix transformAToB = transformA * Matrix.Invert(transformB);

 // For each row of pixels in A

 for (int yA = 0; yA < heightA; yA++)

 {

 // For each pixel in this row

 for (int xA = 0; xA < widthA; xA++)

 {

 // Calculate this pixel's location in B

 Vector2 positionInB =

 Vector2.Transform(new Vector2(xA, yA), transformAToB);

 // Round to the nearest pixel

 int xB = (int)Math.Round(positionInB.X);

 int yB = (int)Math.Round(positionInB.Y);

 // If the pixel lies within the bounds of B

 if (0 <= xB && xB < widthB &&

 0 <= yB && yB < heightB)

 {

 // Get the colors of the overlapping pixels

 Color colorA = dataA[xA + yA * widthA];

 Color colorB = dataB[xB + yB * widthB];

 // If both pixels are not completely transparent,

 if (colorA.A != 0 && colorB.A != 0)

 {

 // then an intersection has been found

 return true;

 }

 }

 }

 }

 // No intersection found

 return false;

}

We should invoke the new method in the Update method:

// Update the spaceship's transform

Matrix shipTransform =

 Matrix.CreateTranslation(new Vector3(shipPosition, 0.0f));
We also need a translation matrix for the asteroid, which we define in the for-loop (in the Update method) that animates the asteroids.
// Build the asteroid's transform matrix

Matrix asteroidTransform =

 Matrix.CreateTranslation(new Vector3(-asteroidOrigin, 0.0f)) *

 Matrix.CreateRotationZ(asteroids[i].Rotation) *

 Matrix.CreateTranslation(new Vector3(asteroids[i].Position, 0.0f));
Now we’re ready to modify the if-statement in this for-loop to use the new IntersectPixels method:
// Check collision with spaceship

if (IntersectPixels(spaceshipTransform, spaceshipTexture.Width,

spaceshipTexture.Height, spaceshipTextureData,

asteroidTransform, asteroidTexture.Width,

asteroidTexture.Height, asteroidTextureData))

{
New asteroid types
Background

Health bar

Sound

Conclusion
24

