
part ii. delivery &
presentation

if you linger for a long time in one place you’d almost think there must be something there

¡black¿wittgenstein¡/black¿

3. codecs and standards

4. multimedia platforms

2

reading directives In this part we will look at the issues involved in delivery
and presentation, primarily from a technical perspective. We will argue the
importance of codecs (read compression), and we will discuss the criteria for
selecting a particular codec, as well as the standards that have been developed for
packaging multimedia content in an effective way. In chapter 4, we will discuss
multimedia presentation platforms, and we will look at the Microsoft DirectX 9
platform in somewhat greater detail.

Essential sections are section 3.1, which introduces codecs, 3.2, which discusses
the MPEG-4 and SMIL standards and section 4.1, with puts the development of
high-end multimedia platforms in a historical perspective. Sections 3.3 and 4.3
can safely be skipped on first reading.

1

2

perspectives As you can see below, the topics introduced in this part are not
only relevant from a technical perspective. Other perspectives are equally valid:

perspectives – delivery & presentation

• technical – codec selection

• political – market vs. consortium

• sociological – digital services

• legal – copyright protection

• scientific – experience design

• computer science – computational support

• futuristic – global & personal information

• commercial – WMV, Quicktime, RealONE

For example, the issues of copyrights and copyright protection are hot topics,
since the rise of the internet is obviously a threat to the tradional industries of
music and film distribution.

essay topics Since many of the interesting topics will only be hinted, you may
select on or more topics for further investigation and study. As essay titles I would
suggest:
• multimedia standards – MPEG4

• XML-based multimedia – SMIL

• multimedia technology – the DirectX 9 toolbox

When you write the essay, then assess first from which perspective you will tackle
the subject. When you approach the material from a technical perspective, then
make sure that you do understand the technical issues in sufficient detail.

3

the artwork
1. logo – a drawing by Soutine, it is (almost) my personal logo, and also decorates

the cover of OO.

2. signs – property marks, Signs, p. 76, 77.

3. photographs – Jaap Stahlie1, commissioned work.

1www.jaapstahlie.com

3. codecs and standards

without compression delivery is virtually impossible

learning objectives

After reading this chapter you should be able to demonstrate the necessity

of compression, to discuss criteria for the selection of codecs and mention

some of the alternatives, to characterize the MPEG-4 and SMIL standards,

to explain the difference between MPEG-4 and MPEG-2, and to speculate

about the feasibility of a semantic multimedia web.

Without compression and decompression, digital information delivery would
be virtually impossible. In this chapter we will take a more detailed look at
compression and decompression. It contains the information that you may possi-
bly need to decide on a suitable compression and decompression scheme (codec)
for your future multimedia productions. We will also discuss the standards that
may govern the future (multimedia) Web, including MPEG-4, SMIL and RM3D.
We will explore to what extent these standards allow us to realize the optimal
multimedia platform, that is one that embodies digital convergence in its full
potential. Finally, we will investigate how these ideas may ultimately lead to a
(multimedia) semantic web.

1

3.1 codecs

Back to the everyday reality of the technology that surrounds us. What can we
expect to become of networked multimedia? Let one thing be clear

3

4 codecs and standards

compression is the key to effective delivery

There can be no misunderstanding about this, although you may wonder why you
need to bother with compression (and decompression). The answer is simple. You
need to be aware of the size of what you put on the web and the demands that
imposes on the network. Consider the table, taken from Vasudev and Li (1997),
below.

media uncompressed compressed
voice 8k samples/sec, 8 bits/sample 64 kbps 2-4 kbps
slow motion video 10fps 176x120 8 bits 5.07 Mbps 8-16 kbps
audio conference 8k samples/sec 8bits 64 kbps 16-64 kbps
video conference 15 fps 352x240 8bits 30.4 Mbps 64-768 kbps
audio (stereo) 44.1 k samples/s 16 bits 1.5 Mbps 128k-1.5Mbps
video 15 fps 352x240 15 fps 8 bits 30.4 Mbps 384 kbps
video (CDROM) 30 fps 352x240 8 bits 60.8 Mbps 1.5-4 Mbps
video (broadcast) 30 fps 720x480 8 bits 248.8 Mbps 3-8 Mbps
HDTV 59.9 fps 1280x720 8 bits 1.3 Gbps 20 Mbps

You’ll see that, taking the various types of connection in mind

(phone: 56 Kb/s, ISDN: 64-128 Kb/s, cable: 0.5-1 Mb/s, DSL: 0.5-2 Mb/s)

you must be careful to select a media type that is suitable for your target audience.
And then again, choosing the right compression scheme might make the difference
between being able to deliver or not being able to do so. Fortunately,

images, video and audio are amenable to compression

Why this is so is explained in Vasudev and Li (1997). Compression is feasible
because of, on the one hand, the statistical redundancy in the signal, and the
irrelevance of particular information from a perceptual perspective on the other
hand. Redundancy comes about by both spatial correlation, between neighboring
pixels, and temporal correlation, between successive frames.
The actual process of encoding and decoding may be depicted as follows:

codec = (en)coder + decoder

signal → source coder → channel coder (encoding)

signal ← source decoder ← channel decoder (decoding)

Of course, the coded signal must be transmitted accross some channel, but this
is outside the scope of the coding and decoding issue. With this diagram in mind
we can specify the codec design problem:

From a systems design viewpoint, one can restate the codec design problem
as a bit rate minimization problem, meeting (among others) constraints
concerning: specified levels of signal quality, implementation complexity,
and communication delay (start coding – end decoding).

codecs 5

2

compression methods

As explained in Vasudev and Li (1997), there is a large variety of compression
(and corresponding decompression) methods, including model-based methods,
as for example the object-based MPEG-4 method that will be discussed later,
and waveform-based methods, for which we generally make a distinction between
lossless and lossy methods. Hufmann coding is an example of a lossless method,
and methods based on Fourier transforms are generally lossy. Lossy means that
actual data is lost, so that after decompression there may be a loss of (perceptual)
quality.

Leaving a more detailed description of compression methods to the diligent
students’ own research, it should come as no surprise that when selecting a
compression method, there are a number of tradeoffs, with respect to, for example,
coding efficiency, the complexity of the coder and decoder, and the signal quality.
In summary, the follwoing issues should be considered:

tradeoffs

• resilience to transmission errors

• degradations in decoder output – lossless or lossy

• data representation – browsing & inspection

• data modalities – audio & video.

• transcoding to other formats – interoperability

• coding efficiency – compression ratio

• coder complexity – processor and memory requirements

• signal quality – bit error probability, signal/noise ratio

For example, when we select a particular coder-decoder scheme we must con-
sider whether we can guarantee resilience to transmission errors and how these
will affect the users’ experience. And to what extent we are willing to accept
degradations in decoder output, that is lossy output. Another issue in selecting a
method of compression is whether the (compressed) data representation allows for
browsing & inspection. And, for particular applications, such as conferencing, we
should be worried about the interplay of data modalities,in particular, audio &
video. With regard to the many existing codecs and the variety of platforms
we may desire the possibility of transcoding to other formats to achieve, for
example, exchange of media objects between tools, as is already common for
image processing tools.

6 codecs and standards

compression standards

Given the importance of codecs it should come as no surprise that much effort
has been put in developing standards, such as JPEG for images and MPEG for
audio and video.

Most of you have heard of MP3 (the audio format), and at least some of you
should be familiar with MPEG-2 video encoding (which is used for DVDs).

Now, from a somewhat more abstract perspective, we can, again following Va-
sudev and Li (1997), make a distinction between a pixel-based approach (coding
the raw signal so to speak) and an object-based approach, that uses segmentation
and a more advanced scheme of description.

• pixel-based – MPEG-1, MPEG-2, H3.20, H3.24

• object-based – MPEG-4

As will be explained in more detail when discussing the MPEG-4 standard in
section 3.2, there are a number of advantages with an object-based approach.
There is, however, also a price to pay. Usually (object) segmentation does not
come for free, but requires additional effort in the phase of authoring and coding.

MPEG-1 To conclude this section on codecs, let’s look in somewhat more detail
at what is involved in coding and decoding a video signal according to the MPEG-1
standard.

MPEG-1 video compression uses both intra-frame analysis, for the compres-
sion of individual frames (which are like images), as well as. inter-frame analysis,
to detect redundant blocks or invariants between frames.

The MPEG-1 encoded signal itself is a sequence of so-called I, P and B frames.

frames

• I: intra-frames – independent images

• P: computed from closest frame using DCT (or from P frame)

• B: computed from two closest P or I frames

Decoding takes place by first selecting I-frames, then P-frames, and finally B-
frames. When an error occurs, a safeguard is provided by the I-frames, which
stand on themselves.

Subsequent standards were developed to accomodate for more complex signals
and greater functionality. These include MPEG-2, for higher pixel resolution
and data rate, MPEG-3, to support HDTV, MPEG-4, to allow for object-based
compression, and MPEG-7, which supports content description. We will elaborate
on MPEG-4 in the next section, and briefly discuss MPEG-7 at the end of this
chapter.

example(s) – gigaport

GigaPort2 is a project focussing on the development and use of advanced and
innovative Internet technology. The project, as can be read on the website,

2www.gigaport.nl/info/en/about/home.jsp

codecs 7

focuses on research on next-generation networks and the implementation of a
next-generation network for the research community.

Topics for research include:
GigaPort

• optical network technologies - models for network architecture, optical network
components and light path provisioning.

• high performance routing and switching - new routing technologies and transport
protocols, with a focus on scalability and stability robustness when using data-
intensive applications with a high bandwidth demand.

• management and monitoring - incident response in hybrid networks (IP and optical
combined) and technologies for network performance monitoring, measuring and
reporting.

• grids and access - models, interfaces and protocols for user access to network and
grid facilities.

• test methodology - effective testing methods and designing tests for new technolo-
gies and network components.

As one of the contributions, internationally, the development of optical technology
is claimed, in particular lambda networking, networking on a specific wavelength.
Locally, the projects has contributed to the introduction of fibre-optic networks
in some major cities in the Netherlands.

research directions– digital video formats

In the online version you will find a brief overview of digital video technology,
written by Andy Tanenbaum, as well as some examples of videos of our university,
encoded at various bitrates for different viewers.

What is the situation? For traditional television, there are three standards.
The american (US) standard, NTSC, is adopted in North-America, South-America
and Japan. The european standard, PAL, whuch seems to be technically superior,
is adopted by the rest of the world, except France and the eastern-european
countries, which have adopted the other european standard, SECAM. An overview
of the technical properties of these standards, with permission taken from Tanen-
baum’s account, is given below.

system spatial resolution frame rate mbps

NTSC 704 x 480 30 243 mbps
PAL/SECAM 720 x 576 25 249 mbps

Obviously real-time distribution of a more than 200 mbps signal is not possible,
using the nowadays available internet connections. Even with compression on
the fly, the signal would require 25 mbps, or 36 mbps with audio. Storing the
signal on disk is hardly an alternative, considering that one hour would require
12 gigabytes.

When looking at the differences between streaming video (that is transmitted
real-time) and storing video on disk, we may observe the following tradeoffs:

8 codecs and standards

item streaming downloaded

bandwidth equal to the display rate may be arbitrarily small
disk storage none the entire file must be stored
startup delay almost none equal to the download time
resolution depends on available band-

width
depends on available disk
storage

So, what are our options? Apart from the quite successful MPEG encodings,
which have found their way in the DVD, there are a number of proprietary formats
used for transmitting video over the internet: Quicktime, introduced by Apple,
early 1990s, for local viewing; RealVideo, streaming video from RealNetworks;
and Windows Media, a proprietary encoding scheme fromMicrosoft. Examples of
these formats, encoded for various bitrates are available at Video at VU.

Apparently, there is some need for digital video on the internet, for example as
propaganda for attracting students, for looking at news items at a time that suits
you, and (now that digital video cameras become affordable) for sharing details
of your family life.

Is digital video all there is? Certainly not! In the next section, we will deal
with standards that allow for incorporating (streaming) digital video as an element
in a compound multimedia presentation, possibly synchronized with other items,
including synthetic graphics. Online, you will find some examples of digital video
that are used as texture maps in 3D space. These examples are based on the
technology presented in section ??, and use the streaming video codec from Real
Networks that is integrated as a rich media extension in the blaxxun Contact 3D
VRML plugin.

comparison of codecs A review of codecs3, including Envivio MPEG-4, Quick-
Time 6, RealNetworks 9 en Windows Media 9 was published januari 2005 by the
European Broadcast Union4. It appeared that The Real Networks codecs came
out best, closely followed by the Windows Media 9 result. Ckeck it out!

3

3www.ebu.ch/trev 301-samviq.pdf
4www.ebu.ch/trev home.html

standards 9

3.2 standards

Imagine what it would be like to live in a world without standards. You may get
the experience when you travel around and find that there is a totally different
socket for electricity in every place that you visit.

Now before we continue, you must realize that there are two types of standards:
de facto market standards (enforced by sales politics) and committee standards
(that are approved by some official organization). For the latter type of standards
to become effective, they need consent of the majority of market players.

For multimedia on the web, we will discuss three standards and RM3D which
was once proposed as a standard and is now only of historical significance.

standards

• XML – eXtensible Markup Language (SGML)

• MPEG-4 – coding audio-visual information

• SMIL – Synchronized Multimedia Integration Language

• RM3D – (Web3D) Rich Media 3D (extensions of X3D/VRML)

XML, the eXtensible Markup Language, is becoming widely accepted. It is
being used to replace HTML, as well as a data exchange format for, for exam-
ple, business-to-business transactions. XML is derived from SGML (Structured
Generalized Markup Language) that has found many applications in document
processing. As SGML, XML is a generic language, in that it allows for the
specification of actual markup languages. Each of the other three standards
mentioned allows for a syntactic encoding using XML.

MPEG-4 aims at providing ”the standardized technological elements enabling
the integration of production, distribution and content access paradigms of digital
television, interactive graphics and multimedia”, Koenen (2000). A preliminary
version of the standard has been approved in 1999. Extensions in specific domains
are still in progress.

SMIL, the Synchronized Multimedia Integration Language, has been proposed
by the W3C ”to enable the authoring of TV-like multimedia presentations, on the
Web”. The SMIL language is an easy to learn HTML-like language. SMIL pre-
sentations can be composed of streaming audio, streaming video, images, text or
any other media type, W3C (2001). SMIL-1 has become a W3C recommendation
in 1998. SMIL-2 is at the moment of writing still in a draft stage.

RM3D, Rich Media 3D, is not a standard as MPEG-4 and SMIL, since it does
currently not have any formal status. The RM3D working group arose out of the
X3D working group, that addressed the encoding of VRML97 in XML. Since there
were many disagreements on what should be the core of X3D and how extensions
accomodating VRML97 and more should be dealt with, the RM3D working group
was founded in 2000 to address the topics of extensibility and the integration with
rich media, in particular video and digital television.

remarks Now, from this description it may seem as if these groups work in total
isolation from eachother. Fortunately, that is not true. MPEG-4, which is the

10 codecs and standards

most encompassing of these standards, allows for an encoding both in SMIL and
X3D. The X3D and RM3D working groups, moreover, have advised the MPEG-4
commitee on how to integrate 3D scene description and human avatar animation
in MPEG-4. And finally, there have been rather intense discussions between the
SMIL and RM3D working groups on the timing model needed to control animation
and dynamic properties of media objects.

4

MPEG-4

The MPEG standards (in particular 1,2 and 3) have been a great success, as
testified by the popularity of mp3 and DVD video.

Now, what can we expect from MPEG-4? Will MPEG-4 provide multimedia
for our time, as claimed in Koenen (1999). The author, Rob Koenen, is senior
consultant at the dutch KPN telecom research lab, active member of the MPEG-4
working group and editor of the MPEG-4 standard document.

”Perhaps the most immediate need for MPEG-4 is defensive. It supplies
tools with which to create uniform (and top-quality) audio and video encoders
on the Internet, preempting what may become an unmanageable tangle of
proprietary formats.”

Indeed, if we are looking for a general characterization it would be that MPEG-4
is primarily

MPEG-4

a toolbox of advanced compression algorithms for audiovisual information

standards 11

and, moreover, one that is suitable for a variety of display devices and networks,
including low bitrate mobile networks. MPEG-4 supports scalability on a variety
of levels:

scalability

• bitrate – switching to lower bitrates

• bandwidth – dynamically discard data

• encoder and decoder complexity – signal quality

Dependent on network resources and platform capabilities, the ’right’ level of
signal quality can be determined by selecting the optimal codec, dynamically.

5

12 codecs and standards

media objects It is fair to say that MPEG-4 is a rather ambitious standard. It
aims at offering support for a great variety of audiovisual information, including
still images, video, audio, text, (synthetic) talking heads and synthesized speech,
synthetic graphics and 3D scenes, streamed data applied to media objects, and
user interaction – e.g. changes of viewpoint.

Let’s give an example, taken from the MPEG-4 standard document.
example

Imagine, a talking figure standing next to a desk and a projection screen,

explaining the contents of a video that is being projected on the screen,

pointing at a globe that stands on the desk. The user that is watching that

scene decides to change from viewpoint to get a better look at the globe ...

How would you describe such a scene? How would you encode it? And how would
you approach decoding and user interaction?

The solution lies in defining media objects and a suitable notion of composition
of media objects.

media objects

• media objects – units of aural, visual or audiovisual content

• composition – to create compound media objects (audiovisual scene)

• transport – multiplex and synchronize data associated with media objects

• interaction – feedback from users’ interaction with audiovisual scene

For 3D-scene description, MPEG-4 builds on concepts taken from VRML (Virtual
Reality Modeling Language, discussed in chapter 7).

Composition, basically, amounts to building a scene graph, that is a tree-like
structure that specifies the relationship between the various simple and compound
media objects. Composition allows for placing media objects anywhere in a
given coordinate system, applying transforms to change the appearance of a
media object, applying streamed data to media objects, and modifying the users
viewpoint.

So, when we have a multimedia presentation or audiovisual scene, we need to
get it accross some network and deliver it to the end-user, or as phrased in Koenen
(2000):

transport

The data stream (Elementary Streams) that result from the coding process

can be transmitted or stored separately and need to be composed so as to

create the actual multimedia presentation at the receivers side.

At a system level, MPEG-4 offers the following functionalities to achieve this:

• BIFS (Binary Format for Scenes) – describes spatio-temporal arrangements of
(media) objects in the scene

• OD (Object Descriptor) – defines the relationship between the elementary streams
associated with an object

• event routing – to handle user interaction

standards 13

6

In addition, MPEG-4 defines a set of functionalities For the delivery of streamed
data, DMIF, which stands for

Delivery Multimedia Integration Framework

that allows for transparent interaction with resources, irrespective of whether
these are available from local storage, come from broadcast, or must be obtained
from some remote site. Also transparency with respect to network type is sup-
ported. Quality of Service is only supoorted to the extent that it ispossible to
indicate needs for bandwidth and transmission rate. It is however the respons-
ability of the network provider to realize any of this.

14 codecs and standards

(a) scene graph (b) sprites

7

authoring What MPEG-4 offers may be summarized as follows

benefits

• end-users – interactive media accross all platforms and networks

• providers – transparent information for transport optimization

• authors – reusable content, protection and flexibility

In effect, although MPEG-4 is primarily concerned with efficient encoding and
scalable transport and delivery, the object-based approach has also clear advan-
tages from an authoring perspective.

One advantage is the possibility of reuse. For example, one and the same
background can be reused for multiplepresentations or plays, so you could imagine
that even an amateur game might be ’located’ at the centre-court of Roland
Garros or Wimbledon.

Another, perhaps not so obvious, advantage is that provisions have been made
for

managing intellectual property

of media objects.

And finally, media objects may potentially be annotated with meta-information
to facilitate information retrieval.

standards 15

8

syntax In addition to the binary formats, MPEG-4 also specifies a syntactical
format, called XMT, which stands for eXtensible MPEG-4 Textual format.

XMT

• XMT contains a subset of X3D

• SMIL is mapped (incompletely) to XMT

when discussing RM3D which is of interest from a historic perspective, we will
further establish what the relations between, respectively MPEG-4, SMIL and
RM3D are, and in particular where there is disagreement, for example with respect
to the timing model underlying animations and the temporal control of media
objects.

9

16 codecs and standards

example(s) – structured audio

The Machine Listening Group5 of the MIT Media Lab6 is developing a suite of
tools for structered audio, which means transmitting sound by describing it rather
than compressing it. It is claimed that tools based on the MPEG-4 standard will
be the future platform for computer music, audio for gaming, streaming Internet
radio, and other multimedia applications.

The structured audio project is part of a more encompassing research effort of
the Music, Mind and Machine Group7 of the MIT Media Lab, which envisages a
new future of audio technologies and interactive applications that will change the
way music is conceived, created, transmitted and experienced,

SMIL

SMIL is pronounced as smile. SMIL, the Synchronized Multimedia Integration
Language, has been inspired by the Amsterdam Hypermedia Model (AHM). In
fact, the dutch research group at CWI that developed the AHM actively par-
ticipated in the SMIL 1.0 committee. Moreover, they have started a commercial
spinoff to create an editor for SMIL, based on the editor they developed for CMIF.
The name of the editor is GRINS. Get it?

As indicated before SMIL is intended to be used for

TV-like multimedia presentations

The SMIL language is an XML application, resembling HTML. SMIL presen-
tations can be written using a simple text-editor or any of the more advanced
tools, such as GRINS. There is a variety of SMIL players. The most wellknown
perhaps is the RealNetworks G8 players, that allows for incorporating RealAudio
and RealVideo in SMIL presentations.

parallel and sequential

Authoring a SMIL presentation comes down, basically, to name media com-

ponents for text, images,audio and video with URLs, and to schedule their

presentation either in parallel or in sequence.

Quoting the SMIL 2.0 working draft, we can characterize the SMIL presentation
characteristics as follows:

presentation characteristics

• The presentation is composed from several components that are accessible via
URL’s, e.g. files stored on a Web server.

• The components have different media types, such as audio, video, image or text.
The begin and end times of different components are specified relative to events
in other media components. For example, in a slide show, a particular slide is
displayed when the narrator in the audio starts talking about it.

5sound.media.mit.edu/mpeg4
6www.media.mit.edu
7sound.media.mit.edu

standards 17

• Familiar looking control buttons such as stop, fast-forward and rewind allow the
user to interrupt the presentation and to move forwards or backwards to another
point in the presentation.

• Additional functions are ”random access”, i.e. the presentation can be started
anywhere, and ”slow motion”, i.e. the presentation is played slower than at its
original speed.

• The user can follow hyperlinks embedded in the presentation.

Where HTML has become successful as a means to write simple hypertext content,
the SMIL language is meant to become a vehicle of choice for writing synchronized
hypermedia. The working draft mentions a number of possible applications,
for example a photoalbun with spoken comments, multimedia training courses,
product demos with explanatory text, timed slide presentations, onlime music
with controls.

As an example, let’s consider an interactive news bulletin, where you have
a choice between viewing a weather report or listening to some story about, for
example, the decline of another technology stock. Here is how that could be
written in SMIL:

example

<par>

<excl>

<par id="Story" begin="0s">
<video src="video1.mpg"/>
<text src="captions.html"/>

</par>

<par id="Weather">

<audio src="weather-rpt.mp3"/>

</par>
</excl>

</par>

Notice that there are two parallel (PAR) tags, and one exclusive (EXCL) tag. The
exclusive tag has been introduced in SMIL 2.0 to allow for making an exclusive
choice,so that only one of the items can be selected at a particular time. The
SMIL 2.0 working draft defines a number of elements and attributes to control
presentation, synchronization and interactivity, extending the functionality of
SMIL 1.0.

Before discussing how the functionality proposed in the SMIL 2.0working draft
may be realized, we might reflect on how to position SMIL with respect to the
many other approaches to provide multimedia on the web. As other approaches
we may think of flash, dynamic HTML (using javascript), or java applets. In the
SMIL 2.0 working draft we read the following comment:

history

18 codecs and standards

Experience from both the CD-ROM community and from the Web multime-
dia community suggested that it would be beneficial to adopt a declarative
format for expressing media synchronization on the Web as an alternative
and complementary approach to scripting languages.

Following a workshop in October 1996, W3C established a first working

group on synchronized multimedia in March 1997. This group focused on

the design of a declarative language and the work gave rise to SMIL 1.0

becoming a W3C Recommendation in June 1998.

In summary, SMIL 2.0 proposes a declarative format to describe the temporal
behavior of a multimedia presentation, associate hyperlinks with media objects,
describe the form of the presentation on a screen, and specify interactivity in
multimedia presentations. Now,why such a fuzz about ”declarative format”? Isn’t
scripting more exciting? And aren’t the tools more powerful? Ok, ok. I don’t
want to go into that right now. Let’s just consider a declarative format to be more
elegant. Ok?

To support the functionality proposed for SMIL 2.0 the working draft lists
a number of modules that specify the interfaces for accessing the attributes of
the various elements. SMIL 2.0 offers modules for animation, content control,
layout, linking, media objects, meta information, timing and synchronization,
and transition effects.

This modular approach allows to reuse SMIL syntax and semantics in other
XML-based languages, in particular those that need to represent timing and
synchronization. For example:

module-based reuse

• SMIL modules could be used to provide lightweight multimedia functionality on
mobile phones, and to integrate timing into profiles such as the WAP forum’s
WML language, or XHTML Basic.

• SMIL timing, content control, and media objects could be used to coordinate
broadcast and Web content in an enhanced-TV application.

• SMIL Animation is being used to integrate animation into W3C’s Scalable Vector
Graphics language (SVG).

• Several SMIL modules are being considered as part of a textual representation for
MPEG4.

The SMIL 2.0 working draft is at the moment of writing being finalized. It
specifies a number of language profiles topromote the reuse of SMIL modules.
It also improves on the accessibility features of SMIL 1.0, which allows for, for
example,, replacing captions by audio descriptions.

In conclusion, SMIL 2.0 is an interesting standard, for a number of reasons.
For one, SMIL 2.0 has solid theoretical underpinnings in a well-understood, partly
formalized, hypermedia model (AHM). Secondly, it proposes interesting function-
ality, with which authors can make nice applications. In the third place, it specifies
a high level declarative format, which is both expressive and flexible. And finally,
it is an open standard (as opposed to proprietary standard). So everybody can
join in and produce players for it!

standards 19

10

RM3D – not a standard

The web started with simple HTML hypertext pages. After some time static
images were allowed. Now, there is support for all kinds of user interaction,
embedded multimedia and even synchronized hypermedia. But despite all the
graphics and fancy animations, everything remains flat. Perhaps surprisingly,
the need for a 3D web standard arose in the early days of the web. In 1994,
the acronym VRML was coined by Tim Berners-Lee, to stand for Virtual Reality
Markup Language. But, since 3D on the web is not about text but more about
worlds, VRML came to stand for Virtual Reality Modeling Language. Since 1994,
a lot of progress has been made.

www.web3d.org

• VRML 1.0 – static 3D worlds

• VRML 2.0 or VRML97 – dynamic behaviors

• VRML200x – extensions

• X3D – XML syntax

• RM3D – Rich Media in 3D

In 1997, VRML2 was accepted as a standard, offering rich means to create 3D
worlds with dynamic behavior and user interaction. VRML97 (which is the
same as VRML2) was, however, not the success it was expected to be, due to
(among others) incompatibility between browsers, incomplete implementations of
the standards, and high performance requirements.

As a consequence, the Web3D Consortium (formerly the VRML Consortium)
broadened its focus, and started thinking about extensions or modifications of
VRML97 and an XML version of VRML (X3D). Some among the X3D working
group felt the need to rethink the premisses underlying VRML and started the
Rich Media Working Group:

groups.yahoo.com/group/rm3d/

The Web3D Rich Media Working Group was formed to develop a Rich Media

standard format (RM3D) for use in next-generation media devices. It is

a highly active group with participants from a broad range of companies

including 3Dlabs, ATI, Eyematic, OpenWorlds, Out of the Blue Design,

Shout Interactive, Sony, Uma, and others.

20 codecs and standards

In particular:
RM3D

The Web3D Consortium initiative is fueled by a clear need for a standard

high performance Rich Media format. Bringing together content creators

with successful graphics hardware and software experts to define RM3D will

ensure that the new standard addresses authoring and delivery of a new breed

of interactive applications.

The working group is active in a number of areas including, for example, multi-
texturing and the integration of video and other streaming media in 3D worlds.

Among the driving forces in the RM3D group are Chris Marrin and Richter
Rafey, both from Sony, that proposed Blendo, a rich media extension of VRML.
Blendo has a strongly typed object model, which is much more strictly defined
than the VRML object model, to support both declarative and programmatic
extensions. It is interesting to note that the premisse underlying the Blendo
proposal confirms (again) the primacy of the TV metaphor. That is to say,
what Blendo intends to support are TV-like presentations which allow for user
interaction such as the selection of items or playing a game. Target platforms for
Blendo include graphic PCs, set-top boxes, and the Sony Playstation!

11

requirements The focus of the RM3D working group is not syntax (as it is
primarily for the X3D working group) but semantics, that is to enhance the
VRML97 standard to effectively incorporate rich media. Let’s look in more detail
at the requirements as specified in the RM3Ddraft proposal.

requirements

• rich media – audio, video, images, 2D & 3D graphics (with support for temporal
behavior, streaming and synchronisation)

• applicability – specific application areas, as determined by commercial needs and
experience of working group members

The RM3D group aims at interoperability with other standards.

• interoperability – VRML97, X3D, MPEG-4, XML (DOM access)

In particular, an XML syntax is being defined in parallel (including interfaces
for the DOM). And, there is mutual interest and exchange of ideas between the
MPEG-4 and RM3D working group.

standards 21

As mentioned before, the RM3D working group has a strong focus on defining
an object model (that acts as a common model for the representation of objects
and their capabilities) and suitable mechanisms for extensibility (allowing for
the integration of new objects defined in Java or C++, and associated scripting
primitives and declarative constructs).

Notice that extensibility also requires the definition of a declarative format,
so that the content author need not bother with programmatic issues.

The RM3D proposal should result in effective 3D media presentations. So
as additional requirements we may, following the working draft, mention: high-
quality realtime rendering, for realtime interactive media experiences; platform
adaptability, with query functions for programmatic behavior selection; predictable
behavior, that is a well-defined order of execution; a high precision number
systems, greater than single-precision IEEE floating point numbers; and minimal
size, that is both download size and memory footprint.

Now, one may be tempted to ask how the RM3D proposals is related to the
other standard proposals such as MPEG-4 and SMIL, discussed previously. Briefly
put, paraphrased from one of Chris Marrin’s messages on the RM3D mailing list

SMIL is closer to the author and RM3D is closer to the implementer.

MPEG-4, in this respect is even further away from the author since its chief focus
is on compression and delivery across a network.

RM3D takes 3D scene description as a starting point and looks at pragmatic
ways to integrate rich media. Since 3D is itself already computationally inten-
sive, there are many issues thatarise in finding efficient implementations for the
proposed solutions.

12

timing model RM3D provides a declarative format formany interesting features,
such as for example texturing objects with video. In comparison to VRML, RM3D
is meant to provide more temporal control over time-based media objects and
animations. However, there is strong disagreement among the working group
members as to what time model the dynamic capabilities of RM3D should be
based on. As we read in the working draft:

working draft

Since there are three vastly different proposals for this section (time model),

the original <RM3D> 97 text is kept. Once the issues concerning time-

dependent nodes are resolved, this section can be modified appropriately.

22 codecs and standards

Now, what are the options? Each of the standards discussed to far provides us
with a particular solution to timing. Summarizing, we have a time model based
on a spring metaphor in MPEG-4, the notion of cascading time in SMIL (inspired
by cascading stylesheets for HTML) and timing based on the routing of events in
RM3D/VRML.

The MPEG-4 standard introduces the spring metaphor for dealing with tem-
poral layout.

MPEG-4 – spring metaphor

• duration – minimal, maximal, optimal

The spring metaphor amounts to the ability to shrink or stretch a media object
within given bounds (minimum, maximum) to cope with, for example, network
delays.

The SMIL standard is based on a model that allows for propagating durations
and time manipulations in a hierarchy of media elements. Therefore it may be
referred to as a cascading modelof time.

SMIL – cascading time

• time container – speed, accelerate, decelerate, reverse, synchronize

Media objects, in SMIL, are stored in some sort of container of which the timing
properties can be manipulated.

<seq speed="2.0">
<video src="movie1.mpg" dur="10s"/>
<video src="movie2.mpg" dur="10s"/>

<animateMotion from="-100,0" to="0,0" dur="10s"/>

<video src="movie4.mpg" dur="10s"/>

</seq>

In the example above,we see that the speed is set to 2.0, which will affect the
pacing of each of the individual media elements belonging to that (sequential)
group. The duration of each of the elements is specified in relation to the parent
container. In addition, SMIL offers the possibility to synchronize media objects
to control, for example, the end time of parallel media objects.

VRML97’s capabilities for timing rely primarily on the existence of a Time-
Sensor thatsends out time events that may be routed to other objects.

RM3D/VRML – event routing

• TimeSensor – isActive, start, end, cycleTime, fraction, loop

When a TimeSensor starts to emit time events, it also sends out an event notifying
other objects that it has become active. Dependent on itsso-called cycleTime, it
sends out the fraction it covered since it started. This fraction may be send to one
of the standard interpolators or a script so that some value can be set, such as for

standards 23

example the orientation, dependent on the fraction of the time intercal that has
passed. When the TimeSensor is made to loop, this is done repeatedly. Although
time in VRML is absolute, the frequency with which fraction events are emitted
depends on the implementation and processor speed.

Lacking consensus about a better model, this model has provisionally been
adopted, with some modifications, for RM3D. Nevertheless, the SMIL cascading
time model has raised an interest in the RM3D working group, to the extent
that Chris Marrin remarked (in the mailing list) ”we could go to school here”.
One possibility for RM3D would be to introduce time containers that allow for a
temporal transform of their children nodes, in a similar way as grouping containers
allow for spatial transforms of their children nodes. However, that would amount
to a dual hierarchy, one to control (spatial) rendering and one to control temporal
characteristics. Merging the two hierarchies, as is (implicitly) the case in SMIL,
might not be such a good idea, since the rendering and timing semantics of the
objects involved might be radically different. An interesting problem, indeed, but
there seems to be no easy solution.

13

example(s) – rich internet applications

In a seminar held by Lost Boys, which is a dutch subdivison if Icon Media
Lab8, rich internet applications (RIA), were presented as the new solutions to
present applications on the web. As indicated by Macromedia9, who is one of
the leading companies in this fiwld, experience matters, and so plain html pages
pages do not suffice since they require the user to move from one page to another
in a quite unintuitive fashion. Macromedia presents its new line of flash-based
products to create such rich internet applications. An alternative solution, based
on general W3C recommendations, is proposed by BackBase10. Interestingly
enough, using either technology, many of the paricipants of the seminar indicated
a strong preference for a backbuuton, having similar functionality as the often
used backbutton in general internet browsers.

8www.iconmedialab.com
9www.macromedia.com/resources/business/rich internet apps/whitepapers.html

10www.backbase.com

24 codecs and standards

research directions– meta standards

All these standards! Wouldn’t it be nice to have one single standard that en-
compasses them all? No, it would not! Simply, because such a standard is
inconceivable, unless you take some proprietary standard or a particular platform
as the defacto standard (which is the way some people look at the Microsoft win32
platform, ignoring the differences between 95/98/NT/2000/XP/...). In fact, there
is a standard that acts as a glue between the various standards for multimedia,
namely XML. XML allows for the interchange of data between various multimedia
applications, that is the transformation of one encoding into another one. But
this is only syntax. What about the semantics?

Both with regard to delivery and presentation the MPEG-4 proposal makes
an attempt to delineate chunks of core fuctionality that may be shared between
applications. With regard to presentation, SMIL may serve as an example. SMIL
applications themselves already (re)use functionality from the basic set of XML-
related technologies, for example to access the document structure through the
DOM (Document Object Model). In addition, SMIL defines components that
it may potentially share with other applications. For example, SMIL shares its
animation facilities with SVG (the Scalable Vector Graphics format recommended
by the Web Consortium).

The issue in sharing is, obviously, how to relate constructs in the syntax to their
operational support. When it is possible to define a common base of operational
support for a variety of multimedia applications we would approach our desired
meta standard, it seems. A partial solution to this problem has been proposed in
the now almost forgotten HyTime standard for time-based hypermedia. HyTime
introduces the notion of architectural forms as a means to express the operational
support needed for the interpretation of particular encodings, such as for example
synchronization or navigation over bi-directional links. Apart from a base module,
HyTime compliant architectures may include a units measurement module, a
module for dealing with location addresses, a module to support hyperlinks, a
scheduling module and a rendition module.

To conclude, wouldn’t it be wonderful if, for example, animation support could
be shared between rich media X3D and SMIL? Yes, it would! But as you may
remember from the discussion on the timing models used by the various standards,
there is still to much divergence to make this a realoistic option.

14

a multimedia semantic web? 25

3.3 a multimedia semantic web?

To finish this chapter, let’s reflect on where we are now with ’multimedia’ on
the web. Due to refined compression schemes and standards for authoring and
delivery, we seemed to have made great progress in realizing networked multimedia.
But does this progress match what has been achieved for the dominant media type
of the web, that is text or more precisely textual documents with markup?

web content

• 1st generation – hand-coded HTML pages

• 2nd generation – templates with content and style

• 3rd generation – rich markup with metadata (XML)

Commonly, a distinction is made between successive generations of web content,
with the first generation being simple hand-coded HTML pages. The second
generation may be characterized as HTML pages that are generated on demand,
for example by filling in templates with contents retrieved from a database. The
third generation is envisaged to make use of rich markup, using XML, that reflects
the (semantic) content of the document more directly, possibly augmented with
(semantic) meta-data that describe the content in a way that allows machines, for
example search engines, to process it. The great vision underlying the third gen-
eration of web content is commonly refered to as the the semantic web. which en-
hances the functionality of the current web by deploying knowledge representation
and inference technology from Artificial Intelligence, using a technology known as
the Resource Description Framework (RDF). As phrased in Ossenbruggen et. al.
(2001), the semantic web will bring

structure to the meaningful content of web pages,

thus allowing computer programs,such as search engines and intelligent agents,
to do their job more effectively. For search engines this means more effective
information retrieval, and for agents better opportunities to provide meaningful
services.

A great vision indeed. So where are we with multimedia? As an example,
take a shockwave or flash presentation showing the various musea in Amsterdam.
How would you attach meaning to it, so that it might become an element of a
semantic structure? Perhaps you wonder what meaning could be attached to it?
That should not be too difficult to think of. The (meta) information attached to
such a presentation should state (minimally) that the location is Amsterdam, that
the sites of interest are musea, and (possibly) that the perspective is touristic. In
that way, when you search for touristic information about musea in Amsterdam,
your search engine should have no trouble in selecting that presentation. Now,
the answer to the question how meaning can be attached to a presentation is
already given, namely by specifying meta-information in some format (of which
the only requirement is that it is machine-processable). For our shockwaveor flash
presentation we cannot dothis in a straightforward manner. But for MPEG-4
encoded material, as well as for SMIL content, such facilities are readily available.

26 codecs and standards

Should we then always duplicate our authoring effort by providing (meta)
information, on top of the information that is already contained in the presenta-
tion? No, in some cases, we can also rely to some extent on content-based search
or feature extraction, as will be discussed in the following chapters.

15

Resource Description Framework – the Dublin Core

The Resource Description Framework, as the W3C/RDF11 site informs us inte-
grates a variety of applications from library catalogs and world-wide directories to
syndication and aggregation of news, software, and content to personal collections
of music, photos, and events using XML as an interchange syntax. The RDF
specifications provide, in addition a lightweight ontology system to support the
exchange of knowledge on the Web.

The Dublin Core Metadata Initiative12 is an open forum engaged in the
development of interoperable online metadata standards that support a broad
range of purposes and business models.

What exactly is meta-data? As phrased in the RDF Primer13

meta data

Metadata is data about data. Specifically, the term refers to data used to

identify, describe, or locate information resources, whether these resources

are physical or electronic. While structured metadata processed by comput-

ers is relatively new, the basic concept of metadata has been used for many

years in helping manage and use large collections of information. Library

card catalogs are a familiar example of such metadata.

The Dublin Core proposes a small number of elements, to be used to give in-
formation about a resource, such as an electronic document on the Web. Consider
the following example:

Dublin Core example

<rdf:RDF
xmlns:rdf=”http://www.w3.org/1999/02/22-rdf-syntax-ns #”
xmlns:dc=”http://purl.org/dc/elements/1.1/”
xmlns:dcterms=”http://purl.org/dc/terms/”>

11www.w3.org/RDF
12dublincore.org
13www.w3.org/TR/rdf-primer

a multimedia semantic web? 27

<rdf:Description rdf:about=”http://www.dlib.org/dlib/may98/miller/05miller.html”>
<dc:title>An Introduction to the Resource Description Framework</dc:title>

<dc:creator>Eric J. Miller</dc:creator>
<dc:description>The Resource Description Framework (RDF) is an
infrastructure that enables the encoding, exchange and reuse of
structured metadata. rdf is an application of xml that imposes needed
structural constraints to provide unambiguous methods of expressing
semantics. rdf additionally provides a means for publishing both
human-readable and machine-processable vocabularies designed to
encourage the reuse and extension of metadata semantics among
disparate information communities. the structural constraints rdf
imposes to support the consistent encoding and exchange of
standardized metadata provides for the interchangeability of separate
packages of metadata defined by different resource description
communities. </dc:description>

<dc:publisher>Corporation for National Research Initiatives</dc:publisher>
<dc:subject>

<rdf:Bag>
<rdf:li>machine-readable catalog record formats</rdf:li>
<rdf:li>applications of computer file organization and
access methods</rdf:li>

</rdf:Bag>
</dc:subject>
<dc:rights>Copyright 1998 Eric Miller</dc:rights>
<dc:type>Electronic Document</dc:type>
<dc:format>text/html</dc:format>
<dc:language>en</dc:language>

<dcterms:isPartOf rdf:resource=”http://www.dlib.org/dlib/may98/05contents.html”/>
</rdf:Description>

</rdf:RDF>

Items such as title, creator, subject and description, actually all tags with the
prefix dc, belong to the Dublin Core and are used to give information about the
document, which incidentally concerns an introduction to the Resource Descrip-
tion Framework. The example also shows how rdf constructs can be used together
with the Dublin Core elements. The prefixes rdf and dc are used to distinguish
between the distinct namespaces of respectively RDF and the Dublin Core.

The Dublin Core contains the following elements:
Dublin Core14

• title – name given to the resource

• creator – entity primarily responsible for making the content of the resource

• subject – topic of the content of the resource

• description – an account of the content of the resource

• publisher – entity responsible for making the resource available

14dublincore.org/documents/dces

28 codecs and standards

• contributor – entity responsible for making contributions to the content of the
resource

• date – date of an event in the lifecycle of the resource

• type – nature or genre of the content of the resource

• format – physical or digital manifestation of the resource

• identifier – unambiguous reference to the resource within a given context

• source – reference to a resource from which the present resource is derived

• language – language of the intellectual content of the resource

• relation – reference to a related resource

• coverage – extent or scope of the content of the resource

• rights – information about rights held in and over the resource

In section 10.3 we discuss an application in the domain of cultural heritage,
where the Dublin Core elements are used to provide meta information about
the information available for the conservation of contemporary artworks.

16

research directions– agents everywhere

The web is an incredibly rich resource of information. Or, as phrased in Baeza-
Yates and Ribeiro-Neto (1999):

information repository

The Web is becoming a universal repository of human knowledge and culture,

which has allowed unprecedented sharing of ideas and information in a scale

never seen before.

Now, the problem (as many of you can acknowledge) is to get the information out
of it. Of course, part of the problem is that we often do not know what we are
looking for. But even if we do know, it is generally not so easy to find our way.
Again using the phrasing of Baeza-Yates and Ribeiro-Neto (1999):

browsing & navigation

To satisfy his information need, the user might navigate the hyperspace of

web links searching for information of interest. However, since the hy-

perspace is vast and almost unknown, such a navigation task is usually

inefficient.

a multimedia semantic web? 29

The solution of the problem of getting lost in hyperspace proposed in Baeza-Yates
and Ribeiro-Neto (1999) is information retrieval, in other words query & search.
However, this may not so easily be accomplished. As observed in Baeza-Yates and
Ribeiro-Neto (1999), The main obstacle is the absence of a well-defined data model
for the Web, which implies that information definition and structure is frequently
of low quality. Well, that is exactly the focus of the semanics web initiative, and
in particular of the Resource Description Framework discussed above.

Standardizing knowledge representation and reasoning about web resources
is certainly one (important) step. Another issue, however, is how to support
the user in finding the proper resources and provide the user with assistance in
accomplishing his task (even if this task is merely finding suitable entertainment).

What we need, in other words, is a unifying model (encompassing both a
data model and a model of computation) that allows us to deal effectively with
web resources, including multimedia objects. For such a model, we may look
at another area of research and development, namely intelligent agtents, which
provides us not only with a model but also with a suitable metaphor and the tech-
nology, based on and extending object-oriented technology, to realize intelligent
assistance, Eliens (2000).

For convenience, we make a distinction between two kinds of agents, informa-
tion agents and presentation agents.

information agent

• gather information

• filter and select

Information agents are used to gather information. In addition, they filter the
information and select those items that are relevant for the user. A key problem
in developing information agents, however, is to find a proper representation of
what the user considers to be relevant.

presentation agent

• access information

• find suitable mode of presentation

Complementary to the information agent is a presentation agent (having access to
the information gathered) that displays the relevant information in a suitable way.
Such a presentation agent can have many forms. To appetize your phantasy, you
may look at the vision of angelic guidance presented in Broll et. al (2001). More
concretely, my advice is to experiment with embodied agents that may present
information in rich media 3D. In section ??, we will present a framework for doing
such experiments.

30 codecs and standards

17

navigating information spaces Having agents everywhere might change our
perspective on computing. But, it may also become quite annoying to be bothered
by an agent each time that you try to interact with with your computer (you know
what I mean!). However, as reported by Kristina Höök, even annoyance can be
instrumental in keeping your attention to a particular task. In one of her projects,
the PERSONAS project, which stands for

PERsonal and SOcial NAvigation through information spaceS

the use of agents commenting on people navigating information space(s) is
explored. As a note, the plural form of spaces is mine, to do justice to the
plurality of information spaces.

As explained on the PERSONAS web site, which is listed with the acronyms,
the PERSONAS project aims at:

PERSONAS

investigating a new approach to navigation through information spaces, based

on a personalised and social navigational paradigm.

The novel idea pursued in this project is to have agents (Agneta and Frieda)
that are not helpful, but instead just give comments, sometimes with humor, but
sometimes ironic or even sarcastic comments on the user’s activities, in particular
navigating an information space or (plain) web browsing. As can be read on the
PERSONAS web site:

Agneta & Frieda

gluing it all together 31

The AGNETA & FRIDA system seeks to integrate web-browsing and nar-

rative into a joint mode. Below the browser window (on the desktop) are

placed two female characters, sitting in their livingroom chairs, watching the

browser during the session (more or less like watching television). Agneta

and Frida (mother and daughter) physically react, comment, make ironic

remarks about and develop stories around the information presented in the

browser (primarily to each other), but are also sensitive to what the naviga-

tor is doing and possible malfunctions of the browser or server.

In one of her talks, Kristina Höök observed that some users get really fed up with
the comments delivered by Agneta and Frieda. So, as a compromise, the level of
interference can be adjusted by the user, dependent on the task at hand.

Agneta & Frieda

In this way they seek to attach emotional, comical or anecdotal connotations

to the information and happenings in the browsing session. Through an ac-

tivity slider, the navigator can decide on how active she wants the characters

to be, depending on the purpose of the browsing session (serious information

seeking, wayfinding, exploration or entertainment browsing).

As you may gather, looking at the presentations accompanying this intro-
duction to multimedia and Dialogs, I found the PERSONAS approach rather
intriguing. Actually, the PERSONAS approach is related to the area of affective
computing, see Picard (1998), which is an altogether different story.

The Agneta and Frieda software is available for download at the PERSONAS
web site.

3.4 gluing it all together

18

questions

codecs and standards

1. (*) What role do standards play in multimedia? Why are standards necessary for
compression and delivery. Discuss the MPEG-4 standard and indicate how it is
related to other (possible) standards.

concepts

2. What is a codec?

3. Give a brief overview of current multimedia standards.

32 codecs and standards

4. What criteria must a (multimedia) semantic web satisfy?

technology

5. What is the data rate for respectively (compressed) voice, audio and video?

6. Explain how a codec functions.

7. Which considerations can you mention for choosing a compression method?

8. Give a brief description of: XML, MPEG-4, SMIL, RM3D.

projects & further reading As a project, you may think of implementing
for example JPEG compression, following Li and Drew (2004), or a SMIL-based
application for cultural heritage.

You may further explore the technical issues on authoring DV material, using
any of the Adobe15, mentioned in appendix E. or compare

For further reading I advice you to take a look at the respective specifications of
MPEG-4 and SMIL16, and compare the functionality of MPEG-4 and SMIL-based
presentation environments. An invaluable book dealing with the many technical
aspects of compression and standards in Li and Drew (2004).

the artwork

1. costume designs – photographed from Die Russchische Avantgarde und die Buhne
1890-1930

2. theatre scene design, also from (above)

3. dance Erica Russel, Wiedermann (2004)

4. MPEG-4 – bits rates, from Koenen (2000).

5. MPEG-4 – scene positioning, from Koenen (2000).

6. MPEG-4 – up and downstream data, from Koenen (2000).

7. MPEG-4 – left: scene graph; right: sprites, from Koenen (2000).

8. MPEG-4 – syntax, from Koenen (2000).

9. MIT Media Lab17 web site.

10. student work – multimedia authoring I, dutch windmill.

11. student work – multimedia authoring I, Schröder house.

12. student work – multimedia authoring I, train station.

13. animation – Joan Gratch, from Wiedermann (2004).

14. animation – Joan Gratch, from Wiedermann (2004).

15. animation – Joan Gratch, from Wiedermann (2004).

16. animation – Joan Gratch, from Wiedermann (2004).

17. Agneta and Frieda example.

18. signs – people, van Rooijen (2003), p. 246, 247.

15www.adobe.com/tutorials
16www.w3c.org/AudioVideo
17medai.mit.edu

gluing it all together 33

Both the costume designs and theatre scene designs of the russian avantgarde
movement are expressionist in nature. Yet, they show humanity and are in their
own way very humorous. The dance animation by Erica Russell, using basic
shapes and rhythms to express the movement of dance, is to some extent both
solemn and equally humorous. The animations by Joan Gratch use morphing, to
transform wellknown artworks into other equally wellknown artworks.

34 codecs and standards

4. multimedia platforms

with DirectX 9 digital convergence becomes a reality

learning objectives

After reading this chapter you should be able to characterize the functionality

of current multimedia platforms, to describe the capabilities of GPUs, to

mention the components of the Microsoft DirectX 9 SDK, and to discuss

how to integrate 3D and video.

Almost 15 years ago I bought my first multimedia PC, with Windows 3.1
Media Edition. This setup included a video capture card and a 4K baud modem.
It was, if I remember well, a 100 Mhz machine, with 16 Mb memory and a 100
Mb disk. At that time, expensive as it was, the best I could afford. Some 4 years
later, I acquired a Sun Sparc 1 multimedia workstation, with a video capture card
and 3D hardware accelerator. It allowed for programming OpenGL in C++ with
the GNU gcc compiler, and I could do live video texture mapping at a frame
rate of about one per second. If you consider what is common nowadays, a 3Ghz
machine with powerful GPU, 1 Gb of memory, a 1.5Mb cable or ADSL connection
and over 100 Gb of disk space, you realize what progress has been made over the
last 10 years.

In this chapter, we will look in more detail at the capability of current multi-
media platforms, and we will explore the functionality of the Microsoft DirectX 0
platform. In the final section of this chapter, I will then report about the work I
did with the DirectX 9 SDK to implement the ViP system, a presentation system
that merges video and 3D.

1

4.1 developments in hardware and software

Following Moore’s law (predicting the doubling of computing power every eigh-
teen months), computer hardware has significantly improved. But perhaps more

35

36 multimedia platforms

spectacular is the growth in computing power of dedicated multimedia hard-
ware, in particular what is nowadays called the GPU (graphics processing unit).
In Fernando and Kilgard (2003), he NVIDIA GeForce FX GPU is said to have
125 million of transistors, whereas the Intel 2.4GHz Pentium 4 contains only 55
million of transistors. Now, given the fact that the CPU (central processing unit)
is a general purpose, or as some may like to call it, universal device, why is it
necessary or desirable to have such specialized hardware, GPUs for graphics and,
to be complete DSPs (digital signal processors) for audio?

a little bit of history

Almost evryone knows the stunning animation and effects in movies made pos-
sible by computer graphics, as for example the latest production of Pixar, The
Incredibles. Such animation and effects are only possible by offline rendering,
using factories of thousands of CPUs, crunching day and night to render all the
frames.

At the basis of rendering lies traditional computer graphics technology. That
is, the transformation of vertices (points in 3D space), rasterization (that is
determining the pixel locations and pixel properties corresponding to the vertices),
and finally the so-called raster operations (determining whether and how the
pixels are written to the framebuffer). OpenGL, developed by SGI was the first
commonly available software API (application programmers interface) to control
the process of rendering. Later, Microsoft introduced Direct3D as an alternative
for game programming on the PC platform.

The process outlined above is called the graphics pipeline. You put models,
that is collections of vertices, in and you get (frames of) pixels out. This is indeed a
simplification in that it does not explain how, for example, animation and lighting
effects are obtained. To gain control over the computation done in the graphics
pipeline, Pixar developed Renderman, which allows for specifying transformations
on the models (vertices) as well as operations on the pixels (or fragments as they
are called in Fernando and Kilgard (2003)) in a high level language. As vertex
operations you may think of for example distortions of shape due to a force such as
an explosion. As pixel operations, the coloring of pixels using textures (images)
or special lighting and material properties. The languages for specifying such
vertex or pixel operations are collectively called shader languages. Using offline
rendering, almost anything is possible, as long as you specify it mathematically
in a computationally feasible way.

The breakthrough in computer graphics hardware was to make such shading
languages available for real-time computer graphics, in a way that allows, as Fer-
nando and Kilgard (2003) phrase it, 3D game and application programmers and
real-time 3D artists to use it in an effective way.

Leading to the programmable computer graphics hardware that we know
today, Fernando and Kilgard (2003) distinguish between four generations of 3D
accellerators.18

18 The phrase GPU was introduced by NVIDIA to indicate that the capabilities of the GPU
far exceed those of the VGA (video graphics array) originally introduced by IBM, which is

developments in hardware and software 37

4 generations of GPU

• Before the introduction of the GPU, there only existed very expensive specialized
hardware such as the machines from SGI.

• The first generation of GPU, including NVIDIA TNT2, ATI Rage and 3dfx
Voodoo3, only supported rasterizing pre-transformed triangles and some limited
texture operations.

• The second generation of GPUs, which were introduced around 1999, included
the NVIDIA GeForce 2 and ATI Radeon 7500. They allowed for both 3D vertex
transformations and some lighting, conformant with OpenGL and DirectX 7.

• The tird generation GPUs, including NVIDIA GeForce 3, Microsoft Xbox and
ATI Radeon 8500, included both powerful vertex processing capabilities and some
pixel-based configuration operations, exceeding those of OpenGL and DirectX 7.

• Finally, the fourth generation of GPUs, such as the NVIDIA GeForce FX and ATI
Radeon 9700, allow for both complex vertex and pixel operations.

The capabilities of these latter generations GPUs motivated the development of
high level shader languages, such as NVIDIA Cg and Microsoft HLSL. High level
dedicated graphics hardware programming languages to control what may be
called the programmable graphics pipeline.

the (programmable) graphics pipeline

Before discussing shading languages any further, let’s look in some more detail at
the graphics pipeline. But before that you must have an intuitive grasp of what
is involved in rendering a scene.

Just imagine that you have created a model, say a teapot, in your favorite
tool, for example Maya or 3D Studio Max. Such a model may be regarded
as consisting of polygons, let’s say triangles, and each vertex (point) of these
triangles has apart from its position in (local) 3D space also a color. To render this
model it must first be positioned in your scene, using so-called world coordinates.
The world transformation is used to do this. The world transformation may
change the position, rotation and scale of your object/model. Since your scene is
looked at from one particular point of view we need to apply also a so-called view
transformation, and to define how our view will be projected on a 2D plane, we
must specify a projection transformation. Without going into the mathematical
details, we may observe that these transformations can be expressed as 4x4
matrices and be combined in a single matrix, often referred to as the world view
projection matrix, that can be applied to each of the vertices of our model. This
combined transformation is the first stage in the process of rendering:

graphics pipeline

1. vertex transformation – apply world, view, projection transforms

2. assembly and rasterization – combine, clip and determine pixel locations

3. fragment texturing and coloring – determine pixel colors

4. raster operations – update pixel values

nothing more than a dumb framebuffer, requiring updates from the CPU.

38 multimedia platforms

The second phase, roughly, consists of cleaning up the collection of (transformed)
vertices and determining the pixel locations that correspond to the model. Then,
in the third phase, using interpolation or some more advanced method, coloring
and lighting is applied, and finally a sequence of per-fragment or pixel operations
is applied. Both OpenGL and Direct3D support among others an alpha (or
transparency) test, a depth test and blending. The above characterized the fixed
function graphics pipeline. Both the OpenGL and Direct3D API support the fixed
function pipeline, offering many ways to set relevant parameters for, for example,
applying lights, depth and texturing operations.

To understand what the programmable graphics pipeline can do for you, you
would best look at some simple shader programs. In essence, the programmable
pipeline allows you to perform arbitrary vertex operations and (almost) arbitrary
pixel operations. For example, you can apply a time dependent morphing opera-
tion to your model. Or you can apply an amplification to the colors of your scene.
But perhaps more interestingly, you can also apply an advanced lighting model
to increase realism.

A simple morphing shader in ViP, see section 4.3.

2

a simple shader

When I began with programming shaders myself, I started with looking at ex-
amples from the DirectX SDK. Usually these examples were quite complex, and
my attempt at modifying them often failed. Being raised in theoretical computer
science, I changed strategy and developed my first shader program called id, which
did nothing. Well, it just acted as the identity function. Then later I used this
program as a starting point for writing more complex shader programs.

The id shader program is written in the DirectX 9 HLSL (high level shader
language), and makes use of the DirectX Effects framework, which allows for

developments in hardware and software 39

specifying multiple vertex and pixel shaders, as well as multiple techniques and
multiple passes in a single file.

The program starts with a declaration, specifying the global names for respec-
tively the texture and the world/view/projection matrix. Also a texture sampler
is declared, of which the function will become clear later.

HLSL declarations

texture tex;
float4x4 wvp; // World * View * Projection matrix

sampler tex sampler = sampler state
{

texture = /¡tex/¿;
};

It then defines, respectively, the vertex shader input and output, as structures.
This declaration follows the standard C-like syntax for specifying elements in a
structure, except for the identifiers in capitals, which indicate the semantics of
the fields, corresponding to pre-defined registers in the GPU data flow.

vertex shader data flow

struct vsinput {
float4 position : POSITION;
float3 normal : NORMAL;
float2 uv : TEXCOORD0;

};
struct vsoutput {

float4 position : POSITION; // vertex position
float4 color : COLOR0; // vertex diffuse color
float2 uv : TEXCOORD0; // vertex texture coords

};

When the vs id function, given below, is called, the input arguments are filled
by the registers corresponding to the semantics pf the input structure. Similarly,
the output results in setting the registers corresponding to the semantics of the
output structure.

vertex shader

vsoutput vs id(vsinput vx) {
vsoutput vs;

vs.position = mul(vx.position, wvp);
vs.color = color;
vs.uv = vx.uv;

return vs;
}

40 multimedia platforms

The vs id function does exactly what the fixed graphics pipeline would do when
transforming vertices. It applies the transformation to the vertex and passes both
color and texture sampling coordinates to the pixel shader.

The pixel shader has a single color as output, which is obtained by sampling
the texture, using the (interpolated) vertex color to modify the result.

pixel shader

struct psoutput
{

float4 color : COLOR0;
};

psoutput ps id(vsoutput vs)
{

psoutput ps;

ps.color = tex2D(tex sampler, vs.uv) * vs.color;

return ps;
}

Note that the tex sampler comes from the global declaration above. The function
text2D is a built-in for obtaining a color value from the sampler.

Finally, for each technique and each pass within a technique, in our case one
technique with one pass, it must be indicated which function must be used for
respectively the vertex shader and the pixel shader.

technique selection

technique render id
{

pass P0
{

VertexShader = compile vs 1 1 vs id();
PixelShader = compile ps 2 0 ps id();

}
}

To make actual use of this program, the effect must be invoked from a DirectX
or OpenGL program using the interface offered by the API.

developments in hardware and software 41

Examples of Impasto, see examples – impasto

3

a morphing shader Slightly more complex is an example adapted from the
morphing shader that can be found in ATI’s Rendermonkey. To make a shader
that morphs a cube into a ball and back, you must manipulate the vertices and
the normals of the cube. For this to work your cube must have sufficient vertices,
which is a property you can set in the tool that you use to make a cube.

morphing (vertex) shader

float3 spherePos = normalize(vx.position.xyz);
float3 cubePos = 0.9 * vx.position.xyz;

float t = frac(speed * time);
t = smoothstep(0, 0.5, t) - smoothstep(0.5, 1, t);

// find the interpolation factor
float lrp = lerpMin + (lerpMax - lerpMin) * t;

// linearly interpolate the position and normal
vx.position.xyz = lerp(spherePos, cubePos, lrp);
vx.normal = lerp(sphereNormal, cubeNormal, lrp);

// apply the transformations
vs.position = mul(wvp, vx.position);

The example uses the built-in function lerp, that performs linear interpolation
between two values using an interpolation factor between 0 and 1.

color amplification As an example of a pixel shader, look at the fragment defin-
ing an amplification of coloring below. It merely amplifies the RGB components
of the colors when this exceeds a certain treshold.

coloring (pixel) shader

float4 x = tex2D(tex sampler, vs.uv);
if (x.r ¿ x.g && x.r ¿ x.b) { x.r *= xi; x.g *= xd; x.b *= xd; }
else if (x.g ¿ x.r && x.g ¿ x.b) { x.g *= xi; x.r *= xd; x.b *= xd; }
else if (x.b ¿ x.r && x.b ¿ x.g) { x.b *= xi; x.r *= xd; x.g *= xd; }
ps.color = x;

When you develop shaders you must keep in mind that a pixel shader is generally
invoked far more often than a vertex shader. For example a cube can be defined
using 12 triangles of each tree vertices. However, the number of pixels generated
by this might be up to a million. Therefore any complex computation in the pixel
shader will be immediately noticable in the performance. For example, a slightly
more complex pixel shader than the one above makes my NVIDIA GeForce FX
5200 accelerated 3 GHz machine drop to 5 frames per second!

42 multimedia platforms

rendering of van Gogh painting with Impasto

4

example(s) – impasto

IMPaSTo19 is a realistic, interactive model for paint. It allows the user to create
images in the style of famous painters as in the example above, which is after
a painting of van Gogh. The impasto system implements a physical model of
paint to simulate the effect of acrylic or oilpaint, using Cg shaders for real-time
rendering, Baxter et al. (2004).

research directions – the art of shader programming

At first sight, shader programming seems to be an esoteric endeavor. However, as
already indicated in this section, there are a number of high level languages for
shader programming, including NVIDIA Cg and Microsoft HLSL. Cg is a platform
independent language, suitable for both OpenGL and Direct3D. However, counter
to what you might expect also Microsoft HLSL can be used for the OpenGL
platform when you choose the proper runtime support.

To support the development of shaders there are, apart from a number of
books, some powerful tools to write and test your shaders, in particular the already
mentioned ATI Rendermonkey tool, the CgFx tool, which both produce HLSL
code, as well as the Cg viewer and the effect tool that comes with the Microsoft
DirectX 9 SDK.

Although I am only a beginning shader programmer myself, I find it truly
amazing what shaders can do. For a good introducion I advice Fernando and
Kilgard (2003). Futher you may consult Engel (2004a), Engel (2004b) and Engel
(2005). Written from an artist’s perspective is St-Laurent (2004).

19gamma.cs.unc.edu/IMPaSTo

DirectX 9 SDK 43

Stacks and stacks of books on DirectX

5

4.2 DirectX 9 SDK

Many of the multimedia applications that you run on your PC, to play games,
watch video, or browse through your photos, require some version of Direct X to
be installed. The most widely distributed version of Direct X is 7.0. The latest
version is the october release of 2004. This is version 9c. What is DirectX? And,
more importantly, what can you do with it? In the DirectX documentation that
comes with the SDK, we may read:

DirectX

Microsoft DirectX is an advanced suite of multimedia application program-

ming interfaces (APIs) built into Microsoft Windows; operating systems.

DirectX provides a standard development platform for Windows-based PCs

by enabling software developers to access specialized hardware features

without having to write hardware-specific code. This technology was first

introduced in 1995 and is a recognized standard for multimedia application

development on the Windows platform.

Even if you don’t use the DirectX SDK yourself, and to do that you must be a
quite versatile programmer, then you will find that the tools or plugins that you
use do depend on it. For example, the WildTangent20 game engine plugin makes
the DirectX 7 functionality available through both javascript and a Java interface.
So understanding what DirectX has to offer may help you in understanding and
exploiting the functionality of your favorite tool(s) and plugin(s).

DirectX 9.0 components

In contrast to OpenGL, the DirectX SDK is not only about (3D) graphics. In
effect, it offers a wide range of software APIs and tools to assist the developer of
multimedia applications. The components of the DirectX 9 SDK include:

DirectX 9 components

• Direct3D – for graphics, both 2D and 3D

• DirectInput – supporting a variety of input devices

• DirectPlay – for multiplayer networked games

• DirectSound – for high performance audio

20www.wildtangent.com

44 multimedia platforms

• DirectMusic – to manipulate (non-linear) musical tracks

• DirectShow – for capture and playback of multimedia (video) streams

In addition there is an API for setting up these components. Also, DirectX
supports so-called media objects, which provide a standard interface to write audio
and video encoders, decoders and effects.

Altogether, this is a truly impressive and complex collection of APIs. One
way to become familiar with what the DirectX 9 SDK has to offer is to start
up the sample browser that is part of the SDK and explore the demos. Another
way is to read the online documentation that comes with the SDK, but perhaps a
better way to learn is to make your choice from the large collection of introductory
books, and start programming. At the end of this chapter, I will provide some
hints about how to get on your way.

Direct3D

In the DirectX 9 SDK, Direct3D replaces the DirectDraw component of previous
versions, providing a single API for all graphics programming. For Direct3D
there is a set of simple, well-written tutorials in the online documentation, that
you should start with to become familiar with the basics of graphics programming
in DirectX.

Direct3D tutorials

• tutorial 1: creating a device

• tutorial 2: rendering vertices

• tutorial 3: using matrices

• tutorial 4: creating and using lights

• tutorial 5: using texture maps

• tutorial 6: using meshes

Before you start working with the tutorial examples though, you should acquire
sufficient skill in C++ programming21 and also some familiarity with Microsoft
Visual Studio .NET.

One of the most intricate (that means difficult) aspects of programming Di-
rect3D, and not only for novices, is the creation and manipulation of what is
called the device. It is advisable to take over the default settings from an example,
and only start experimenting with more advanced setting after you gained some
experience.

DirectSound – the drumpad example

The DirectX SDK includes various utility libraries, for example the D3DX library
for Direct3D, to simplify DirectX programming.

As an example of a class that you may create with DirectSound, using such a
utility library, look at the drumpad below. The drumpad class can be integrated

21 The DirectX 9 SDK also offers APIs for C# and VisualBasic .NET. See the research
directions at the end of this section.

DirectX 9 SDK 45

in your 3D program, using DirectInput, to create your own musical instrument.
The header of the class, which is, with some syntactical modifications, taken from
the SDK samples section, looks as follows:

class drumpad {
public:

drumpad()
∼drumpad();
bool initialize(DWORD dwNumElements, HWND hwnd);
bool load(DWORD dwID, const TCHAR* tcszFilename);
bool play(DWORD dwID);

protected:
void CleanUp();
CSoundManager* m lpSoundManager;
CSound ** m lpSamples;

};

The interface offers some methods for creating and destroying a drumpad object,
initialization, loading sounds and for playing the sounds that you loaded. The
CSoundManager is a class offered by the utility library for DirectSound.

The play function is surprisingly simple.

bool drumpad::play(DWORD id) {
m lpSamples[id] -¿ Stop();
m lpSamples[id] -¿ Reset();
m lpSamples[id] -¿ Play(0, 0);
return true;

}

The id parameter is a number that may be associated with for example a key
on your keyboard or some other input device. Using the drumpad class allows
you to make your own VJ program, as I did in the system I will describe in the
next section. In case you are not familiar with either C++ or object-oriented
programming, you should study object-oriented software development first. See
for example Eliens (2000).

DirectShow

DirectShow is perhaps the most powerful component of the DirectX SDK. It is the
component which made Mark Pesce remark that with the DirectX 9 SDK digital
convergence has become a reality.22 A technical reality, that is, Pesce (2003).

As we have seen in chapter 3, working with multimedia presents some major
challenges:

multimedia challenges

22 It is historically interesting to note that Mark Pesce may be regarded as the inventor, or
initiator, of VRML, which was introduced in 1992 as the technology to realize a 3D web, as
interlinked collection of 3D spaces.

46 multimedia platforms

• volume – multimedia streams contain large amounts of data, which must be
processed very quickly.

• synchronization – audio and video must be synchronized so that it starts and stops
at the same time, and plays at the same rate.

• delivery – data can come from many sources, including local files, computer
networks, television broadcasts, and video cameras.

• formats – data comes in a variety of formats, such as Audio-Video Interleaved
(AVI), Advanced Streaming Format (ASF), Motion Picture Experts Group (MPEG),
and Digital Video (DV).

• devices – the programmer does not know in advance what hardware devices will
be present on the end-user’s system.

The DirectShow component was designed, as we learn from the online documenta-
tion, to address these challenges and to simplify the task of creating applications
by isolating applications from the complexities of data transports, hardware dif-
ferences and synchronization. The solution DirectShow provides is a modular
architecture that allows the developer to set up a data flow graph consisting of
filters. Such filters may be used for capturing data from, for example, a video
camera or video file, for deploying a codec, through the audio compression man-
ager (ACM) or video compression manager (VCM) interfaces, and for rendering,
either to the file system or in the application using DirectSound and DirectDraw
and Direct3D.

6

The diagram above, taken from the DirectX 9 SDK online documentation, shows
the relations between an application, the DirectShow components, and some of
the hardware and software components that DirectShow supports.

DirectX 9 SDK 47

An interesting and convenient feature of the filter-based dataflow architecture
of DirectShow is SmartConnect, which allows the developer to combine filters by
indicating constraints on media properties such as format. The actual connections
then, which involves linking input pins to output pins, is done automatically by
searching for the right order of filters, and possibly the introduction of auxiliary
filters to make things match.

DepthCube, see example(s) – 3D vision

7

DirectX application development

The examples that come with the DirectX‘9 SDK use an application utility
library, which includes a general application class that takes care of most of the
details of creating an application and rendering window, initialization and event
handling. For each of the SDK components there are numerous examples, ranging
in difficulty from beginners to expert level. There are also a number of examples
that illustrate how to mix the functionality of different SDK components, as for
example the projection of video on 3D, which we will discuss in more detail in the
next section.

48 multimedia platforms

3D vision Perspectra DepthCube

8

example(s) – 3D vision

Have you ever wondered how it would feel to be in Star Trek’s holodeck, or
experience your game in a truly spatial way, instead of on a flat LCD-display.
In Sullivan (2005), an overview is given of technology that is being developed to
enable volumetric display of 3D data, in particular the Perspecta swept-volume
display (middle) and LightSpace DepthCube (right), that uses a projector behind
a stack of 20 liquid-crystal screens.

The first approach of displaying volumetric data, taken by the Perspecta
swept-volume display, is to project a sequence of images on a rotating sheet
of reflective material to create the illusion of real volume. The psychological
mechanism that enables us to see volumes in this way is the same as the mechanism
that forces us to see motion in frame-based animation, at 24 frames per second,
namely persistence of vision.

LightSpace DepthCube uses a stack of 20 transparent screens and alternates
between these screens in a rapid way, thus creating the illusion of depth in a
similar way. In comparison with other approaches of creating depth illusion, the
solutions sketched above require no special eyewear and do not impose any strain
on the spectator due to unnatural focussing as for example with autostereoscopic
displays.

For rendering 3D images on either the Perspecta or DepthCube traditional
rendering with for example OpenGL suffices, where the z-coordinate is taken as
an indication for selecting a screen or depth position on the display. Rendering
with depth, however, comes at a price. Where traditional rendering has to deal
with, say 1024x748 pixels, the DepthCube for example needs to be able to display
1024x748x20, that is 15.3 million, voxels (the volumetric equivalent of a pixel) at
a comparable framerate.

DirectX 9 SDK 49

research directions– the next generation multimedia plat-
form

Factors that may influence your choice of multimedia development platform in-
clude:

• platform-dependence – both hardware and OS

• programming language – C/C++, Java, .NET languages

• functionality – graphics, streaming media

• deployment – PC/PDA, local or networked, web deployment

A first dividing line is whether you prefer to develop on/for Linux or Microsoft
windows. Another dividing line, indeed, is your choice of programming language,
C/C++, Java or .NET languages. Another factor that may influence your choice
is the functionality you strive for. For example, Managed DirectX, for the .NET
languages, provides only limited support for DirectShow and does not allow for
capturing live video from a DV camera. And finally, it matters what deployment
you wish to target for, mobile phone, PDAs or PCs, and whether you plan to
make stand-alone applications or applications that must run in a web browser.

Apart from the hard-core programming environments such as the Microsoft
DirectX 9 SDK, the Java Media Framework, OpenGL with OpenML extensions
for streaming media, or the various open source (game development) toolkits,
there are also high-level tools/environments, such as Macromedia Director MX,
that allow you to create similar functionality with generally less effort, but also
less control. In appendix E, a number of resources are listed that may assist you
in determining your choice.

Given the range of possible options it is futile to speculate on what the future
will offer. Nevertheless, whatever your choice is, it is good to keep in mind,
quoting Bill Gates:

Software will be the single most important force in digital entertainment

over the next decade.

It should not come as a surprise that this statement is meant to promote a new
initiative, XNA, which as the announcement says is targeted to help contain the
skyrocketing development costs and allow developers to concentrate on the unique
content that differentiates their games.

50 multimedia platforms

Animation in front of television news in ViP

9

4.3 merging video and 3D

In june 2003, I was approached by a theatre production company to advice on the
use of ”VR in theatre”. As described in more detail in section 9.3, I explored
what technology was available to realize such VR-augmented theatre. These
explorations resulted in the development of the ViP system, that I once announced
as follows:

www.virtualpoetry.tv

The ViP system enhances your party with innovative multimedia presenta-
tions.

It supports multiple webcams and digital video cameras, mixed with video
and images, enhanced by 3D animations and text, in an integrated fashion.

For your party, we create a ViP presentation, with your content and special

effects, to entertain your audience.

In the course of time, I continued working on the system and, although I do not
use it for parties, but rather for enlivening my lectures, it does include many of
the features of a VJ system, such as the drumpad described in 3.2.

The major challenge, when I started its development, was to find an effective
way to map live video from a low/medium resolution camera as textures onto
3D geometry. I started with looking at the ARToolkit but I was at the time not
satisfied with its frame rate. Then, after some first explorations, I discovered
that mapping video on 3D was a new (to some extent still experimental) built-in
feature of the DirectX 9 SDK, in the form of the VMR9 (video mixing renderer)
filter.

merging video and 3D 51

the Video Mixing Renderer filter

The VMR filter is a compound class that handles connections, mixing, composit-
ing, as well as synchronization and presentation in an integrated fashion. But
before discussing the VMR9 in more detail, let’s look first at how a single media
stream is processed by the filter graph, as depicted in the figure below.

10

Basically, the process consists of the phases of parsing, decoding and render-
ing. For each of these phases, dependent on respectively the source, format and
display requirements, a different filter may be used. Synchronization can be either
dtermined by the renderer, by pulling new frames in, or by the parser, as in the
case of live capture, by pushing data on the stream, possibly causing the loss of
data when decoding cannot keep up with the incoming stream.

The VMR was originally introduced to allow for mixing multiple video streams,
and allowed for user-defined compositor and allocator/presenter components.

(a) VMR filter (b) multiple VMRs

11

Before the VMR9, images could be obtained from the video stream by inter-
cepting this stream and copying frames to a texture surface. The VMR9, however,
renders the frames directly on Direct3D surfaces, with (obviously) less overhead.
Although the VMR9 supports multiple video pins, for combining multiple video

52 multimedia platforms

streams, it does not allow for independent search or access to these streams. To
do this you must deploy multiple video mixing renderers that are connected to
a common allocator/presenter component, as depicted on the right of the figure
above (b).

When using the VMR9 with Direct3D, the rendering of 3D scenes is driven
by the rate at which the video frames are processed.

Lecture on digital dossier for Abramovic, in ViP

12

the ViP system

In developing the ViP system, I proceeded from the requirement to project live
video capture in 3D space. As noted previously, this means that incoming video
drives the rendering of 3D scenes and that, hence, capture speed determines the
rendering frame rate.

I started with adapting the simple allocator/presenter example from the Di-
rectX 9 SDK, and developed a scene management system that could handle
incoming textures from the video stream. The scene class interface, which allows
for (one-time) initialization, time-dependent compositing, restore device setting
and rendering textures, looks as follows:

class scene {
public:

virtual int init(IDirect3DDevice9*); // initialize scene (once)
virtual int compose(float time); // compose (in the case of an

animation)
virtual int restore(IDirect3DDevice9*); // restore device settings
virtual int render(IDirect3DDevice9* device, IDirect3DTexture9*

texture);
protected:

merging video and 3D 53

...
};

The scene graph itself was constructed as a tree, using both arrays of (sub) scenes
as well as a dictionary for named scenes, which is traversed each time a video
texture comes in. The requirements the scene management system had to satisfy
are further indicated in section 9.3. Leaving further details aside, observe that
for the simple case of one incoming video stream, transferring the texture by
parameter suffices.

Later on, I adapted the GamePlayer which uses multiple video mixing ren-
deres, and then the need arose to use a different way of indexing and accessing the
textures from the video stream(s). So, since it is good practice in object-oriented
software engineering to suppress parameters by using object instance variables,
the interface for the scene class changed into:

class scene {
public:

virtual int load(); // initialize scene (once)
virtual int compose(); // compose (in the case of an animation)
virtual int restore(); // restore device settings
virtual int render(); // display the (sub) scene

protected:
...
};

Adopting the scene class as the unifying interface for all 3D objects and compound
scenes proved to be a convenient way to control the complexity of the ViP
application. However, for manipulating the textures and allocating shader effects
to scenes, I needed a global data structure (dictionaries) to access these items
by name, whenever needed. As a final remark, which is actually more concerned
with the software engineering of such systems that its functionality per se, to be
able to deal with the multiple variant libraries that existed in the various releases
of DirectX 9, it was needed to develop the ViP library and its components as a
collection of DLLs, to avoid the name and linking clashes that would otherwise
occur.

54 multimedia platforms

installation reality of TV news

13

example(s) – reality of TV news

The Reality of TV news project by Peter Frucht uses an interesting mix of
technology:
• live video capture from the device of an external USB2.0 TV card

• live audio capture from the soundcard (line in)

• display of live audio and video with java3D (had to be invented)

• autonomous 3D objects with a specified lifetime

• collision behaviour (had to be invented)

• changing of texture-, material- and sound characteristics at runtime

• dual-screen display with each screen rotated toward the other by 45 degrees about
the Y-axis

• 3D sound

In the project, as phrased by Peter Frucht, the permanent flow of the alternat-
ing adverts and news reports are captured live and displayed in a 3D virtual-reality
installation. The currently captured audio and video data is displayed on the
surface of 3D shapes as short loops. The stream enters the 3D universe piece
by piece (like water drops), in this way it is getting displaced in time and space -
news reports and advertising will be displayed partly in the same time. By colliding
to each other the 3D shapes exchange video material. This re-editing mixes the
short loops together, for instance some pieces of advertising will appear while the
newsreader speaks.

The software was developed by Martin Bouma, Anthony Augustin and Pe-
ter Frucht himself, with jdk 1.5, java3d 1.31, Java Media Framework 2.1.1e.
The primary technological background of the artist, Peter Frucht, was the book
CodeArt23, Trogemann & Viehoff (2004), by his former professor from the Media
Art School in Cologne, Germany. The book is unfortunately only available in
German, and should be translated in English!

23java.khm.de

games for the people 55

research directions– augmented reality

In the theatre production that motivated the development of the ViP system,
the idea was to have wearable LCD-projection glasses, with a head-mounted low
resolution camera. This setup is common in augmented reality applications, where
for example a historic site is enriched with graphics and text, laid on top of the
(video rendered) view of the site. Since realtime image analysis is generally
not feasible, either positioning and orientation information must be used, or
simplified markers indicating the significant spots in the scene, to determine what
information to use as an overlay and how it should be displayed.

The ARToolkit24 is an advanced, freely available, toolkit, that uses fast marker
recognition to determine the viewpoint of a spectator. The information that is
returned on the recognition of a marker includes both position and orientation,
which may be used by the application to draw the overlay graphics in accordance
with the spectator’s viewpoint.

Augnented reality is likely to become a hot thing. In april 2005 it was featured
at BBC World25, with a tour through Basel.

4.4 games for the people

14

questions

multimedia platforms

1. What components does a multimedia platform consist of? Discuss both hardware
and software components.

concepts

2. Characterize the functionality of current multimedia platforms.

3. Explain the notions of vertex shader and pixel shader.

4. Indicate what solutions exist for merging video and 3D graphics.

technology

5. Characterize the capabilty of current GPUs.

6. What does HLSL stand for? Give some examples of what it is used for.

7. What are the components of the DirectX 9 SDK?

8. Explain how the VMR9 works. Give an example.

24artoolkit.sourceforge.net
25www.bbcworld.com/content/template clickonline.asp?pageid=665&co pageid=3

56 multimedia platforms

projects & further reading As a project, I suggest the development of shader
programs using Rendermonkey26 or the Cg Toolkit27, or a simple game in DirectX.

You may further explore the possibilities of platform independent integration
of 3D and media, by studying for example OpenML28. For further reading, among
the many books about DirectX, I advice Luna (2003), Adams (2003) and Fay et
al. (2004).

the artwork

1. dutch light – photographs from documentary film Dutch Light29.

2. ViP – screenshot, with morphing shader, see section 4.3.

3. impasto – examples, see section 4.1

4. impasto – after a painting of van Gogh, using Cg shaders,

5. 3D vision, from Sullivan (2005), see example(s) section 4.2.

6. idem.

7. photographs of DirectX and multimedia books, by the author.

8. DirectX – diagram from online documentation.

9. ViP – screenshot, with the news and animations.

10. DirectX – diagram from online documentation.

11. DirectX – diagram from online documentation.

12. ViP – screenshot, featuring Abramovic.

13. Peter Frucht – Reality of TV news, see section 4.3.

14. signs – people, van Rooijen (2003), p. 248, 249.

The theme of the artwork of this chapter is realism. In the documentary dutch
light, it was investigated whether the famous dutch light in 17th century painting
really existed. The photographs shown here are a selection of shots that were
taken on particular locations over a period of time. However, as an art historian
formulated it in the documentary: dutch light is nothing but a bag of tricks shared
by dutch 17th century painters. The examples from impasto demonstrated that,
after all, realism is an arbitrary notion.

26www.ati.com/developer/RenderMOnkey
27www.nvidia.com/cg
28www.khronos.org/openml
29www.dutchlight.nl

	part ii. delivery & presentation
	reading directives
	perspectives
	essay topics

	3. codecs and standards
	learning objectives
	3.1 codecs
	compression methods
	compression standards
	example(s) -- gigaport
	research directions-- digital video formats

	3.2 standards
	MPEG-4
	example(s) -- structured audio
	SMIL
	RM3D -- not a standard
	example(s) -- rich internet applications
	research directions-- meta standards

	3.3 a multimedia semantic web?
	Resource Description Framework -- the Dublin Core
	research directions-- agents everywhere

	3.4 gluing it all together
	questions
	projects & further reading
	the artwork

	4. multimedia platforms
	learning objectives
	4.1 developments in hardware and software
	a little bit of history
	the (programmable) graphics pipeline
	a simple shader
	example(s) -- impasto
	research directions -- the art of shader programming

	4.2 DirectX 9 SDK
	DirectX 9.0 components
	Direct3D
	DirectSound -- the drumpad example
	DirectShow
	DirectX application development
	example(s) -- 3D vision
	research directions-- the next generation multimedia platform

	4.3 merging video and 3D
	the Video Mixing Renderer filter
	the ViP system
	example(s) -- reality of TV news
	research directions-- augmented reality

	4.4 games for the people
	questions
	projects & further reading
	the artwork

