
3D Gadgets for Business Process Visualization
—a case study—

Bastiaan Schönhage1;2, Alex van Ballegooij1;3 and Anton Eliëns1;3

1 - Vrije Universiteit
Department of Mathematics and Computer Science

De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
email: bastiaan, alex, eliens@cs.vu.nl

2 - ASZ Research & Development, Gak Group NL
P.O. Box 8300, 1005 CA Amsterdam, The Netherlands

3 - CWI
P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

Abstract

Business visualization is becoming increasingly important,
since managers recognize the power of human visual intu-
ition in information-rich decision tasks. Nevertheless, de-
spite its promises, 3D visualizations are far less common than
one would expect.

In this paper, we describe a case study where we took a
2D visualization of a business process as a starting point, for
which we subsequently provided a 3D visualization. We in-
troduce a small set of 3D visualization gadgets and associ-
ated behaviors, implemented in Java3D, that proved to be
relatively complete for our case.

For each of these gadgets and behaviors, we will discuss
requirements and design trade-offs. The case study, which
concerns an actual business process of the largest social se-
curity provider in the Netherlands, illustrates the usability
of our gadgets and their associated behaviors, which include
brushing, grouping, and (drill down) manipulation.
CR Categories and Subject Descriptors: I.3.2 [Computer
Graphics]: Graphics Systems - Distributed/network graph-
ics; I.3.8 [Computer Graphics]: Applications; D.2.12 [Soft-
ware Engineering]: Interoperability - Distributed objects
Additional Keywords: Java3D, Information Visualization,
Gadgets, Business Process Visualization

1 Introduction

In the DIVA project we deploy visualization components
which are called visualization gadgets. These gadgets can
present information in a two- or three-dimensional fashion,
dependent on the goal and target group of the visualization.

In the past, we have created three-dimensional gadgets based
on VRML and Corba as described in [6]. To overcome prob-
lems signaled there, such as the limited interactive possibil-
ities, we decided to experiment with the new high-level 3D
API offered by Sun, Java3D [9]. In order to validate require-
ments and design tradeoffs in a realistic setting, we recreated
an existing 2D visualization of a particular business process
in 3D, using our Java3D gadgets.

The case we used to experiment with the designed Java3D
gadgets concerns the visualization of business information at
Gak Netherlands in the domain of social security. Section 2
describes the context of this case study and shows an exam-
ple of the 2D prototype that was the result of a previous case
study. In addition, we will discuss why we made the tran-
sition to 3D visualization of business processes. After that,
Section 3 presents the reusable collection of Java3D gadgets
we needed to make the transition from 2D to 3D visualiza-
tion in this case study. The set contains both behavior and
visualization components. The application of these gadgets
to visualize business information is described using the case
study at Asz/Gak in Section 4. Finally, in Section 5 we will
end with conclusions.

2 Managing Business Processes at Gak
Netherlands

Gak is the largest social security provider of the Netherlands.
One of the core businesses of Gak NL is processing applica-
tions for benefits. For example, when people become unable
to work they will have to go to the Gak to apply for a benefit.
After that, their application goes through a number of stages,
such as medical inspection and ability assessment. This pro-
cess is the business process that we will use as the source of
our information visualization later.

However, before that, we will first explain why we choose
to visualize business processes in this domain. In the near
future, social security will no longer be state-owned and Gak
will loose its current monopoly. To obtain a strong position
in the market the Gak company wants to improve the pro-
duction time and efficiency of their production process with-
out losing the quality of their products. The delivered prod-
ucts (in this case products are benefit appliances) are qual-
itatively good but the production process from appliance of
the worker to deliverance (approval or disapproval) takes too



long. The norm production time for an appliance is in most
of the cases 13 weeks, but due to unknown problems in the
production process the production often exceeds this norm.
The Gak company wants to find the production bottleneck
and the cause of it.

To assist the managers controlling the processes, we have
built a prototype visualization system [7]. The system was
built in two phases. First, we concentrated on the current
problems of the managers to indicate the bottlenecks in the
business process. In this case, our data source was a database
containing measurements of the time applications needed at
several stages of the process. In the second phase of the
project, we created a simulation of the business process and
used the previously designed visualizations to display the re-
sults.

Figure 1: 2D visualization of the throughput of the business
process

Figure 1 contains a screenshot of one of the visualizations
created to discover bottlenecks in the current production.
The combination of the process structure and related colored
histograms helps managers to quickly find possible piles of
work in the current throughput of the process. Other visual-
izations were created to give an overview of the past in or-
der to search for trends in the available data. By means of
simulation, managers are able to asses the results of possi-
ble interventions such as adding people to the workforce. In
summary, the prototype uses the same visualizations to view
past, present and future.

2.1 Moving from 2D to 3D Visualization

3D graphics and its application in serious information visual-
ization applications is a matter of dispute. On the one hand,
its advocates promote the usage of 3D because of its close re-
lation with human’s three-dimensional intuition. Addition-
ally, 3D visualizations can contain more information at once
and are therefore better suitable of presenting large sets of
data. Opponents of 3D, on the other hand, present the fol-
lowing main difficulties of using 3D on a computer: the in-
put devices fall short to control the 3D space and therefore
distract users from their primary task [2]. Additionally, 3D
applications are often considered as toy applications because
they look nice without adding relevant new features.

Experiments with two and three-dimensional visualiza-
tions indicate that it is very difficult to compare 2D and 3D

directly. A striking phenomenon is the fact that people with
more computer experience significantly gain better scores
with 3D interfaces than novices. Sebrechts et al therefore
rightly conclude that 3D visualization cannot be adequately eval-
uated using only short-term studies of novice users [8].

According to our opinion, 3D can definitely add value as
soon as both technical problems, such as bad input devices
and slow machines, and human problems —people will have
to get acquainted to 3D as they had to get acquainted to
graphical interfaces— are solved. Until then we will have
to keep on building better 3D hardware and software.

3 A Reusable Collection of Visualization
Gadgets in Java3D

Java3D is the 3D application program interface (API) of the
Java language. It is used to create platform-independent 3D
applications that can be used over the internet. Additionally,
Java3D can read and display VRML files and combine VRML
scenes with Java3D contents.

Although Java3D offers some high-level building blocks,
such as built-in primitives (sphere, cone, etcetera) and behav-
iors for interaction, it still requires a lot of programming ef-
fort to create a simple visualization. To fill in this gap, we
have created a collection of reusable visualization gadgets
based on top of Java3D.

The set consist of two types of primitives. First, we
have the behaviors which usually do not present themselves
graphically, but merely exist to add interaction to a scene
graph. The behaviors we will discuss here are brushing and
manipulation. The second class of components we have cre-
ated, the gadgets or visualization primitives, can reveal infor-
mation by means of 3D graphical representations. The gad-
gets we will describe here are the cone tree, the histogram
and the graph.

3.1 Behaviors

The DIVA Java3D collection currently contains five different
types of behaviors. Two of them (brushing and modify be-
havior) are discussed in somewhat more detail below. The
current behaviors are:

� BrushingBehavior reveals extra information about the
object that the input device is currently pointing at.

� KeyBehavior is a generic behavior class to move objects
through the scene according to key presses. It is often
used to move the camera viewpoint.

� MenuBehavior displays a context-sensitive 3D menu
when the users selects an object.

� ModifyBehavior adds many possible manipulations of
a Java3D object to a single mouse button. Supported ex-
amples include rotation, translation, scaling and iconifi-
cation of groups.

� TranslateBehavior translates 3D objects in such a way
that it moves along the screen’s x-axis and y-axis (in-
stead of the object’s x and y-axis).



3.1.1 BrushingBehavior

Brushing allows to retrieve more detailed information about
parts of a visualization without changing the visualization
itself. By moving a pointing device over a particular compo-
nent in the visualization extra information appears on top of
the selected object. The advantage of brushing is that more
detailed information can be retrieved quickly without replac-
ing the current visualization. A simple mouse movement is
enough to reveal, for example, the numbers on which the vi-
sualization is based.

The goal of the brushing behavior is to allow a program
to easily add information in the form of brushing to an ex-
isting scene graph. For the brushing behavior we have three
requirements:

� It must be possible to add brushing information to an
existing scene graph.

� It must be possible to dynamically change the informa-
tion that is associated with brushable objects.

� The brushing behavior must be relatively efficient, be-
cause it is expected to be used often and should there-
fore not pose too much of a burden on the system.

The brushing behavior we developed satisfies the defined
requirements. One can add it to a scene graph after it has
been created and dynamically change both what 3D objects
are brushable and what information is to be associated with
them. Figure 2 shows a simple test scene containing a box,
pyramid and sphere.

Figure 2: Brushing the red box

We tried different approaches to implementing the behav-
ior. At first we attempted to use ordinary 2D graphics to dis-
play information. While this does work, it was apparent that
it goes directly against the 3D paradigm and thus reduces the
realism of the 3D graphics. What we chose to do instead is to
add a 2D plane to the 3D scene on which we use a texture
map to display the intended textual information.

3.1.2 ModifyBehavior

An important way of interacting with a visualization is the
ability to manipulate the objects present in the 3D scene. The

standard Java3D behaviors support this by means of a com-
bination of mouse and key presses. A problem with these
standard behaviors is that the controls are not intuitive and
use all three mouse buttons. Besides, many users do not even
have 3 mouse buttons, but are limited to two or even a single
button. On top of that the standard implementations manip-
ulate objects relatively to their local co-ordinate system. If
one moves an object in the x-direction using such a behav-
ior, the object moves along its own x-axis. Depending on the
viewpoint and the object’s orientation, this might be a com-
pletely different direction than the mouse moved. In short
the standard manipulation behaviors are not what we want.

The requirements for the modify behavior are:

� The behavior must be selectively applicable. In other
words, the program must be able to indicate what ob-
jects the user can and cannot manipulate.

� The behavior must use as few different controls as pos-
sible and preferably allow the user to do all kinds of ma-
nipulations using only a single mouse button.

� The behavior must be extendable, it should be possible
to add additional manipulation methods.

� It would be best to indicate to the user what object (or
group of objects) he or she is manipulating.

� The basic rotation, translation and scaling manipula-
tions should work intuitively and relatively to the view-
point. For instance, moving an object to the left along
the x-axis should always result in the object moving to
the left along the x-axis of the screen, regardless of the
orientation of the object and the current viewpoint.

Figure 3: The red box’ modify behavior has been activated

The modify behavior allows users to pick an object. The
selected object is surrounded by a transparent box to indi-
cate selection. Users can manipulate it by pressing one of the
buttons that the behavior shows. Figure 3 shows a simple
scene containing a box, pyramid and sphere. The box ob-
ject has been selected and rotated a little. The figure clearly
shows that the red box is selected, because of the transpar-
ent white box drawn around it and the three little buttons
indicate the three possible actions: rotation, translation and
scaling. As we will see when discussing the graph gadget,
additional buttons can easily be defined and added.



3.2 Visualization gadgets

Currently, the collection of visualization primitives in the
DIVA package comprises three gadgets: the cone tree, the
histogram and the graph gadget. This set proved to be rela-
tively complete for our current purposes of visualizing busi-
ness processes. Each of these gadgets will be discussed in
somewhat more detail below.

3.2.1 The Cone Tree

The cone tree was developed at Xerox Parc and has since then
become one of the best known examples of 3D visualization
[3]. The idea behind the conetree is that the 3D representation
of a tree structure makes optimal use of the screen space and
thus enables the visualization of much larger structures than
the traditional 2D approach [1].

The requirements for our implementation of the cone tree
are as follows:

� As the cone tree is meant to visualize large data sets, an
important requirement is that the implementation must
be efficient. It must be able to display several thousands
of nodes without a problem.

� The implementation must be able to display dynamic
trees. Changes in the underlying data-structure must be
reflected as changed in the displayed cone tree.

� The user must be able to navigate through the data set
by manipulating the layout of the tree. In the case of
the cone tree this is realized by allowing the user to ro-
tate each of the cones, to view it from the direction that
contains the data the user is interested in.

� Users must be able to select nodes in the tree. Addition-
ally, the gadget must be able to change the constellation
of the branches in such a way that the selected path is
rotated to the front.

� The tree must be able to highlight paths through the tree
to show the path from the root of the tree to a certain
node. This can give the user insight into the structure of
the data.

Figure 4: A Cone Tree visualizing a directory structure

To show the usefulness of the cone tree we have chosen
to visualize the directory structure of a file system as illus-
trated in Figure 4. Our implementation was designed with

performance as the major consideration. This has proved
to be successful. Our latest version of the tree can display
about a hundred times as many nodes as our original imple-
mentation. The flexibility of the implementation has suffered
clearly from this approach though. Addition of new features
is extremely difficult without changing a lot of elements in
the code. The inflexibility is mainly the result of the fact that
the tree structure is not explicitly maintained in the gadget.
Only relations that are necessary for the proper operation of
the gadget are maintained in (hash) tables, unessential rela-
tions have been sacrificed to performance. Also the shapes of
leaves and nodes have been fixed to special text planes and
cones, again in order to improve performance.

3.2.2 The 3D Histogram

The histogram is probably one of the best known visualiza-
tion primitives. The advantage of a 3D histogram over a 2D
histogram is the fact that the third dimension can be used to
show additional information. This way, different data sets,
e.g. the monthly sales results of the past year, can much eas-
ier be compared.

As requirements for our 3D histogram we came up with
the following:

� The dimensions of the histogram must be customizable.

� The histogram must be able to handle an arbitrary num-
ber of bars of arbitrary size and shape.

� The text displayed at the axis must be customizable.

� The histogram must be able to change dynamically
whenever the input values for the visualization change.

Figure 5: The histogram gadget



Figure 5 shows a screenshot of the 3D histogram in action.
Because 2D histograms are often used in (business) visual-
izations, we have designed the gadget to resemble ‘normal’
2D histograms. The 3D implementation, however, adds the
possibility to show multiple rows of bars at the same time. In
addition to this, the gadget has a so-called water-level, which
can be used to indicate to the user what level is to be con-
sidered normal. The water-level can be seen in Figure 5 as
the transparent blue box filling the lower 25 percent of the
histogram gadget.

An important feature is that the histogram works with
generic bars. All that a bar object must do for the histogram
gadget to be able to use it is implement the Bar interface. This
makes it possible to implement specific bars for specific pur-
poses. There are two standard implementations of the Bar
interface included in the DIVA package. The first option is a
simple bar, which is nothing more than a red cylinder that can
grow and shrink. A second implementation is the multi-level
bar, which allows for a customizable number of sub bars with
customizable colors that can all grow and shrink indepen-
dently of each other. The histogram gadget uses the brush-
ing behavior to allow users to retrieve additional information
about each of the bars.

3.2.3 The Graph

The purpose of the Graph gadget is to visualize graph struc-
tures and transitions, in particular dynamic (business) pro-
cesses. It is capable of representing both the simulation
model (a graph) and the elements going through the model
of a running simulation. Requirements for the graph gadget
include:

� The graph gadget must be able to visualize reasonably
large structures.

� The gadget must be able to visualize activities within the
graph, e.g. by means of tokens flowing over the edges
of the graph.

� The user must be able to change the layout of the graph.

� The user must be able to hide sections of the graph in
order to focus on what is important.

� The user must be able to select nodes and provide feed-
back to the visualization as a whole and the underlying
information source (e.g. a simulation).

The graph gadget consists of nodes which are connected
by edges. Tokens move from node to node over the edges
to illustrate their flow through the visualized model. The
gadget is event driven and all elements are uniquely named
for identification. Manipulation of separate graph elements
is achieved by use of the ModifyBehavior. The BrushingBe-
havior provides the user with information about nodes and
tokens when they are brushed. To allow users to select and
(de)iconify groups two new buttons were implemented for
the modify behavior. One button allows users to select the
group in which the currently selected item is contained. The
other allows users to (de)iconify the currently selected group.

Since the graph gadget is meant to visualize simulations,
the test-case for the gadget is a simple simulation of a
counter-based business process, such as a bank or a fast food
restaurant. Figure 6 shows the test simulation. It represents
a simple model of a bank, people (represented by tokens) en-
ter the bank and wait in the queue until one of two counters
is empty. Whenever a person is waiting in the queue and

Figure 6: The graph gadget

a counter is empty the first person in the queue leaves the
queue and walks over to the free counter where he or she is
being served. After this, the person leaves the bank.

3.2.4 Additional Gadgets

This set of gadgets can be expanded, more visualization
primitives can be thought of that would be useful. The results
thus far and the experiences gathered indicate that Java3D is
well suited for this kind of work. However, our current pur-
poses were not to create an exhaustive set of 3D visualization
primitives. Rather, we wanted to rebuild a 2D visualization
application using 3D techniques to evaluate the advantages
and disadvantages of the 3D approach to business visualiza-
tion. The collection of gadgets we have built allows us to ex-
periment with 3D visualization in an actual business process
as will be shown in the next section.

3.3 Software Architecture

The study presented in this paper is one of the
case studies done as part of the DIVA project
(www.cs.vu.nl/˜bastiaan/diva/). We have been
experimenting with collaborative business visualizations
[4], 2D visualizations of business processes [7] and 3D
VRML visualizations in a business context [6]. The goal
of the project described in this paper is to find a set of 3D
gadgets for the visualization of business processes. All of
the case studies resulted in (prototype) implementations of
visualization applications. All of them were built according
the same DIVA software architecture.

The DIVA software architecture decouples information
sources and visualization. This allows multiple visualiza-
tions and users to look at the same shared information source.
Additionally, a single visualization can retrieve its data from
multiple data sources.

The architecture distinguishes two types of data sources:
static and dynamic. A typical static information source is a
database. Examples of dynamic sources include simulations
and measuring devices that produce new data on a timely
basis. The data is transferred from its source location to the
visualization components by means of the Shared Concept
Space(SCS), a model for (distributed) data exchange.

On the client-side, a visualization application transforms
the received data and updates into visual representations.



These applications should preferably be based on visualiza-
tion components, such as the collection of 3D gadgets, to al-
low for the exchange of visualization perspectives [4].

4 Case study: Visualizing Business Pro-
cesses

To experiment with the usability of the DIVA gadgets, we
have created a 3D implementation of the visualizations for
Gak Netherlands. The prototype consists of a 3D world
which contains visualizations of the business process.

The visualization prototype is presented to the user as
shown in Figure 7. The window consists of a 3D view with
a few controls and a chat box. The chat box was added to
enable users of the same session to chat with each other and
thus aid the process of collaboration. More important is the
3D view which will contain the actual visualizations.

Figure 7: The initial visualization screen

Initially, the virtual world contains only a single visualiza-
tion gadget, a cone tree. The cone tree visualizes the set of
available visualizations. Since this prototype contains only
a single simulation the set of available visualizations is lim-
ited to the process graph of that simulation and a few derived
histograms. In addition to this gadget the 3D view has a few
controls. First the key behavior has been used to allow nav-
igation through the virtual world. The other controls are in
the form of Swing GUI controls on the bottom of the view.

The first button Start Visualization is linked to the conetree
indexing the available visualizations. Pressing this button re-
sults in the creation of the visualization that is currently se-
lected in the conetree. This allows the user to start any of the
available visualizations. The second button Add View allows
users to dynamically add viewpoints to the list of available
viewpoints. Pressing this button adds the current viewpoint

to this list. The third control allows users to select a view-
point from the list of available viewpoints. Once the user
selects such a viewpoint the camera is moved smoothly to
this new location. For each visualization gadget in the virtual
world a predefined viewpoint is available. In addition to this,
users can add custom viewpoints by the Add View button.

The most important visualization in the prototype is the
process graph of the simulation. It can be created by select-
ing index/sim/aw008/processgraph in the cone tree and pressing
the Start Visualization button. The graph gadget visualizes the
flow of requests through the simulated business process. Fig-
ure 8 shows this process graph as it looks in the prototype. As
we can see the general shape is about the same as the process
graph in the 2D version presented in Figure 1.

Figure 8: The process graph of which a single node is selected

For each phase in the process the visualization shows a
cube and a sphere. The cube represents the queue where ap-
plications must wait to be processed while the sphere rep-
resents the actual processing. We decided to make this dis-
tinction between waiting and processing because this visual-
ization shows the actual flow of benefit applications through
the process. Benefit applications themselves are visualized
as small colored spheres. When a benefit application pro-
gresses through the simulated process, the sphere that repre-
sents that application travels through the graph gadget.

The process graph makes use of the brushing behavior.
When the mouse pointer is over one of the nodes (either a
queue node or a processing node) or over one of the appli-
cations (or tokens, as they are called in the graph gadget) the
brushing behavior displays the name of that specific element.
A more interesting means of interaction is provided through
the modify behavior. The graph uses the modify behavior to
allow users to move, rotate and scale any of the nodes in the
graph structure.

As mentioned in the discussion of the graph gadget itself
the graph gadget is built up of groups. In the visualization
every two nodes forming a phase are grouped together in
a group named after the phase. In turn all of these phase-
groups are collected in a single group, that effectively con-
tains the whole graph. In order to manipulate these groups,
the graph gadget adds a fourth and fifth button to the mod-
ify behavior. These two additional buttons respectively se-
lect the group containing the currently selected element and
(de)iconify a selected group.



Another button that was added to the visualization is the
drill-down button. This button was added to implement a
drill-down feature into the visualization. Each processing
node and queue node in the graph has a histogram associated
with it. The drill-down button creates the histogram associ-
ated with the currently selected element of the graph. These
histograms can also be reached and created by use of the cone
tree index, but drilling-down on the graph provides a more
natural interface to reach these histograms. Figure 9 shows
the process of drilling-down on the process node for phase 4.

Figure 9: The drill-down button is pressed and a histogram
is created

As mentioned, both queue and processing nodes of the
process graph have histograms associated with them. The
histograms for the queues visualize the waiting time of the
tokens that have been waiting in the queue during a (sim-
ulated) week. It shows the distribution of how long appli-
cations have been in the queue during the last four weeks of
simulated time. Examples of this visualization histogram can
be seen in Figure 10.

Figure 10: The process graph and associated waiting time his-
tograms

The histograms for the processing nodes visualize the per-
centages of nodes that are either too early, on time or too late.
These percentages are calculated by comparing the duration
a certain token has been in the system to the norms for du-
ration that have been defined for each of the phases in the
process. Different colors in the bars represent whether appli-
cations are on schedule, behind schedule or late. Just as with
the graph gadget, the histograms use the brushing behavior
to supply additional information to the user. When a bar is
brushed, the number of applications that the bar stands for is
shown.

4.1 Evaluation and lessons learned

Through the application of the visualization and behavior
gadgets in a real-world visualization application we were
able to evaluate the flexibility and reusability of the gadgets.
Additionally, we gained experience in the application of 3D
techniques in a business setting.

One of the first things that we noted during the project was
the fact that behavior gadgets are much more generic than the
visualization gadgets. This is probably due to the fact that
behavior gadgets can operate more autonomously whereas
visualization gadgets largely depend on the (type of) infor-
mation they will have to represent.

Another that we discovered is that there is a mismatch be-
tween simulations and (more or less accurate) visualizations
in 3D space. A typical example of this problem comes from
the visualization of the running simulation. In the simula-
tion, namely, events occur when a token has moved from
one stage (node) to the next. The transitions are considered
as actions that take no time. The graph gadget, however,
wants to visualize the transitions of the tokens by animating
them as moving spheres between nodes. This movement, of
course, takes time. The resulting conceptual clash could only
be solved by introducing a visualization that is slightly lag-
ging behind.

A problem we encountered during the design concerns the
performance versus generality of the gadgets. Most of the
time we had the choice of creating a high-performance but
restricted gadget versus a slower but more general gadget.
In most of the cases, the choice we made depended on the
most important requirement. For example, the cone tree has
to be able to contain as many nodes as possible whereas the
histogram requires to be flexible with respect to how it is pre-
sented.

In comparison with the 2D predecessor of the prototype
we can conclude that the 2D version is more easily acces-
sible. The well-organized 2D visualizations in combination
with the intuitive use of colors provide an uncomplicated vi-
sualization that is easily accepted by business people. The 3D
visualizations on the other hand allow us to combine more
information into a single scene. For example, the process
graph visualizes the current status of the simulation while
the histograms reveal information about the last couple of
simulated weeks. In this case, the 3D visualization offers the
possibilities to visualize past, present and future in a single
image. What solution is to be preferred is up to the managers
who have to learn to use business visualizations effectively.

5 Conclusions

In the case study performed at Gak NL, we have shown the
possibility of deploying 3D visualizations in a business con-
text. Compared to the 2D predecessor of the prototype we



have discovered both negative aspects, in terms of visual
complexity and user training, and positive aspects (larger in-
formation density) of 3D business visualization.

In the case study we deployed the DIVA 3D gadgets, a
reusable collection of behaviors and visualization primitives
written in Java3D. They are intended as the visualization
components in a software architecture that decouples infor-
mation from the way it is represented in order to support net-
worked and collaborative visualizations.

Through applying the gadgets in a business process visu-
alization we were able to validate our requirements in a nat-
ural setting and to acquire feedback on the design-tradeoffs
we encountered during the implementation of our gadgets.

References

[1] H. Koike and H. Yoshihara. Fractal approaches for visu-
alizing huge hierarchies. In Proceedings of the IEEE 1993
symposium in visual languages, pages 55–60, 1993.

[2] Jakob Nielsen. 2D is better than 3D.
www.zdnet.com/devhead/alertbox/981115.html.

[3] George G. Robertson, Jock D. Mackinlay, and Stuart K.
Card. Cone Trees: animated 3D visualizations of hier-
archical information. In Proceedings of the ACM SIGCHI
1991 Conference on Human Factors in Computing Systems,
pages 189–194, 1991.

[4] S.P.C. Schönhage, P.P. Bakker, and A. Eliëns. So Many
Users — So Many Perspectives. In Proceedings of ”Design-
ing effective and usable multimedia systems”, 9-10 Septem-
ber 1998, Fraunhofer Institute IAO, Stuttgart, Germany. IFIP,
1998.

[5] S.P.C. Schönhage and A. Eliëns. Multi-user Visualization:
a CORBA/Web-based approach. In Proceedings of ”Digi-
tal Convergence: the Future of the Internet and WWW”, 20-
23 April 1998, Bradford, United Kingdom. British Computer
Society, 1998.

[6] S.P.C. Schönhage and A. Eliëns. Dynamic and Mobile
VRML gadgets. In Proceedings of VRML99- International
Conference on the Virtual Reality Modeling Language and
Web3D technologies, 1999.

[7] S.P.C. Schönhage, Ard van der Scheer, Edwin Treur, and
A. Eliëns. Visualization and Simulation of Business In-
formation at Gak NL. In Submitted to the workshop on
New Paradigms in Information Visualization and Manipula-
tion 1999, Conference on Information and Knowledge Man-
agement, 1999.

[8] Marc M. Sebrechts, Joanna Vasilakis, Michael S. Miller,
John V. Cugini, and Sharon J. Laskowski. Visualization
of Search Results: A Comparative Evaluation of Text, 2D
and 3D Interfaces. In Proceedings of 22nd ACM SIGIR con-
ference on Research and development in information retrieval,
pages 3–10, 1999.

[9] Sunsoft. Java 3D. java.sun.com/products/java-
media/3D/.


