

GAME @ VU

DEVELOPING A MASTERCLASS FOR HIGH-SCHOOL

STUDENTS USING THE HALF-LIFE 2 SDK

A. Eliëns,
 S.V. Bhikharie,

Intelligent Multimedia Group,
Department of Computer Science

Faculty of Sciences, Vrije Universiteit
De Boelelaan 1081, 1081 HV Amsterdam,

Netherlands
E-mail: eliens@cs.vu.nl

KEYWORDS
game development, Half-life 2 SDK, education.

ABSTRACT

In this paper, we will describe our experiences with
developing a masterclass game development for 14-16 year
old high-school students at the Vrije Universiteit,
Amsterdam. For the masterclass, we developed a game using
the Half-Life 2 SDK, called VU-Life 2, for which we
created a realistic level covering part of the faculties
premisses, as well as a simple assignment (of a non-violent
nature) that the high school students had to complete before
developing their own (variation on a) game level. Our
experiences indicate that the moderately complex task of
developing a game level using the Half-Life 2 SDK is
feasible, provided that the instructions and assignments are
sufficiently well-focused.

INTRODUCTION

In june 2005 we started with the development of a game,
nicknamed VU-Life 2, using the Half-Life 2 SDK. We
acquired a Cybercafe license for Half-Life 2, with 15 seats,
because we would like to gain experience with using a state-
of-the-art game engine, and we were impressed by the
graphic capabilities of the Half-Life 2 Source game engine.

After some first explorations, we set ourselves the goal:

to develop a game that could be used for promoting
our institute, and

to prepare a masterclass game development for
high-school students.

Our first ideas concerning a game included a game in which
the subject chases a target, a game where the subject has to
escape, and an adventure game. In the end we decided for a
less ambitious target, namely to develop a game which gives
the subject information about our institute, by exploring a
realistic game environment, representing part of our faculty.
As an incentive, a simple puzzle was included which gives
the subject information on how to obtain a 'hidden treasure',
to be found in a specific location in the game environment.
See the next section for more information on this.

With only about eight months time, we decided to do a
feasibility study first, to gain experience with the Half-Life 2
SDK technology, and to determine whether our requirements
for the game and the masterclass could be met.

For the VU-Life 2 game, we can summarize our
requirements as follows:

the game must provide information about the
faculty of sciences of the VU,

the game environment must be realistic and
sufficiently complex, and

the interaction must be of a non-aggressive, non-
violent, nature.

The last requirement has to do with the fact that the VU is by
its origin a Christian university, so that any agressive or
violent interaction could hardly be considered to be an
appropriate theme for a promotional game.

For the masterclass, we stated the following requirements:

it must be suitable for beginners, in particular high
school students,

it must explain basic texture manipulation, and

offer templates for modifying a game level, and
finally

there must be a simple (easy to understand) manual.

The format for a masterclass for high-school students at our
institute is three times two hours of instruction. The goal is
to attract (more) students for the exact sciences. However, if
the masterclass would be too complex, we would run the risk
to chase potential students away, which would be highly
counter-productive.

In this paper we will report our experiences in developing
the VU-Life 2 game and the associated masterclass. The
online information for the masterclass, including all
documentation can be found at:
www.cs.vu.nl/~eliens/masterclass.

The structure of this paper is as follows. We will first give
an impression of the VU-Life 2 game by presenting a typical

http://www.cs.vu.nl/~eliens/masterclass

usage scenario. In the sections that follow, we will discuss
the technical issues encountered in developing the VU-Life
2 game, and the assignments for the masterclass. Then, we
will moreover describe the documentation we developed for
the masterclass, and discuss the lessons we learned, in
particular our experiences in presenting the masterclass to
high-school students. Finally, we will draw our conclusions
by giving a summary of our efforts and indicating our plans
for the future.

Figure 1: Opening Screen VU Life 2

For a general overview of the issues in game development
and design, see (Juul, 2003) and (Sherrod, 2006).

VU-LIFE 2 THE GAME

To give an impression of the game and how we used the
Source game engine and the associated Half-Life 2 SDK,
let's start with a typical game scenario, illustrated with a
walkthrough.

Figure 2: Lecture Room

When starting VU-Life 2, fig. 1, the player is positioned
somewhere in the game environment, such as a lecture room,
fig. 2. In the front left corner of the lecture room, middle
right of fig. 2, there is a place marked as an information spot.
The information spot corresponds with one of the nine
squares in the top right of the screen. The player is expected
to detect this correspondence by exploring the game
environment. The nine squares together form a puzzle,
indicating, when all squares are filled, where the hidden
treasure can be found. In other words, when the player visits

all the nine information spots contained in the game
environment, the player has solved the puzzle and may
proceed to obtain the hidden treasure.

To visit all the information spots, the player has to explore
the game environment, including another lecture room, the
student administration office, fig. 3, and the student dining
room. While exploring the game environment, the player
may read information about the curriculum, meet other
students, and encounter potentially dangerous individuals.
As illustrated in figs. 2-3, the puzzle squares will gradually
become filled, and when complete, the combined puzzle
squares will indicate the location of the hidden treasure,
which is the 7th row of chairs of the other lecture room.

Figure 3: Student Office

Despite the fact that we intended to create a non-violent
game, we must admit that the hidden treasure actually
consists of obtaining the power to use weapons. From our
observations, and this was exactly what motivated us to
include this feature, the use of weapons proved to be a most
enjoyable aspect for the high school students playing the
VU-Life 2 game, in particular when allowed to play in
multi-user mode.

USING THE HALF-LIFE 2 SDK TECHNICAL
ISSUES

The VU-Life 2 team had no prior experience with the Half-
Life 2 Source SDK. Therefore we started by exploring three
aspects of the Source SDK: level design with the Hammer
editor, making game modifications, and importing (custom)
models into Half-Life 2. During the exploration of these
aspects we came across various technical issues, which we
will discuss below.

Level design

First, we made various smaller levels. Each level was
compiled and tested seperately so that it worked fine as a
standalone level. The idea was to combine them, that is to
create one large world containing the smaller levels.
However, the initial coupling caused several compiling

errors. After analyzing the errors, some important restrictons
for building (large) levels became clear.

In the second part of the level compilation process called
VVIS, a visibility tree of the level is made. This tree is used
to tell the renderer what to draw from a given (player)
viewpoint in the level. The amount of used brushes (the
default shapes for creating a level) determine the size of the
visibility tree. The bigger the tree, the longer VVIS will take
to build the visibility tree at compile time and the more work
the renderer has to determine what to draw at runtime.
Therefore, the standard brushes should only be used for
basic level structure. All other brushes that do not contribute
to defining the basic level structure should be tied to so-
called func_detail entities. This makes VVIS ignore them so
that they do not contribute to the visibility tree, thus saving
compiling and rendering time.
In addition, there is a (hardcoded) maximum to the number
of vertices/faces you can use for a level. Each brush-based
entity contributes to the number of vertices used. It is
possible, however, to reduce the number of vertices used by
converting brush-based objects to entities. This is done
outside of the Hammer level editor with the use of 3D
modelling software and the appropriate conversion tools.

With the above mentioned restrictions in mind we were able
to create a relatively large level that more or less realistically
represents the faculty of exact sciences of the VU campus.
The key locations are, as partially illustrated in figs. 2-3, the
restaurant, lecture room S111, fig. 2, lecture room KC159,
the student office, fig 3, and the multimedia room S353 (not
shown).

To give an impression of the overall size of the VU.vmf
game level, as map information we obtained 6464 solids,
41725 faces, 849 point entities, 1363 solid entities, and 129
unique textures, requiring in total a texture memory of
67918851 bytes (66.33 MB).

Game modifications

Since a multi-user environment was required,. we chose to
modify the Half-Life 2 Deathmatch source code. The biggest
challenge for modifying the code was finding out how to
implement the features for VU-Life 2. To this end, relevant
code fragments were carefully studied in order to find out
how the code is structured and works. Furthermore, by
experimenting, it was possible to get the features working.
Below is a list of features for the VU-Life 2 Mod.

Player properties -- Players start out immortal,
meaning that they cannot "die" while exploring the
world. Furthermore, continuous sprinting is
enabled, which allows the player to walk around
faster.

Puzzle HUD -- When the player starts out, the
puzzle HUD is the only HUD element displayed.

Puzzle setter -- Allows puzzle parts to be displayed
on the puzzle HUD.

Weapon enabler -- Allows weapons to be
enabled/disabled for the player. Enabling the
weapons also enables damage, and switches from
the puzzle HUD to the default Half-Life 2 HUD,
which displays weapon and damage information
along with a crosshair.

Importing models

Getting a model into the Half-Life 2 environment requires
two steps:

The model must be exported to the custom Valve
format smd

The model must be compiled from smd to mdl
format

The first step required finding the correct plugin that allowed
a conversion to the smd format. The second step required
using Valve tool studiomdl and defining a qc file, which is
used to specify properties for the compiled model. The
default Valve tool studiomdl.exe proved to be difficult to
work with, because it requires a lot of parameters have to be
set. By using the StudioMDL 2.0 GUI, compiling the smd
file was very easy. It sets the appropriate parameters,
allowing the user to focus on the compiling of the model.

THE MASTERCLASS INSTRUCTION AND
ASSIGNMENTS

The masterclass consisted of three sessions, two hours each.
In the first session, the (high school) students were given an
overview and general instructions on how to accomplish the
assignments, and were then set to play the VU-Life 2 game.

Figure 4: Masterclass Room

The assignments, as already indicated in the introduction,
were:

1. to modify an existing game level by applying
different textures, see fig. 4,

2. to create objects within an existing game level, and

3. (for advanced students only) to create a new level.

More complex assignments, such as creading a Mod, were
considered to be outside of the scope of this masterclass.

The overview and instructions given in the first session
included:

an overview of the history of games,

a general introduction on modelling characters and
objects,

the use of the Hammer editor, and finally,

an explanation of the assignments.

The history of games encompassed historic landmarks such
as Pong, Tetris and The Sims, as well as a brief discussion of
current games like Worlds of Warcraft, and Half-Life 2.

In the introduction on modelling an overview was given of
the major tools, like Maya and 3DSMax, as well as a brief
explanation of notions such as vectors, polygons, textures,
lights, and skeleton-based animation.
Both the explanation of the use of the Hammer editor and
the assigments were explicitly meant as a preparation for
session two, in which the students started working on their
assignments.

 Figure 5: Texture Conversion Tool

In addition to the oral overview and instructions, the
students were given a manual, that was made available in
paper as well as online, to prepare themselves for the
assignments. The homework for the second session was to
make pictures suitable for the application as textures in the
masterclass room, which is depicted in figs. 4 and 7.

To allow the students to easily apply their textures, a texture
conversion tool, fig. 5, was offered, that converts and image
file into a texture for a particular location in the game level
based on keywords, e.g. mc_floor for the texture on the floor
of the multimedia room. Alternatively the students could use
the VTF-Edit tool, fig. 6, and apply the texture using the
Hammer editor, figs. 7 and 8.

Figure 6: VTF-Edit Tool

The introduction on how to use the Hammer editor covered
the basic tools, including the

block tool -- for creating simple objects,

selection tool -- to select objects for texturing,

entity tool -- to select dynamic or interactive
objects, and the

texture tool -- to apply textures to an object;

as well as how to compile a level into a map ready for play,
including an explanation of the BSP (world), VIS
(visibility), and RAD (radiosity) components.

Figure 7: Masterclass Room in Hammer Editor

The students were explicitly told that the assignments did
not involve any programming, creating game AI, or
modelling. (To learn these aspects of game development,
they were simply adviced to sign up for our curriculum.)
Instead, we told them, use your phantasy and be creative!

Figure 8: Changing The Camera

LESSONS LEARNED

In the second session, the high school students started
working with great fervour.. Somewhat surprisingly, all
students worked directly from the (paper) manual, rather
than consulting the online documentation, or the help
function with the tool.

In retrospect, what appeared to be the main difficulty in
developing the masterclass was to create challenging
assignments for every skill level. In our case, the basic skill
level (modifying textures of a template level) allowed the
high school students to start immediately. By having
optional advanced assignments like creating your own
objects, you can keep all students interested, since there are
assignments to match the various skill levels.

Competition

To stimulate the participants in their creativity, we awarded
the best result, according to our judgement, with a VU-Life
2 T-shirt and a CD with Half-Life 2. The results varied from
a music chamber, a space environment, a Matrix inspired
room, and a messy study room. We awarded the Matrix
room, fig. 9, with the first prize, since it looked, although not
very original, the most coherent.

CONCLUSIONS

In this paper, we reported our experiences in developing a
moderately complex game environment and associated
masterclass for highschool students, illustrating the effort
needed to develop such an application in an educational
setting, indicating technical constraints as well as the
documentation requirements that must be met. Somewhat
surprisingly, our target audience preferred a step-by-step
approach, using the paper manual, over the use of the online
material and help on a by-need basis. Finding a suitable
range of assignments, sufficiently variable in difficulty,
however, will remain a challenge for future efforts.

ACKNOWLEDGEMENTS

We gratefully acknowledge the contribution of the following
people to the development of the VU-Life 2 game and the
masterclass game development: Anthony Agustin
(developer), Kin Hung Cheng (developer), Niels Rietkerk
(documentation writer), Steve Stomp (character modeller),
and Mikhail Zouskov (technical support).

REFERENCES

Juul J. 2005. Half-real -- Video Games between Real Rules and
Fictional Worlds . MIT Press.

Sherrod A. 2006. Ultimate Game Programming with DirectX .
Charles River Media.

Figure 9: First Prize Design

AUTHOR BIOGRAPHY

ANTON ELIENS studied art, psychology, philosophy, and
computer science. He is lecturer at the Vrije Universiteit
Amsterdam, where he teaches multimedia courses. He is also
coordinator of the Master Multimedia for Computer Science.
He has written books on distributed logic programming and
object oriented software engineering.

WINOE BHIKHARIE is master student Computer
Science/Multimedia at the Vrije Universiteit. His master
thesis is about the development of games using the Source
Half-Life 2 SDK. Winoe Bhikharie has been involved in
many of the promotional activities for the Vrije Universiteit,
and has taken up the role of manager in the VU-Life 2
project.

This document was created with Win2PDF available at http://www.daneprairie.com.
The unregistered version of Win2PDF is for evaluation or non-commercial use only.

http://www.daneprairie.com

