XSTEP: A Markup Language for Embodied
Agents

Zhisheng Huang, Anton Eliéns and Cees Visser
Intelligent Multimedia Group,
Vrije University Amsterdam, The Netherlands
{huang,eliens,ctv}@Qcs.vu.nl

Abstract

In this paper we propose an XML-based markup language, called XSTEP, for embodied
agents, based on the scripting language STEP. Thus, XSTEP is the XML-based successor of
STEP. STEP is developed on the formal semantics of dynamic logic, and has been imple-
mented in the distributed logic programming language DLP, a tool for the implementation of
3D web agents. In this paper, we discuss the issues of markup language design for embodied
agents and several aspects of the implementation and application of XSTEP.

Keywords: embodied agents, avatars, humanoids, H-anim, STEP, XSTEP, XML

1 Introduction

Embodied agents are autonomous agents which have bodies by which the agents can perceive their
world directly through sensors and act on the world directly through effectors. Embodied agents
whose experienced worlds are located in real environments, are usually called cognitive robots.
Web agents are embodied agents whose experienced worlds are the Web; typically, they act and
collaborate in networked virtual environments. In addition, 3D web agents are embodied agents
whose 3D avatars can interact with each other or with users via Web browsers[6)].

Embodied agents usually interact with users or each other via multimodal communicative
acts, which can be verbal or non-verbal. Gestures, postures and facial expressions are typical
non-verbal communicative acts. One of the main applications of embodied agents are virtual
presenters, or alternatively called presentation/conversation agents. These agents are designed to
represent users/agents in virtual environments, like virtual meeting spaces or virtual theaters, by
means of hypermedia tools as part of the user interface.

These kinds of applications appeal for human markup languages for multimedia presentations.
These markup languages should be able to accommodate the various aspects of human-computer
interaction, including facial animation, body animation, speech, emotional representation, and
multimedia. In [3], we outline the requirements for a software platform supporting embodied con-
versational agents. These requirements encompass computational concerns as well as presentation
facilities, providing a suitably rich environment for applications deploying conversational agents.

The avatars of 3D web agents are typically built in the Virtual Reality Modeling Language

(VRML)!. These avatars are usually humanoid-like ones. The humanoid animation working group?
proposes a specification, called H-anim specification, for the creation of libraries of reusable hu-
manoids in Web-based applications as well as authoring tools that make it easy to create hu-
manoids and animate them in various ways. H-anim specifies a standard way of representing hu-
manoids in VRML. We have implemented STEP for H-anim based humanoids in the distributed
logic programming language DLP[2].> DLP is a tool for the implementation of 3D intelligent
agents [8, 9]*.

STEP introduces a Prolog-like syntax, which makes it compatible with most standard logic
programming languages, whereas the formal semantics of STEP is based on dynamic logic [5].
Thus, STEP has a solid semantic foundation, in spite of a rich number of variants of the compo-
sitional operators and interaction facilities on worlds.®

In this paper, we propose an XML-based markup/scripting language for embodied agents,
called XSTEP, based on the scripting technology STEP. Thus, XSTEP is the XML-based successor
of STEP. In this paper, we discuss the issues of markup language design for embodied agents and
several aspects of the implementation and application of XSTEP.

This paper is organized as follows: Section 2 discusses the general requirements on a markup
language for embodied agents, and examines to what extent the scripting language STEP satisfies
these requirements. Section 3 gives an overview of the language XSTEP and discusses a number
of examples. Section 4 discusses the components of XSTEP and its current implementation.
Section 5 compares XSTEP with other markup or scripting languages, discusses future work, and
concludes the paper.

2 Design of Markup Languages for Embodied Agents

2.1 What XSTEP wants to have

We consider the following requirements for the design of the markup language for embodied agents.

Declarative specification of temporal aspects The specification of communicative acts, like
gestures and facial expressions usually involve changes of geometrical data with time, like ROUTE
statements in VRML, or movement equations, like those in computer graphics. A markup language
for the presentation of embodied agents should be designed to have a solid temporal semantics.
A good solution is to use existing temporal models, like those in temporal logics or dynamic
logics. The scripting language STEP, and therefore, the markup language XSTEP, is based on
the semantics of dynamic logics. Typical temporal operators in STEP are: the sequential action
seq and the parallel action par, in XSTEP we have the corresponding tags <par> and <seq>.

Agent-orientation Markup languages for embodied agents should be different from those
markup language for general multimedia presentation, like SMIL. The former have to consider
the expressiveness and capabilities of their targeted agents. However, It’s not our intention to

Thttp://www.vrml.org

http://www.h-anim.org
3http://www.cs.vu.nl/~eliens/projects/logic/index.html
4http:/ /wasp.cs.vu.nl/wasp

Shttp://wasp.cs.vu.nl/step

design a markup language with fully-functional computation facilities, like other programming
languages as Java, DLP or Prolog, which can be used to construct a fully-functional embodied
agents. We separate external-oriented communicative acts from internal changes of the men-
tal states of embodied agents because the former involves only geometrical changes of the body
objects and the natural transition of the actions, whereas the latter involves more complicated
computation and reasoning. The markup language is designed to be a simplified, user-friendly
specification language for the presentation of embodied agents instead of for the construction of
a fully functional embodied agent. A markup/scripting language should be interoperable with a
fully powered agent implementation language, but offer a rather easy way for authoring. This kind
of interaction can be achieved by the introduction of high-level interaction operators, like those
in dynamic logic. Typical higher level interaction operators are the execution operator <do> and
the conditional <if then_else>.

Prototypability The presentation of embodied agents usually consists of some typical commu-
nicative acts, say, a presentation with greeting gesture. The specification of the greeting gesture
can also be used for other presentations. Therefore, a markup language for embodied agents
should have re-usability facilities. XML-based markup languages offer a convenient tool for the
information exchange over the Web. Thus, an inline hyperlink in the markup language is an easy
solution for this purpose. That would lead to the design of prototypability of markup languages,
like the internal/external prototypes in VRML. The scripting language STEP is designed to be
a rule-based specification system. Scripting actions are defined with their own names. These
defined actions can be re-defined for other scripting purposes. XSTEP uses a similar strategy
like STEP for prototypability. One of the advantages of this kind of rule-based specification is
parametrization. Namely, actions can be specified in terms of how these actions cause changes
over time to each individual degree of freedom, which is proposed by Perlin and Goldberg in [13].
Another method of parametrization is to introduce variables or parameters in the names of script-
ing actions, which allows for a similar action with different values. That is one of the reasons why
STEP introduces Prolog-like syntax. Thus, XSTEP uses a similar method of parametrization like
the one in STEP.

2.2 What XSTEP does not want to become

XSTEP is designed to be a markup language for the presentation of embodied agents and offers a
lot of functionality on relevant topics, like those for 2D /3D avatars, multimedia, and agents. A lot
of work has been done in these areas. Most of them are quite mature already. XSTEP does not
want to overlap these existing work; such languages/specifications can be embedded into XSTEP
in some degrees. Here are several examples:

e 2D /3D graphical markup languages The specification of the scalable vector graphics
(SVG)® is a typical XML-based language for describing two-dimensional graphics. SVG
drawings can serve as XML-based 2D avatars for embodied agents. The X3D7, the next
generation of VRML, is a typical XML-based language for 3D object specification. X3D
can be used as a tool for the design of XML-based 3D avatars. XSTEP code can be used
to manipulate these avatars specified by SVG/X3D. Moreover, SVG/X3D code can also be

Shttp://www.w3.org/Graphics/SVG/
"http://www.web3d.org/x3d.html

embedded into XSTEPcode. Thus, it is not necessary for XSTEP to overlap the functionality
of languages like SVG and X3D.

¢ XML-based multimedia markup languages The Synchronized Multimedia Integration
Language (SMIL)® is an XML-based multimedia specification language, which integrates
streaming audio and video with images, text or any other media type. Again, XSTEP does
not want to replace or overlap the functionality of the language SMIL. The SMIL code can
also embedded into XSTEP ones.

e Humanoid markup languages H-anim® is typically used to be a specification for hu-
manoids based on VRML. The body references in H-anim are well suitable to be used as an
ontology of the body parts for 3D embodied agents. Therefore, the body reference based
on h-anim becomes a typical ontological specification in STEP and XSTEP. This will be
discussed in detail in subsection 2.3. The X3D extension of H-anim can be considered as
a typical XML-based Humanoid markup specification. The HumanMarkup specification
(HumanML)'¥ is another example to represent human characteristics through XML.

e Agent specification languages Embodied agents can be constructed in different ways.
They can be directly built by programming languages like Java, Prolog, or DLP. Agent
specification languages offer indirect ways to build embodied agents, in the sense that
they are built with high-level abstraction. The Foundation for Intelligent Physical Agents
(FIPA)!! produces standards for heterogeneous and interacting agents and agent-based sys-
tems. XSTEP does not want to replace any existing work on agent specification languages.
The existing version of XSTEP is able to interact with the internal states of embodies agents
which are directly built via the high-level interact operators/tags. The approach to interact
with embodied agents built by agent specification languages is one of the further work for
XSTEP.

2.3 A Reference System for XSTEP

H-anim is a specification for 3D avatars based on VRML. It can serve as a point of departure for
the design of a reference system in XSTEP. In this paper, we consider this typical reference for
XSTEP.

2.3.1 Direction Reference

Based on the standard pose of the humanoid, we can define the direction reference system as
sketched in figure 1. The direction reference system is based on these three dimensions: front
vs. back which corresponds to the Z-axis, up vs. down which corresponds to the Y-axis, and left
vs. right which corresponds to the X-axis. Based on these three dimensions, we can introduce
a more natural-language-like direction reference scheme, say, turning left-arm to ’front-up’, is
to turn the left-arm such that the front-end of the arm will point to the up front direction.

http://www.w3.org/AudioVideo/

%http://www.h-anim.org

Ohttp: / /www.oasis-open.org/committees /humanmarkup/index.shtml
Uhttp:/ /www.fipa.org/

up

back

front

down

Figure 1: Direction Reference for Humanoid

Figure 2 shows several combinations of directions based on these three dimensions for the left-
arm. The direction references for other body parts are similar. These combinations are designed
for convenience for non-professional authors. However, they are not sufficient for more complex
applications. To solve this kind of problem, we introduce interpolations with respect to the
mentioned direction references. For instance, the direction ’left_front2’ is referred to as one which is
located between ’left_front” and ’left’; which is shown in Figure 2. Natural-language-like references
are convenient for authors to specify scripting actions, which does not require the author have a
detailed knowledge of reference systems in VRML. Moreover, STEP and XSTEP also support the
original VRML reference system, which is useful for experienced authors. Directions can also be
specified to be a four-place tuple (X, Y, Z, R), say, rotation(1,0,0,1.57). In XSTEP, the directions
are represented either the tag ’dir’, like <dir value="front” /> or the tag 'rotation’, like <rotation
x="17 y="0" z="0" r="1.57"/>.

2.3.2 Body Reference

An H-Anim specification contains a set of Joint nodes that are arranged to form a hierarchy. Figure
3 shows several typical joints of humanoids. Therefore, turning body parts of humanoids implies
the setting of the relevant joint’s rotation. Body moving means the setting of the HumanoidRoot
to a new position. For instance, the action ’turning the left-arm to the front slowly’ is specified
as:

<turn actor="Agent" part="1l_shoulder">
<dir value="front"/><speed value="slow"/>
</turn>

left_back up

left up
left_fronpap,

K —_— A left_back

-y/ left_fjont2
T left_fromt

left_back down

left_down

left front down

Figure 2: Combination of the Directions for Left Arm

HumanoidRoot skullbase

r_shoulder I_shoulder
r_elbow ——; I_elbow
r_wrist y I_wrist
/ I_hip
r_hip
r_knee —— I_knee
r_ankle — I_ankle

sacroiliac

Figure 3: Typical Joints for Humanoid

2.3.3 Time Reference

The proposed scripting language has the same time reference system as in VRML. For example,
the action turning the left arm to the front in 2 seconds can be specified in STEP as:

<turn actor="Agent" part="1l_shoulder">
<dir value="front"/><time unit="second" value="2"/>
</turn>

This kind of explicit specification of duration in scripting actions does not satisfy the parametriza-
tion principle. STEP introduces a more flexible time reference system based on the notions of
beat and tempo. A beat is a time interval for body movements, whereas the tempo is the num-
ber of beats per minute. By default, the tempo is set to 60. Namely, a beat corresponds to
a second by default. However, the tempo can be changed. Moreover, we can define different
speeds for body movements, say, the speed ’fast’ can be defined as one beat, whereas the speed
‘slow’ can be defined as three beats. In STEP, the set of this kind of the time reference are
{fast, slow, intermedia, very_fast,very_slow}.

3 XSTEP: XML-encoded STEP

3.1 Actions Operators

Turn and move are two main primitive actions for body movements. Turn actions specify the
change of the rotations of the body parts or the whole body over time, whereas move actions
specify the change of the positions of the body parts or the whole body over time. For instance,
a turn action in STEP like this,

turn(Agent, 1_shoulder, front, fast)
is expressed in XSTEP as follows:

<turn actor="Agent" part="1l_shoulder">
<dir value="front"/><speed value="fast"/>
</turn>

A move action in STEP like this:
move (Agent, increment(1.0,0.0,0.0), fast)
is expressed in XSTEPas follows:

<move actor="Agent">
<increment x="1.0" y="0.0" z="0.0"/><speed value="fast"/>
</move>

Similar with SMIL, XSTEP has the same temporal operators/tags: sequence action ’seq’ and
parallel action 'par’. Extended with the action operators in dynamic logics, XSTEP has the
following operators:

e non-deterministic choice operator 'choice’: the action <choice> Actiony, ..., Action,, </choice>
denotes a composite action in which one of the Actiony, ...,and Action,, is executed.

e repeat operator ‘repeat’: the action <repeat action="Action” times="T" /> denotes a com-
posite action in which the Action is repeated T' times.

Figure 4: Walk

3.2 High-level Interaction Operators

When using high-level interaction operators, XSTEP can directly interact with internal states of
embodies agents or with external states of worlds. These interaction operators are based on a
meta language which is used to build embodied agents, say, the distributed logic programming
language DLP. In the following, we use lower case Greek letters ¢, 1,x to denote formulas in the
meta language. Examples of several higher-level interaction operators:

e execution: <do state="¢" />, make the state ¢ true, i.e. execute ¢ in the meta language.

e conditional: <if then_else cond="¢" then="action,” else="action,” />: if ¢ holds, then
execute action, else execute actions.

3.3 Example: Walk and its Variants

A walking posture can be simply expressed as a movement which changes the following two main
poses: a pose in which the left-arm/right-leg move forward while the right-arm/left-leg move
backward, and a pose in which the right-arm/left-leg move forward while the left-arm/right-leg
move backward. The main pose and the interpolations are shown in Figure 4. The walk action
can be described in XSTEP as follows:

<action name="walk(Agent)">
<seg><par><turn actor="Agent" part="r_shoulder">
<dir value="back_down2"/><speed value="fast"/></turn>
<turn actor="Agent" part="r_hip">
<dir value="front_down2"/><speed value="fast"/></turn>
<turn actor="Agent" part="1l_shoulder">
<speed value="fast"/><dir value="front_down2"/></turn>
<turn actor="Agent" part="1l_hip">
<dir value="back_down2"/><speed value="fast"/></turn></par>
<par><turn actor="Agent" part="1l_shoulder">
<dir value="back_down2"/><speed value="fast"/></turn>
<turn actor="Agent" part="1_hip">
<dir value="front_down2"/><speed value="fast"/></turn>
<turn actor="Agent" part="r_shoulder">
<dir value="front_down2"/><speed value="fast"/></turn>
<turn actor="Agent" part="r_hip">

<dir value="back_down2"/><speed value="fast"/></turn>
</par></seq></action>

Thus, a walk step can be described to be as a parallel action which consists of the walking
posture and the moving action (i.e., changing position) as follows:

<action name="walk_forward_step(Agent)">
<par><script_action name=walk_pose(Agent)/>
<move actor=Agent part="humanoidRoot">
<dir value="front"/><speed value="fast"/></move></par></action>

The step length can be a concrete value. For example, for the step length with 0.7 meter, it
can be defined as follows:

<action name="walk_forward_step07(Agent)">
<par><script_actionn name="walk_pose(Agent)"/>
<move actor="Agent" part="humanoidRoot">
<increment x=0 y=0 z=0.7/><speed value="fast"/></move></par></action>

Alternatively, the step length can also be a variable like:

<action name="walk_forward_stepO(Agent,StepLength)">
<par><script_action name="walk_pose(Agent)">
<move actor="Agent" part="humanoidRoot">
<increment x="0" y="0" z="StepLength"/><speed value="fast"/></move></par>
</action>

Therefore, the walking forward N steps with the StepLegnth can be defined in XSTEP as follows:

<action name="walk_forward(Agent,StepLength,N)">
<repeat action="walk_forward_stepO(Agent,StepLength)" times="N"/>
</action>

The animations of the walk based on those definitions are just simplified and approximated ones.
As analysed in [4], a realistic animation of the walk motions of human figure involve a lot of the
computations which rely on a robust simulator where forward and inverse kinematics are combined
with automatic collision detection and response. We do not want to use XSTEP to achieve a fully
realistic animation of the walk, because they are seldom necessary for most web applications.
However, we would like to point out that there does exist the possibility to accommodate some
inverse kinematics to improve the realism by using STEP. That is discussed in more detail in [11].

4 XSTEP: Components and Implementation

4.1 Components of XSTEP
A complete XSTEP code consists of these three components: library, head and embedded_code.

e library. XSTEP is mainly used to construct gesture and action libraries. The definitions
of scripting actions are located in the XSTEP library component. Namely, they are located
inside the tag < library > with or without a name of the library. The scripting actions in the
libraries are usually formatted as general rules with variables according to the prototypability
requirements. They can be re-usable by the calling from other internal /external actions. So-
called internal actions are located in the same XSTEP files, whereas the external actions
are ones located in other files.

e head. The head component in XSTEP consists of the following elements:

1. world: states the url of the virtual world/avatar, or whether avatar code is embedded,
so that XSTEP can load the virtual world into the web browser;

2. starting action: states an instantiated action so that XSTEP can start the action for
the presentation;

3. meta-language statement: states the meta-language for the high-level interact opera-
tors. DLP is the default meta-language.

4.2 Implementation of XSTEP

We have implemented the scripting language STEP in the distributed logic programming language
DLP[10]*2. The scripting actions in STEP can be embedded in DLP code of embodied agents with
the STEP kernel. These actions can be called by the interfacing predicates of the STEP kernel
for the purpose of the presentation of embodied agents. A STEP testbed has been implemented.
Users can use the STEP testbed in web browsers to construct their own STEP scripting actions
and test them online without knowledge of DLP and VRML.

We have also implemented an XSTEP editor based on IBM’s XML editor Xeena!®. This
XSTEP editor will help the author to edit XSTEP code and translate it to STEP scripts so that
they can be run from the STEP tool, testbed, or DLP code. A screenshot of the XSTEP editor
on Xeena is shown in Figure 5. We are now working on the development of the tool so that STEP
and XSTEP code can be run as a stand-alone file.

5 Conclusions

In this paper we have proposed the markup language XSTEP for embodied agents. Moreover,
we have discussed the requirements on markup language design for embodied agents and several
aspects of the implementation and application of the markup language XSTEP. In the following,
we would like to make a comparison on XSTEP with other XML-based markup languages for
humanoids, and discuss future work.

5.1 Comparison

XSTEP can be considered to be one of VHML (Virtual Human Markup Language)-like lan-

guages.'* The language VHML is designed to accommodate the various aspects of human-

2http://wasp.cs.vu.nl/step
13http://www.alphaworks.ibm.com/tech /xeena
Yhttp://www.vhml.org

10

B %S TEP E ditor MEE]
File Edit Insert Selection Grammar Tools Help

B e I B e e e e e e e e e B E D I E T T i L
EEE H
stendard [
eeeeeee
ste
ra
action: name: walk{Agent)
Go== seq
> || par =
= o _sh
R air n2
L |»|
& » part: 1_hip
b Qﬂf} ir. daumz
- P
e part: |_shoulch
L |,\',
g daumz
& part: Lhip
G i down2
M
= || eer

|

Figure 5: Screenhot of XSTEP editor on Xeena

computer interaction, including facial animation, body animation, speech, emotional represen-
tation, and multimedia. XSTEP and VHML share a lot of the common goals.

One of the differences between XSTEP and the VHML is: XSTEP is developed based on
the formal semantics of dynamic logic, so that it has a solid semantic foundation, in spite of the
rich variants of compositional operators and interaction facilities on worlds. Secondly, Prolog-like
parametrization in XSTEP makes it more suitable for the interaction with intelligent embodied
agents.

An interesting examples for the animated humanoid avatars is provided by Signing Avatar.'®
The scripting language for Signing Avatar is based on the H-anim specification and allows for
a precise definition of a complex repertoire of gestures, as examplified by the sign language for
the deaf. Nevertheless, this scripting language is of a proprietary nature and does not allow for
high-order abstractions of semantically meaningful behavior.

More detailed comparisons and related work discussions with respect to STEP and XSTEP
can be found in the papers [3, 10].

5.2 Further work

e ontology of human markup languages. More human markup languages are expected to
be proposed in coming years. These languages may use completely different terminology and
semantics models. A good solution to maintenance of the interoperability among multiple
reference systems is to make XSTEP ontological-relevant. A so-called Ontology is a de-
scription of the concepts or bodies of knowledge understood by a particular community and
the relationships between those concepts. An ontological investigation for human markup
language is needed so that the presentations and their libraries can be interoperable [12].

e facial expression and emotion models in XSTEP. We are going to extend XSTEP
with facial expressions. These facial expression can be marked as the tags 'anger’, "happy’
and ’sad’, like those are suggested in VHML. The terminology can be formalized based on

Bhttp: / /www.signingavatar.com

11

emotion models and further specified by the corresponding ontological claim which is based
on the survey in [12].

speech and other multimedia modes in XSTEP. We are also planning to extend
XSTEP with speech/voice and other multimedia modes, so that we can enrich embodied
agents with the functionality needed to create convincing embodied agents in a meaningful
context.

References

1]

@

[10]

[11]

[12]

[13]

Earnshaw, R., Magnenat-Thalmann, N., Terzopoulos, D., and Thalmann, D., Computer
Animation for Virtual Humans, IEEE Computer Graphics and Applications 18(5), 1998.

Eliéns, A., DLP, A Language for Distributed Logic Programming, Wiley, 1992.

Eliéns, A., Huang, Z., and Visser, C., A platform for Embodied Conversational Agents based
on Distributed Logic Programming, Proceedings of AAMAS 2002 WORKSHOP: Embodied
conversational agents - let’s specify and evaluate them, 2002.

Faure, F., Debunne, G., Cani-Gascuel, M., Multon, F., Dynamic analysis of human walking,
Proceedings of the 8th Eurographics Workshop on Computer Animation and Simulation,
Budapest, September 1997.

Harel, D., Dynamic Logic, Handbook of Philosophical Logic, Vol. 11, D. Reidel Publishing
Company, 1984, 497-604.

Huang, Z., Eliéns, A., van Ballegooij, A., and de Bra, P., A Taxonomy of Web Agents,
Proceedings of the 11th International Workshop on Database and Expert Systems Applications,
IEEE Computer Society, 765-769, 2000.

Huang, Z., Eliéns, A., and de Bra, P., An Architecture for Web Agents, Proceedings of the
Conference EUROMEDIA 2001, SCS, 2001.

Huang, Z., Eliéns, A., and Visser, C., Programmability of Intelligent Agent Avatars, Proceed-
ings of the Autonomous Agents’01 Workshop on Embodied Agents, 2001.

Huang, Z., Eliéns, A., and Visser, C., 3D Agent-based Virtual Communities, Proceedings of
the 2002 Web 3D Conference, ACM Press, 2002.

Huang, Z., Eliéns, A., and Visser, C., STEP: a Scripting Language for Embodied Agents,
Proceedings of the Workshop of Lifelike Animated Agents, Tokyo, 2002.

Huang, 7., Eliéns, A., and Visser, C., STEP: a Scripting Language for Embod-
ied Agents (full version), WASP Research Report, Vrije University Amsterdam, 2002.
http://wasp.cs.vu.nl/step/paper/script.pdf.

Huang, Z., Eliéns, A., and Visser, C., An ontological investigation on human markup lan-
guages, in preparation, 2002.

Perlin, K., and Goldberg, A., Improv: A System for Scripting Intereactive Actors in Virtual
Worlds, ACM Computer Graphics, Annual Conference Series, 205-216, 1996.

12

