A High-Level Symbolic Language for
Distributed Web Programming

Cees T. Visser
Computer Science Department
Vrije Universiteit Amsterdam

The Netherlands

Abstract We present a flexible language
framework (DLP) for distributed active object
configurations that facilitates the construction
of networked software systems for symbolic ap-
plication domains on the Web.

The language DLP consists of a number of
high-level modeling and multi-language collab-
oration concepts, suitable for architecting dis-
tributed object systems: active multi-threaded
symbolic as well as imperative objects are the
basic building blocks for the construction of
distributed software systems. Symbolic au-
tonomous objects cooperate by means of high-
level synchronous or asynchronous conditional
communication primitives and the current un-
derlying run-time system supports incremental
dynamic loading and linking of objects at arbi-
trary nodes in an Internet environment.

Innovating aspects of our current research

are the integration of symbolic processing, im-
perative processing and object distribution, com-
bined with several object collaboration services
for distributed processing on the Web. For a re-
alistic evaluation of the language concepts we’ve
used a prototype system to reimplement all as-
pects of the system in DLP itself, including the
compiler-frontend, compiler-backend and the
object collaboration services.
Keywords and phrases: distributed symbolic
Web processing; interoperable multi-paradigm
active objects; distributed object trader ser-
vices.

Anton Eliéns
Computer Science Department

Vrije Universiteit Amsterdam
The Netherlands

1 Introduction

Distributed imperative as well as declara-
tive languages differ substantially with re-
spect to their general concurrency models
and provide often rather different synchro-
nization techniques. This divergence is in-
fluenced by particular application or mod-
eling requirements and the corresponding
need for different levels of abstraction, or-
thogonality of language constructs, distri-
bution transparency, and scalability. These
four characteristics are often to some extent
conflicting from an efficiency point of view.
The main theme language designers are of-
ten faced with is to find a careful balance be-
tween efficiency and ease of use in order to be
able to construct software architectures that
are still manageable from several distributed
software engineering related perspectives.

Currently, Java is without doubt the most
popular language for programming the In-
ternet. However, according to our experi-
ence, the imperative nature of the Java lan-
guage as well as for example the available
concurrency concepts are too low-level for a
number of important distributed application
domains.

Compared to higher-level declarative lan-
guages, the imperative characteristics of the
Java language often require an explicit and

detailed description of specific application
features. One concrete example that illus-
trates this lower-level involvement are the re-
quired specifications regarding message mar-
shaling. Especially when prototyping and
exploring new distributed application do-
mains in the context of the Internet this is a
rather undesirable requirement.

Although a more detailed overview and
analysis of other aspects is beyond the
scope of this paper, similar observations can
be made with respect to the Java multi-
threading and synchronization model as il-
lustrated in the next sections.

Our major objective with respect to dis-
tributed processing on the Internet was to
provide a significantly more convenient lan-
guage framework, while maintaining a high-
degree of interoperability between the lan-
guage DLP and its companion language
Java. The language DLP solves the above-
mentioned issues by means of distributed
communication facilities with transparent
method message marshaling and code mobil-
ity. At the same time intra-object and inter-
object synchronization is supported by asyn-
chronous or synchronous conditional com-
munication primitives which allows the soft-
ware developer to focus on application spe-
cific modeling aspects instead of the distri-
bution related restrictions as imposed by the
Java language.

This paper will not discuss the gen-
eral implementation techniques for high-
level declarative functional or logic program-
ming languages. Introductions for these pro-
gramming paradigms can be found in [11],
and [8]. More advanced research efforts or
overviews are descibed in [5], [6], [10] and
several other publications. More specific In-
ternet related studies of security and access
control policies can be found in, for example,
[12].

2 The Run-Time System

The basic architectural entities for the con-
struction of distributed Internet software in
DLP are multi-threaded symbolic objects.
These symbolic objects can cooperate with
Java objects and their activities are sup-
ported by a local object service layer as well
as a distributed object service layer.

Figure 1 gives a schematic overview of the
local object services for both DLP and Java
objects in a single Internet node. The incre-
mental loader handles both DLP objects and
Java objects. All local object and method
references are registered by the loader and
exported information can be used by other
nodes to establish a particular object collab-
oration or to invoke a remote object method.

Typically, when activating a single active
object, the DLP incremental dynamic loader
and linker resolves all intra-object method
references and transfers the execution to the
object. The major scheme for resolving
object and method references is based on
an incremental loading-on-demand protocol.
This is an important and necessary require-
ment for languages like DLP that support
code mobility. Migrating code can, for ex-
ample, refer to objects (by name) that are
not yet known at a remote Internet node, in
which case the run-time loader and linker is
responsible for resolving the references from
a code repository. Once resolved, new pas-
sive or active instances of an object can be
created dynamically, and active objects can
establish their own distributed collaboration
patterns.

We considered code migration support as
an important characteristic in a highly dy-
namic environment like the Internet. It al-
lows for tailoring remote service requests
without the need to foresee all possible ob-
ject interactions. Code migration in the lan-
guage DLP inherits the security and safety
properties of the Java execution environ-

Active/Passive Active/Passive
DLP Object Java Object
' [DLP/Java| [Common | [x| [| DLP | [DLP/IVM]| [. | |
| |
! [Java Cornmon Message . IV Thread | !
i [[ncremental Object Dispatcher Marshaling| | Garbage Scheduler | |
: Loader Manager p System Collector :

Java Virtual Machine

DLP Virtual Machine

Figure 1: Local Object Services

ment since all the language constructs exe-
cute directly on top of the Java Virtual Ma-
chine [9].

The distributed object service layer pro-
vides for a general object naming and ref-
erence service that allows for a flexible dis-
tributed cooperation of objects (Figure 2).
In general this facility will be used for collab-
oration with autonomous objects that pro-
vide major services in a particular software
architecture. ~ The location transparency
as provided by the distributed object ser-
vice layer facilitates the invocation of meth-
ods without the need for explicit knowledge
about the topology of a distributed software
configuration. To some extent, the current
run-time infrastructure reflects several im-
portant architectural characteristics of the
CORBA [4] and ODP [3] processing models.

3 Communication and

Synchronization

As mentioned, distributed objects cooper-
ate by means of high-level conditional syn-
chronous or asynchronous communication
primitives. When an active object invokes a
method in a particular remote executing ob-
ject environment all the arguments as spec-

ified in the invocation are transparently se-
rialized. As opposed to Java, this holds for
method arguments that point to e.g. nested
data structures as well as method arguments
that refer to executable language constructs.
At the callee side messages are automatically
de-serialized, symbol references are updated
locally and possibly still unknown object ref-
erences in mobile code are dynamically re-
solved by the DLP loader and linker.

Conditional synchronous or asynchronous
communication in DLP is expressed by
means of so called accept statements. Each
accept statement consists of a disjunction of
accept expressions.

A single accept expression can specify a
method with its associated parameters that
an object is willing to accept. At the same
time, a single accept expression can specify
a sequence of additional conditions (guards).
Variables that occur in a method or con-
dition specification of an accept expression
can refer to the local state of the object
that’s willing to accept a message or can
refer to the arguments of a particular in-
coming method requests. In case an incom-
ing method request matches the specifica-
tion of a method entry of an accept expres-
sion and also satisfies the corresponding con-
dition then the message will be accepted.

DLP Internet DLP/Java Java
Server Internet Client Application
Local Node Local Node Local Node
Services Services Services

DLP/Java Distributed Object Services

Java Platform Services

Figure 2: Distributed Object Services

We would like to conclude this overview
with a summary of the most important char-
acteristics of the language DLP: (1) multi-
threaded active objects, (2) transparent
method message marshaling, (3) high-level
synchronous and asynchronous conditional
communication primitives, (4) automatic
garbage collection, (5) mobile code support,
and (6) distributed object trader services.
For further information, a detailed descrip-
tion and motivation as well as examples of
DLP are given in [2].

4 Performance Aspects

The highly dynamic run-time characteristics
of objects are an important aspect of the
DLP language. In particular with respect
to the incremental loading and linking ac-
tivities at run-time (e.g. as the result of
migrating code) that automatically result in
the update of an object configuration in an
executing environment.

As an illustration of the involved run-time
costs consider the current DLP system li-
brary. This library results in the process-
ing of more than 100 objects that facilitate
many run-time services. The objects and a
number of meta-programming related object
characteristics are transparently available to
all DLP client or server environments.

Incremental loading, linking and object

initialization of the entire DLP library re-
quires currently about 365 milliseconds on a
Ultra SPARC II and 350 milliseconds on a
Pentium IIT workstation. The correspond-
ing processing time of a single incremental
object update is a number of milliseconds
which is often acceptable for distributed ap-
plications in an Internet context.

After the loading and linking process the
run-time overhead of the invocation of li-
brary methods is similar to the regular in-
vocation of Java object methods. How-
ever, several performance aspects can be im-
proved as discussed in the next section.

5 Current Status and

Future Work

We have currently implemented the lan-
guage DLP on top of the Java platform. Al-
though the language has more attractive dis-
tributed processing capabilities, it’s still in-
teresting to have occasionally Java as a sort
of companion language. The Java platform
has a wealth of additional functionality (li-
braries) that can be used in the language
DLP or in a Java context.

One of the main aspects that needs to
be explored in more detail is related to
several important optimization techniques
when compiling DLP to the Java plat-

form. The compilation of non-imperative
languages to the Java platform is relatively
new. Several implementation efforts for
higher-level languages have been described
in more detail (e.g. [1]) but more advanced
compile-time optimization schemes are re-
quired.

The intended optimization strategies are
from several perspectives very different from
the techniques used for imperative languages
like Java. Preliminary experiments showed
however that the current implementation
will benefit in several important ways from
techniques like compile-time abstract inter-
pretation and partial evaluation strategies
(7], [6], [5], [10], especially because these ap-
proaches are to a large extent independent
of a number of limitations and restrictions
as imposed by the JVM.

These sort of optimizations are very likely
the most promising approach for improv-
ing the performance of innovating high-level
languages and will make new programming
paradigms more suitable for distributed pro-
cessing on the Internet.

References

[1] P. Bothner. Kawa: Compiling Scheme to
Java, in Usenix Conference Proceedings,
Dec 1998

[2] Anton Eliéns. DLP : A Language for
Distributed Logic Programming: Design,
Semantics and Implementation. Wiley,
1992

(3] ITU/ISO/IEC. Reference Model of Open
Distributed Processing, International Or-
ganization for Standardization, 1997

[4] Object Management Group. CORBA
2.8.1 Specification, The Common Object
Request Broker: Architecture and Speci-
fication, Oct 1999

[5] Thomas W. Getzinger. Abstract Inter-
pretation for the Compile-Time Analy-
sts of Logic Programs. Ph.D. disserta-
tion, University of Southern California,
Dec 1993

[6] Manuel V. Hermenegildo, Richard War-
ren, and Saumya K. Debray. Global
Flow Analysis as a Practical Compila-
tion Tool. Journal of Logic Program-
ming, 13(4), pp. 349-366, Aug 1992

[7] Gerda Janssens and Maurice
Bruynooghe. Deriwing Descriptions of
Possible Values of Program Variables by
Means of Abstract Interpretation. Jour-
nal of Logic Programming, 13(2 & 3),
pp. 205-258, July 1992

[8] Peter M. Kogge. The Architecture of
Symbolic Computers. McGraw-Hill, 1991

[9] Tim Lindholm and Frank Yellin.
The Java Virtual Machine Specification.
Addison-Wesley, 1999

[10] Per Mildner. Type Domains for Ab-
stract Interpretation: A Critical Study.
Ph.D. dissertation, Uppsala University,
May 1999

[11] S.L. Peyton Jones. The Implementation
of Functional Programming Languages.
Prentice-Hall, 1987

[12] Jan Vitek and Christian D. Jensen
(eds.), Secure Internet Programming:
Security Issues for Mobile and Dis-
tributed Objects. Lecture Notes in Com-
puter Science, 1603, Springer-Verlag,
1999

