Getting Started
with Ch IDE and Ch Command Shell

Ch Version 6.1

X func.c - ChIDE = e

File Edit Search ‘iew Tools Debug Options Language Buffers Help

D@ &S| 2l X |Qqkch

| Fotat $Continue @ Abort S=Step [EMext e=Up S=Down MBreak &Clear || 9zParce » Bun @ 5Stop |
1func.c |

1 #include <stdio.h>
er
3 int i = 100;
4 int g = 200;
5 -void funec(int n) {
& ing i= 1;
7 double a[5] = {1,2,3,4,5}:
8
9o [
0)
i
12 -int main() {
13 int i = 10;
14
15 fune (i) ;
16 printf ("Done!\n") ;
i return 0:
B]
«| | Ed
Locals |'\.’_ariab|es;| stack | watch | Breakpoints |
Mame: Value '
i 1
a 1.0000 2.0000 30000 4,0000 5,0000
r 10
< | i
debug> a
a 1.0000 Z.0000 2.0000 4.0000 S.0000
debug> 1
i 1
debug> Z*g
2%q 400
debug:
4 | e

A

208 chars in 18 lines, Sel: O chars,

Copyright(©)2008 by Softintegration, Inc., All rights reserved

How to Contact Softintegration

Mail Softintegration, Inc.
216 F Street, #68
Davis, CA 95616
Phone + 1530297 7398
Fax + 1530 297 7392
Web http://www.softintegration.com
Email info@softintegration.com

Copyright(©2001-2008 by Softintegration, Inc. All rights reserved.
Revision 6.1.0, September 2008

Permission is granted for registered users to make one cofiydir own personal use. Further reproduction,
or any copying of machine-readable files (including this)doeany server computer, is strictly prohibited.

Softintegration, Inc. is the holder of the copyright to thie lBhguage environment described in this docu-

ment, including without limitation such aspects of the egsias its code, structure, sequence, organization,
programming language, header files, function and commaag] ibject modules, static and dynamic loaded

libraries of object modules, compilation of command anchlify names, interface with other languages and

object modules of static and dynamic libraries. Use of thetesy unless pursuant to the terms of a license
granted by Softintegration or as otherwise authorized Wwjisaan infringement of the copyright.

Softintegration, Inc. makes no representations, expresseor implied, with respect to this documenta-
tion, or the software it describes, including without limitations, any implied warranty merchantability
or fitness for a particular purpose, all of which are expressy disclaimed. Users should be aware that
included in the terms and conditions under which Softintegation is willing to license the Ch lan-
guage environment as a provision that Softintegration, andheir distribution licensees, distributors
and dealers shall in no event be liable for any indirect, inalental or consequential damages in con-
nection with, or arising out of, the furnishing, performance, or use of the Ch language environment,
and that liability for direct damages shall be limited to the amount of purchase price paid for the Ch
language environment.

In addition to the foregoing, users should recognize that dlcomplex software systems and their doc-
umentation contain errors and omissions. Softintegratiornshall not be responsible under any circum-
stances for providing information on or corrections to errors and omissions discovered at any time in
this documentation or the software it describes, even if Sthtegration has been advised of the errors
or omissions. The Ch language environment is not designed ticensed for use in the on-line control
of aircraft, air traffic, or navigation or aircraft communic ations; or for use in the design, construction,
operation or maintenance of any nuclear facility.

Ch, Softintegration, and One Language for All are eitheisteged trademarks or trademarks of Softin-
tegration, Inc. in the United States and/or other countrMgrosoft, MS-DOS, Windows, Windows 95,
Windows 98, Windows Me, Windows NT, Windows 2000, and WindofP are trademarks of Microsoft
Corporation. Solaris and Sun are trademarks of Sun Mictesys Inc. Unix is a trademark of the Open
Group. HP-UX is either a registered trademark or a trademmfiHewlett-Packard Co. Linux is a trademark
of Linus Torvalds. Mac OS X and Darwin are trademarks of Agptenputers, Inc. QNX is a trademark of
QNX Software Systems. All other trademarks belong to thespective holders.

Table of Contents

Introduction

Getting Started with Ch IDE

Debugging C/Ch/C++ Programs

Using Debug Commands Inside the Debug Command Window

Getting Started with Ch Command Shell

5.1
5.2
5.3
5.4
5.5
5.6

Portable Commands for Handling Files.
Interactive Execution of Programs e e
Setup Paths and Finding CommandsinCh
Interactive Execution of Expressions and Statements.
Interactive Execution of Functions
Interactive Execution of C++ Programming Features

Interactive Execution of Binary Commands in the Output Pare

Compiling and Linking C/C++ Programs

Commonly Used Keyboard Commands in ChIDE

12

16
17
19
19
21
23
25

25

26

26

2 GETTING STARTED WITH CH IDE

1 Introduction

Ch is an embeddable C/C++ interpreter. It is a superset oftl alasses in C++ and other high-level ex-
tensions. Possible uses for Ch include but are not limitectdes-platform scripting, shell programming,

2D/3D plotting, numerical computing, and embedded scergptBecause Ch is interpretive, it allows C/C++
programs to be executed without compiling and linking. Itnere suitable for interactive classroom pre-
sentations in teaching and for students learning C and C+ith &dvanced numerical features, it can be
conveniently used for applications in engineering and®ae This document presents a quick introduction
on how to use this C/C++ interpreter using Ch IDE and Ch conthsduell.

2 Getting Started with Ch IDE

An Integrated Development Environment (IDE) can be useételbp C and C++ programs. It can typically
be used to edit programs with added features of automatievsyrghlighting and run the programs within
the IDE. ChIDE is an Integrated Development EnvironmentH)ib edit, debug, and run C/Ch/C++ pro-
grams in Ch interpretively without compilation. ChIDE cdsacompile and link edited C/C++ programs
using C and C++ compilers of your choice such as Microsofu&listudio .NET. ChIDE is developed using
Embedded Ch.

ChIDE is available in Windows for Ch Professional, Student Evaluation Editions.

ChIDE can be launched by running the prograhi de. In Windows, ChIDE can also be conveniently
launched by double clicking its icon shown in Figure 1 on thsldop.

Text editing in ChIDE works similarly to most Macintosh or Mdiows editors such as Notepad with the
additional feature of automatic syntax styling. The usésrfiace can be in one of 30 local languages such
as German, French, Chinese, and Korean. ChIDE can holdpheufiies in memory at one time but only
one file will be visible. By default, ChIDE allows up to 20 filesbe in memory at once.

As an example, open a new document, and type

#i ncl ude <stdi o. h>

int main() {
printf("Hello, world!\n");
return O;

}

in the text as shown in Figure 2 in the editing pane. The progrppears colored due to syntax highlighting.

For the classroom presentation, the font size of the displgrogram can be enlarged by clicking the
commanavi ew | Change Font Si ze, and then make changes.

Save the document as a file nante=l | 0. ¢ as shown in Figure 3. The programel | 0. c, located in
CHHOVE/ denos/ bi n/ hel | 0. c can also be loaded usiig | e | Open command. Her€HHOME is
the home directory for Ch. By default, the home directoryGbrin Windows isC: / Ch in the Cdrive.

Perform theRun orTool s | Run command as shown in Figure 4 to execute the prodraim o. c.
Instead of performing thBun or Tool s | Run command, pressing function k&2 will also execute the

program.
l..

Figure 1. A ChIDE icon on a desktop in Windows.

2 GETTING STARTED WITH CH IDE

EXhello.c - ChIDE _ ol x|

File Edit Seach ‘Wiew Tools Debug Options Language Buffers Help

IDFEHB|&S| % B@ X[=4 ab|ch

| stat ¥ Continue @ Abort S=Step (EMext 2:Up SzDown W Break WClear || 9zParse » Run @ Stop
1 hello.c |

1 -/* File: hello.c

Print 'Hello, world' on the screen. */
#include <stdio.h>

int main()
-1
printf ("Hello, world\n") ;
return 0;

b

< | ||

[i=9 co=3 INS (LF)

L= VR B S PN AN

AN

Figure 2. The program edited inside the editing pane in ChIDE

Blhello.c - ChIDE _ ol x|

Fila Edit Search View Tools Debug Options Language Buffers Help

Mlewy Chrl+n

Open... Cirl+0 EUp szDown WBreak &Clear || 9=Parse » Run @ Stop |
Dpen Selected Filename Chrl+shift+ 0

Revert Chrl+R

Close Chrl+W

Save Che+5

Save a Capy... Ctrl+5Shift+P

Ercoding 4
»
Export LI
Page Setup. ..
. Prirt.. Corl+p 2

Figure 3. Save the edited program in ChIDE.

BElhello.c - ChIDE _ ol x|

File Edit Seach Wiew Tools Debug Cptions Langusge Buffers Help

DEEHR[&E] % ER X = |Q q|ch

| ®stat ¥ Continue @ Abort S2Step [EMext 2=lp s=Down W Break MClear || $=Parse » Run 48 Stop
1hello.c |

1 -/* File: hello.c

Print 'Hello, world' on the screen. */
#include <stdio.h>

int main{()
-1
printf ("Hello, world\n");
return 0;

b
l |

=ch —u L/hellooc
Hello, world
*Exit code: 0O

== B R R P S

L Dll=

«| | »
li=% co=3 INS (LF)

N

Figure 4. Run the program inside the editing pane in ChIDEi&noutput.

2 GETTING STARTED WITH CH IDE

There are four panes in ChIDE: the editing pane, debuggimg,pdebug command pane, and output
pane. The debugging pane is located either to the below daédhing pane or on the right. Initially it is
of zero size, but it can be made larger by dragging the diviééween it and the editing pane. The debug
command pane is located either to the below of the debuggang pr on the right. Similarly, the output
pane is located either to the below of the debugging pane timeright. The output pane is on the left of
the debug command pane. Initially the output pane is of zes but it can also be made larger by dragging
the divider between it and the debugging pane. By defawdtptiiput from the program is directed into the
output pane.

TheOptions | Vertical Split command canbe usedto move the debugging pane to the right
of the editing pane, followed by the output pane and debughtand pane.

The same program hello.c in CHHOME/demos/bin/hello.c, nel@gHHOME is the home directory for
Ch such as C:/ Ch in Windows fo€./ Ch/ denos/bi n/ hello.c, can also be loaded using
File | Opencommand.

When the progranmel | 0. ¢ is executed, the output window will be made visible if it ist miready
visible and will display

ch -u hello.c
Hell o, world
Exit code: O

as shown in Figure 4. The first blue line
ch -u hello.c

from ChIDE shows that it uses Ch to execute the proghehl o. c. The black line is the output from
running the Ch program. The last blue line is from ChIDE smgaihat the program has finished. This
line displays the exit code for the program. An exit code oh@icates that the program is terminated
successfully by the statement

return O;
or
exit (0);

in the program. If a failure had occurred during the executibthe program or the program is terminated
with a non-zero value for a return or exit statement such as

return -10;
or
exit(-2);

the exit code would be -1.
ChIDE understands the error messages produced by Ch. Thiseadd a mistake to the program by
changing the line

printf("Hello, world\n");
to

printf("Hello, world\n";

2 GETTING STARTED WITH CH IDE

=
File Edit Seach ‘Wiew Tools Debug Options Language Buffers Help
D@ HG| &S| $EBER X =~ |Qacth
| ®stat ¥ Continue @ Abort S=Step [EMext 2zlp s=Down W Break MClear || $=Parse » Run & Stop
1 hello.c |

1 -/* File: helle.c

2 Print 'Hello, world' on the screen. */
3 #include <stdio.h>
4
5 int main()
6 -
T printf {"Hello, world\n";
g return 0;
9 }
ol | i

=zh -u JShellooc

ERRCR: missing ™)'

ERRCR: syntax error before or at line 7 in file C:%Chhdemocs‘bin\hello.c
== printf ("Hello, worldin";
BUG: printf("Hello, worldin";<== ?7%

ERRJRE: cannot execute command 'C:iwChhdemosibinthello.c?

>Exit code: -1

4 I]
Z

=7 co=28 INS (LF)

Figure 5. The error line in output from executing programdel

Perform theRun or Tool s | Run command for the modified program. The results should lookl@m
to those below

ERROR nissing ')’

ERROR: syntax error before or at line 7 in file C\ch\denos\bin\hello.c
==>: printf("Hello, world\n";
BUG printf("Hello, world\n"; <== ???

ERROR: cannot execute comand ' C:\ch\denps\bin\hello.c’

as shown in Figure 5. Because the program fails to execigeextit code -1 is displayed at the end of
the output pane as

Exit code: -1

If you double click the red colored error message in the dytane shown in Figure 5 with the left button
of your mouse, the line with incorrect syntax and the errossage in the output pane will be highlighted
with a yellow background as shown in Figure 6. The caret iseddw this line and the pane is automatically
scrolled if needed to show the line. While it is easy to seere/tiee problem is in this simple case, with a
large file, theTool s | Next Message command can be used to view each of the reported errors. Upon
performingTool s | Next Message, the first error message in the output pane and the appreinat
in the editing pane are highlighted with a yellow backgraund

The output window can be opened and closed by the comrvaedv | Out put W ndow. The
contents of the console window can be cleared by the comiaeev | Cl ear Qut put W ndowas
shown in Figure 7.

If command execution has failed and is taking too long to detep then the
StoporTools | Stop Executi ngcommand, or function kelf4, can be used to stop the program.

You may use commanBar se or Tool s | Par se to just check the syntax error of the program
without executing it.

ChIDE can also execute programs that require the user’s thpaugh such C functions acanf () .
It can also handle command parameters. More informationtainoning C and C++ programs in Ch using
ChIDE can be obtained on-line by clicking ChIDE Help from thelp menu as shown in Figure 8.

4

2 GETTING STARTED WITH CH IDE

Zlhello.c - ChIDE _ ol x|

File Edit Seach Wiew Tools Debug Cptions Language Buffers Help

IDFHG|&| % B X | =4 ab|ch

| Wstart ¥ Cortirue @ Abort S=Step (ENext 2=lp S=Down M Bresk QClear || $=Parse » Run @ Stop
1hello.c |

1 -/* File: hello.c

Print 'Hello, world' on the screen. */
#include <stdio.h>

int main()
-1
printf("Helle, world\n";
return 0;

| | 2l

=zh -u J/hello.c

ERRCR: missing ")

ERROR: syntax error before or at line 7 in file C:%\Chidemosibinlhello.c
== printf("Hello, worldyn";
BUG: printf ("Hello, worldin";<== 777

ERRCR: cannot execute command TC:4Chhdemosibinthello.c'

*Exit code: -1

< I o
/4

li=7 co=1 INS (LF)

== I B S B SN P I v

Figure 6. Finding the error line in output from executinggnam hello.c.

Blhello.c - ChIDE =1k

File Edit Search | View Tools Debug Options Lamguage Buffers Help

D@ G| &] 5 Chage FontSize

| ®start $ Cortin bar || 92Parse ¥ Run &8 Stop

Vertical Split
1 hello.c |

1 -/* File: Toggle current fold
2 Prini Toggle all folds
3 #include
4 Full Screen Fi2
5 int mair ¥ Too|Bar
6 -1 v Debug Bar
T PTir v Teb Bar
g ; rett y Stahs Bar
Whitespace Ctr|+shift+8
End of Line Cirl+Shift+9
v Indentation Guides
v Line Mumbers
¥ [Margin
v Fold Margin
Debig
v Cuput Window F&
Debug Console Window
‘ | Debug Corsole Window Always On Top _,I
>ch —u ./hello. Output Wind alld
ERRCR: missing Clear Debug Command Window F10
ERROR: syntax e Clear Debug Console Window Fi1 \bin\hello.c
== prin .
BUG: bein Parameters: Shift+F8

ERRCR: cannot execute command TC:%\Chhdemosibinlhello.c?'

*Exit code: -1 e
« | _>|J

li=7 co=28 INS'_(LF)_

NE

Figure 7. Clearing the contents in the output window.

3 DEBUGGING C/CH/C++ PROGRAMS

10| x|
File Edit Search Wiew Tools Debug Options Language Buffers lﬁb
Do EHE &8 ERdX]o =~ |Q at|th Help Fi
| Wstart ¥ Continue @ Abort 5=Step ERext e=Up =Down Bresk [ESREgEs
1 Untitled | About CHIDE

1

< | l
li=1 co=1 NG (LF) y
Figure 8. Get on-line help on how to use ChIDE.
EXhello.c - ChIDE N =]
File Edit Search Wiew Tools | Debug Options Language Buffers Help
DR & % B/’ X| StartDebug the progam from the begirning) Fs |
| ®stat ¥ Continue @ fbort s=: Continue (Debuig)the progranm) from the. cumment location)
1 hello.c | Abort (Abort the runmning prograrnm)
1 -/* File: hello.c Step (Single step) F6
2 Print 'Hello, wc Pext (Step over the next staterment) F7
3 #include <stdio.h> |5 (WMove up the call stack one function)
;1 int i By (Move dovwin e call stack ame flnetiom)
oo ?n main() Break (Set a breakpoint at the selected line)
7 printf("Hello, Clear (Clear a breakpoirt at the selected line)
g ! retuzn 0; Digplay special varizblas in debug window for Locals and Variables
< I 2l
137 chars in 9 lines. Sel: O chars. 4

Figure 9. Debug menus.

3 Debugging C/Ch/C++ Programs

The Ch IDE has all capabilities available in a typical delarggr binary C programs. The debug interface
commands, such & art andC ear, are shown in Figure 9.

They are also available directly on the debug bar as showtguré& 10. The applicable commands in
the debug bar at any point of debugging will be clickable. Mbtckable commands are dimmed.

The user can execute the program in the editing pane in thegdeinde by theSt art command
or function key F5. The program will stop when a breakpoinhits The user can execute the program
line by line either by comman8t ep or Next . The commandst ep or function key F6 will step into a
function whereas the commangxt or function key F7 will step over the function to the next liiguring
debugging, the commar@nt i nue can be invoked to continue the execution of the programtfiiits a
breakpoint or the program ends.

Before program execution or during the debugging of an drelcprogram, new breakpoints can be
added to stop the program execution when they are hit. A pmakfor a line can be added by clicking
the left margin of the line as shown in Figure 10. To clear tremakpoint, click the highlighted red mark
on the left margin of the line. Breakpoints in the debugger lsa examined by clicking Breakpoints above
the debug window as shown in Figure 10. The debug window wsldy the breakpoint number and its
location for each breakpoint. A breakpoint for the curréme tan also be added by clicking the menu Break.
It can also be deleted by clicking the menu Clear. A breakpcamnot be set in a declaration statement;
however, a breakpoint can be set for a declaration statewidninitialization such as

int i = 10;

3 DEBUGGING C/CH/C++ PROGRAMS

=olx|
File Edit Seach Wiew Tools Debug Cptions Language Buffers Help
DS RS % BB X = Qak ch
| ®stat §Continue @ Abort S2Step [EMext 2=lp s=Down W Break MClear || $=Parse » Run &8 Stop
1 hello.c |

1 -/* File: helle.c

z Print 'Helle, world' on the screen. */
3 #include <stdio.h>
4
5 int main()
6 -1
T8 printf ("Hello, world\n");
a return 0;
9 }
«| | o

Locals | Variables | Stack | watch Breakpoints |
Breakpoint MNurmber | Breakpoint Location |

1 ChyIhidemosibinyhello.c: 7
debug>
4 | L2 | KN (R 2l
138 chars in 9 lines. Sel: O chars. 4

Figure 10. Set a breakpoint.
The program shall not be edited when it is being executed ahdgyjed. Otherwise, a warning message

War ni ng: Any changes nade to the file during debugging will not
be reflected in the current debuggi ng session

will be displayed. However, when a program is finished itscexien, it can be edited. When a program is
edited by deleting or adding new code, the breakpoints séihéoprogram will be updated automatically.

Using debug commands inside the debug command window, &pwied can also be set for functions
and controlling variables, which will be described later.

If the program execution has failed and is taking too longamplete, then the commarbor t can
be used to stop the program.

When a program is executed in the debug mode, the standaunt, ioptput, and error streams are
redirected in a separate Debug Console Window shown in €igdr By default, the console window
always stays on the top of other windows. This default beitagan be turned off or on by the com-
mandVi ew | Debug Consol e W ndow Al ways on Top. The console window can be opened
and closed by the command ew | Debug Consol e W ndow. The contents of the console win-
dow can be cleared by the commabebug | C ear Debug Consol e W ndow as shown in Fig-
ure 7. The colors for background and text as well as the wisdgiae and font size of the console window
can be changed by right clicking the ChIDE icon on the upp#rderner of the window and selecting
Properti es menu to make changes. Note that for Windows Vista, you neadrntadChIDE with the
administrative privilege to make such a change.

When a program is executed line by line by commasdep or Next , names and their corresponding
values of variables in the current stack can be examinedeiréibug window by clicking menuocal s
above the debug window. When control of the program exegusidnside a function, commaridcal s
displays the values of local variables and arguments ofuthetion. When control of the program execution
is not in a function of a script, commanhacal s displays the values of global variables of the program. As
shown in Figure 12, when prograhunc. c, available in the directory CHHOME/demaos/bin, is executed
at line 9, highlighted by the color green, local integer &akesi andn are 1 and 10, whereas the areapf
double type contains 1, 2, 3, 4, and 5.

3 DEBUGGING C/CH/C++ PROGRAMS

SiDebug Console Window _ ol X
Hello, world il

-

«| | M 4

Figure 11. Debug Console Window for Input/Output in Debuggi

- [0l x
File Ecit Search View Tools Debug Options Langusge Buffers Help
DG S8 B X | e oG ab th
| Fotat $Cortinue @ Abort S=Step [EMext 2sUp S=Down WBreak QClear || 92Parse » Pun B 5ton
1 func.c |

1 #include <stdio.h>

& int i = 100;

4 int g = 200;

5 -void fune(int n) {

& int i.= 1;

G double a[5] = {1,2,3,4,5};
8

9 @ | —
.

—int main() {
F int i = 10;

func (i) ;
printf ("Done!\n") ;
return 0;

—

1|: | 2

Locals |\-i_ariab\es_;| Stack | Watch | Breakpoints|

Mame: Walue

I 1

a 1.0000 2.0000 3.0000 4.0000 5.0000

n 10

: |

debug:>

| Mige I
208 chars In 18 lines. Sel: O chars. 4

Figure 12. Display names and values of local variables ircthieently called function.

3 DEBUGGING C/CH/C++ PROGRAMS

Blfunc.c - ChIDE N _|ol x|

File Edit Search Wiew Tools Debug Options Language Bufers Helm

D2 S| Ba X o = |G atth

| it ®Continue | @ Abort S=Step [ENext :Up S:Down WBresk &Clear || 92Pase » Uy @ Sin
1 func.c |

#include <stdio.h>

int i 100;
int g 200;
-void funec(int n) {
int i= 1;
double a[5] = {1,2,3,4,5};

o U [, Y B LR 8 s Y

o@ | g=10;
10 }

12 -int main() {
ee] int i = 10;

15 (R
16 printf ("Done!\n") ;
ki return 0;

18 }

< | 2

Locals |\fariab\es | Shack | Watch | Breakpoints |
[Narme Walle
I 10

< | 2l

debug>

E I—] | il
7

|208 chars in 18 lines, Sel: O chars.

Figure 13. Display names and values of local variables irc#ting function.

The user can change the function stack during debuggingnlgoUp to its calling function or move
Down to the called function so that the variables within its scope be displayed or accessed in the debug
window. For example, when clicking commabg in Figure 12, the control flow of the program moves to
its calling function main() at line 15 as highlighted withetbolor green also in Figure 13. The menu Down
as shown in Figure 12 is not clickable. But, the menu Downickable in Figure 13 when the current stack
is moved up. The debug window at this point displays the namdevalue of the variable, the only regular
variable, in the calling function main().

CommandSt ack above the debug command displays function, member funotioprogram name
and corresponding stack level in each stack. The curremimgrfunction has stack level 0, whereas level
n+1 is the function that has called a function with stacklieve

For example, as shown in Figure 14, function func() is cabigfunction main(), which in turn is invoked
by program func.c located in the directory
C:\ Ch\ denos\ bi n\ func. c.

Names and their corresponding values of variables in atlkst@an be displayed by the command
Vari abl es above the debug window as shown in Figure 15. In this casepithgram is stopped at
line 9. Names and values of local variables inside functiomsc() andmai n() as well as global vari-
ables are displayed in the debug window. As one can see ebiéfier9 is executed, the value of the global
variableg is 200.

When the commanbi spl ay special variables in debug wi ndow for Locals and
Var i abl es in the debug menu shown in Figure 9 is clicked, names and salugpecial variables such as
__func__ will be displayed in the debug window for commaridscal s andVari abl es.

3 DEBUGGING C/CH/C++ PROGRAMS

Blfunc.c - ChIDE B] 25

File Ecit Search View Tools Debug Options Langusge Buffers Help

D@58 m@X|w > [Qa|th

| wat I{_E'omtinu_e @ Abot S=Step [EMNext e=lp ==Down WBreak & Clear ||‘?§Parse b Ein &3 Ston
1 func.c

1 f#include <stdio.h>

3 int i = 100;

4 int g = 200;

5 -void func(int n) {

i int i = 1;

o double a[5] = {1,2,3,4,5}:
8
9

}
—int main() {
| ant &= 107
func (i) ;

printf("Done!\n") ;
return 0;

«| |]
Locals | Variables Stack |Watch | Breakpoints |
Stack Level | Stack MName |

0] funci)
1 main()
2 CAChYdermosibimfunc.c
debug>
0 0 . |

208 chers in 18 lines, Sel: O chars,

N

Figure 14. Display different stacks for the executing point

10

3 DEBUGGING C/CH/C++ PROGRAMS

=lolx|

File Edit Search WView Tools Debug Options Language Buffers Help
DG S|t 2@ X|= = |4 at th
| Fotat ¥ Cortinue @Abort S=Step [EMext e=Up S=Down WBresk & Clear || 92Parse » Run @ Sop

1 func.c
o #include <stdioc.h>
2
3 int i = 100;
4 int g = 200;
5 -void func(int n) {
i int i = 1;
7 double a[5] = {1,2,3,4,5};
8
°® | g=10;
)
—int main() {
int 1 = 10;
Lh
15 func (i) ;
16 printf ("Done!\n") ;
37 return 0;
18}
dl | i
Locals Variables | stack | Watch | Breskpoints |
Ilarme |‘-\Fa|ue
Stack level 0: func()
i 1
a 1.0000 2.0000 3.0000 4,0000 35,0000
n 10
Stack level 1: main()
i 10
Stack level 2: C:A\Chidem...
i 100
d 200
furc() OX00ADE418
main() OR00ARGDES
‘| | I
208 chars in 18 lines, Sel; D chars. 4

Figure 15. Display names and values of all variables in atikst .

11

4 USING DEBUG COMMANDS INSIDE THE DEBUG COMMAND WINDOW

Bifunc.c - ChIDE N

Debug Options

File Edit Search Wiew Tools

Language Buffers Help

=lo]X]

[D@d G & % | X|w =G]

| ¥ttt ®Continue. @ Abort S=Step [EMext e=Up S=Down WBresk &Clear || 9zParse » Fun & 5top |

1func.c |
1 ginclude <stdio.h> :EJ
2
3 int i = 100;
4 int g = 200;
5 -—void func(int n) {

.

debug> help

start [args]):
run [args]:
step:

next:

cont:

up:

down :

stack:
locals:
variables:
watch expr:
remove expr:
remove :

stopin funcname [cond]:
stopvar wvarname [cond]:
clearline filename #:
clearfunc funcname:
clearvar varname:
clear:

help:

assign war=expr:

call func():

print expr:

eXpr:

abort:

4] 2l

stopat filename # [cond]:

AEFEFFRRAARERAXALRXAAAAH Daplig Menl FEATEAER AR ARRRRRAR AL T LS

start the program with debugging

run the program without debugging

step into a function or next line

step over a function or next line

continue till hitting & breakpoint or ends
change stack to the calling function
change stack to the called function
display stack names in all stacks

display wariables and walues within its scope
display variables and walues in all stacks
add an expression into the watch list
remove an expression from the watch list
remove all expressions from the watch list
set a new breakpoint in a file at line #
set a new breakpoint in a function

set a new breakpoint for a controlling wariable
clear a breakpoint in a file at line #
clear a breakpoint for a function

clear a breakpoint for a wvariable

clear all breakpoints

display this debug menu

assign a value to a variable

call a function

print out the value of an expressicon

print ocut the value of an expression

abort the debugger

208 chars in 18 lines. Sel: O chars.

i
Z

Figure 16. Debug commands in the debug command window.
4 Using Debug Commands Inside the Debug Command Window

Many debug commands inside the debug command window aralaleaduring the debugging of a program.

A prompt
debug>

inside the debug command window indicates that the debuggerndy to accept debug commands. Type
the commandel p, it will display all available commands as shown in Figure Ithe menu on the left

before a colon shows a command and the description on thieepighains the action taken for the command.
All commands in the debug bar are available in this intevactiebug command window. However, some
features are available only through the debug command windo

The variables, expressions, and functions can be mangoulay commandsssi gn,

cal |, and

pri nt. The commandssi gn assigns a value to a variableal | invokes a function, angdr i nt prints

out the value of a variable or expression including funcidhis invalid to print an expression of void type
including a function with return type void. One can also jiyste an expression, the value of the expression
will be displayed. If the expression is a function with th&uraing type of void, only the function is called.

For example, commands

debug> assign i =2*10

12

4 USING DEBUG COMMANDS INSIDE THE DEBUG COMMAND WINDOW

Bifunc.c - ChIDE - ol x|
File Edit Search View Tools Debug Options language Buffers Help
D EB|&] s b@ %o Qoo
| Fotat $Continue @ Abort S=Step Ehext 2=lp S=Dowr WBreak &Clear || 9zParse » Aun @ 5top |
1func.c |
3 #include <stdio.h>
5 int i = 100;
4 int g = 200;
5 -void func(int n) {
& int i = 1;
7 double a[5] = {1,2,3,4,5};
12 —int main() {
13 int i = 10;
14
15 func (i) ;
16 printf ("Done!\n") ;
17 return 0;
18 }
l | il
Locals |V_ariab|es | Stack | watch | Breakpoints |
BE= Walue
i 1
a 1.0000 2.0000 3.0000 4.0000 5.0000
n 10
. 2
debug> a
a 1.0000 Z2.0000 3.0000 4.0000 5.0000
debug> 1
i 4
debug> Z%*g
Z*g 400
debug>
¢ | Ml]
208 chars in 13 lines, Sel; O chars. S

Figure 17. Using debug commands in the debug command window.

debug> cal |l func()
debug> print i

20

debug> 2*i

40

debug>

assign the variable with the value of 10, call functiohunc(), and print out the value of the expression
2*i when the variable is valid in its current scope. As another example, when @unogrunc. ¢ is
executed and stopped at line 9 shown in Figure 17, the valueariablesa andi as well as expression
2* g can be obtained by typing corresponding commands in thegdetammmand window.

Commandst art begins debugging a program. The optional arguments for dnen@andst ar t
andr un are processed and passed to the arguments for function)md&af example, to run program
C: \ Ch\ denos\ bi n\ commandar g. ¢ shown in Figure 18, the debug command

debug> start -o optionl -v option2 option3 option4

will assign the strings' C: \ \ Ch\ \ denos\\ bi n\\ commandarg. c", "-0", "opti onl", "-v",
"option2","option3",and" opti on4" to elementsar gv[0] ,argv[1] ,argv[2],argv][3],
argv([4] ,ar gv[5] ,andar gv[6] of the argumenar gv of the main function

13

4 USING DEBUG COMMANDS INSIDE THE DEBUG COMMAND WINDOW

EYcommandarg.c - ChIDE 1ol

File Edit Seach Wiew Tools Debug Cptions Language Buffers Help
D EHE (S| % BB X« = Qak|ch
| ®sStart ¥ Continue @ Abort S=Step [(ENext 2zUp S=Down MBresk QClear || 9=Parse » Run @ Stop
1 commandarg.c |
1 #include <stdio.h>

2
3 -int main(int argc, char *argv[]) {
4 int i;
5
6 - for(i=0; argv[i] != NULL; i++) {
T printf("argv[id] = %¥s\n", i, argv[i]);
g }
a return 0;
1
ol | i

172 chars in 10 lines. Sel: O chars.

DN

Figure 18. A program for handling command parameters.
int main(int argc, char *argv[])

of the Ch scriptommandar g. c, respectively. An optional argument with space should lmosed within
two double quotation marks as shown below.

debug> start optl "opt2 with space" opt3

The program will stop when a breakpoint is hit. The commanad will execute the program without
debugging by ignoring breakpoints. Similar to commandderdebug bar, the user can execute the program
line by line either by commansgt ep or next . The commandt ep will step into a function whereas or
the commanahext will step over the function to the next line. During the deping, the commandont
can be invoked to continue the execution of the programttfilits a breakpoint or the program ends. The
user can change the function stack during debugging. It campgo its calling function or move down to
the called function by the commandg anddown, respectively, so that the variables within its scope can
be accessed in the debug command window. The function orgmogames in all stacks are displayed by
the commandt ack. Names and their corresponding values of variables in thewrustack are displayed
by the command ocal s. Commandvar i abl es displays names and values for all variables within its
scope in each stack.

The commandavat ch adds an expression, including a single variable, into afigtatched expressions.
Watched expressions can be added before or during exeaitioprogram. An expression can be removed
from the list of the watched expressions by tleove expr command. The commandenove removes
all expressions in the watched list. For example, commamtisei debug command window

debug> watch 2*g
debug> i

add expressiorz* g and variable i to a list of watched expressions as shown inrgid9. When the
program is stopped at a breakpoint or stepped into nexinséaik the values of these watched expressions
can be viewed in the debug window by clicking the comm#éat ch above the debug window as shown in
Figure 19.

Before the program execution or during the debugging of @ecued program, new breakpoints can be
added to stop the program execution. A breakpoint can be sased on three specifications: file name and
line number, function, and controlling variable. When aamint is setup in a function, the program will
stop at its first executable line of the function. When a bpeakt is setup for a variable, the program will
stop when the value of the variable changes. Each breakpamhave an optional conditional expression.

14

4 USING DEBUG COMMANDS INSIDE THE DEBUG COMMAND WINDOW

BRfunc.c - ChIDE N P] 24
File Edit Search View Tools Debug Options Language Buffers Help
D 8| % 2@ X o | Qab|th
| Fatat $Continue @ Abort S=Step [EMext 2=Up S=Down WBreak WClear || =Parse » fun @Stop |
1 func.c
1 #include <stdio.h>
2
3 int i = 100;
4 int g = 200;
5 -veoid func{int n) {
& int i = 1;
7 double a[5] = {1,2,3,4,5};
8
@ | q = !EGE
10 }
11
12 -int main() {
13 int i = 10;
14
15 func (i) ;
16 printf ("Done!\n") ;
17 return 0;
18 }
<| | L]
Locals| variables| stack Watch |Breakpoints |
Mame Walue I
i 1
2*g 400
debug> watch 2*g
debug> watch 1
debug:>
4]] JLi [N — L]
208 chars i 18 lines. Selt O chars. 7

Figure 19. Set watch expressions and variables inside thggdsommand window to display their values
in the debug window.

When a breakpoint location is reached, the conditional esgion is evaluated if it exists. The breakpoint
is hit only if the expression is either true or has changedctvinieeds to be specified when the breakpoint
was added. By default, the breakpoint is hit only if the espien is true. Commansgt opat sets a
new breakpoint specified by a file name and line number in theexuent arguments. The program breaks
execution when it reaches this location. Commanapi n sets a new breakpoint for a function. The
program breaks execution when it reaches the first exeeutslg of the function. Commanslt opvar

sets a new breakpoint for a controlling variable. The vagigbevaluated while the program is running. The
program breaks execution when the value of the variableggganNhen each of these command is invoked,
a breakpoint is appended to the list of breakpoints. Theoopti conditional expression and triggering
method for each breakpoint are passed as the last two argsimiethese commands. For example, the
syntaxes for setting a breakpoint in a file with a completé paid line number are as follows.

debug> stopat filenanme #
debug> stopat fil enane # condexpr
debug> stopat fil ename # condexpr condtrue

When a breakpoint location is reached, the optional exfmesondexpr is evaluated. If the argument
condt r ue is true or missing, the breakpoint will be hit if the value the expression is true; otherwise,
the breakpoint will be hit if the value for the expression baanged. For example, the command

debug> stopat C:./Ch/denos/bin/func.c 6

15

5 GETTING STARTED WITH CH COMMAND SHELL

Ch

Figure 20. A Chicon on a desktop in Windows.
sets a breakpoint in filtunc. c located at the directory C:/Ch/demos/bin at line 6. The caman

debug> stopat C./Ch/denos/bin/func.c 6 i+ 1

sets a breakpoint in fileunc. c at line 6. When the breakpoint location in file func.c at lines 6eached,
the expressiom +j is evaluated and the breakpoint will be hit if the value foe #xpression + is true.
The above command is the same as

debug> stopat C:./Ch/denps/bin/func.c 6 i+j
The command
debug> stopat C./Ch/denos/bin/func.c 6 i+ O

sets a breakpoint in fileunc. ¢ at line 6. When the breakpoint location in file func.ch at léis reached,
the expression +j is evaluated and the breakpoint will be hit if the value foe #xpression +j has
changed. On the other hand, commanti®ar | i ne, cl ear f unc, andcl ear var with proper argu-
ments remove a breakpoint of line, function, and variabpetin the list, respectively. Commaiad ear
removes all breakpoints in the debugger.

If the program execution has failed and is taking too longamplete, then the commarabor t can
be used to stop the program.

The debug command window can be ~cleared by clicking the camdma
View | C ear Debug Conmand W ndowas shown in Figure 7.

5 Getting Started with Ch Command Shell

Ch can be used as a command shell in which commands are pdcdske other commonly used shells
such as the MS-DOS shell, Bash-shell, or C-shell, commaadde executed in a Ch shell. Unlike these
conventional shells, expressions, statements, funciiodgrograms in C and C++ can be readily executed
in a Ch shell. Therefore, the Ch command shell is an idealtisaldor teaching and learning C/C++. An
instructor can use Ch interactively in classroom presemisiwith a laptop to quickly illustrate programming
features, especially when answering students’ questlaFarners can also quickly try out different features
of C/C++ without tedious compile/link/execute/debug egcl To assist beginners in learning, Ch has been
especially developed with many helpful warning and errossages when an error occurs. instead of cryptic
and arcane messages lgegmentation faulindbus erroror crashing.

A Ch shell can be launched by running the commahd In Windows, a Ch command shell can also
be conveniently launched by clicking the red-colof&dicon, shown in Figure 20, on the desktop or on the
toolbar of the ChIDE.

Assume the user account is the administrator, after a ChisHalnched in Windows, by default, the
screen prompt of the shell window becomes

C. / Docunents and Settings/Adm ni strator>

whereC: / Docunent s and Setti ngs/ Adnmi ni strat or is the usershome directoryon the desk-
top as shown in Figure 21. The colors of the text and backgt@amwell as the window size and font

16

5 GETTING STARTED WITH CH COMMAND SHELL 5.1 Portable Commagitbr Handling Files.

Ch Professional =|ol x|

Ch il
Professional edition, version 6.1.0.13631
(C) Copyright 2001-2008 SoftIntegration, Inc.
http://www.softintegration.com
C:/Documents and Settings/Administrator> printf(“"Hello, world™)
Hello, world
C:/Documents and Settings/Administrator>

<| | AV
Figure 21. A Ch command shell.

size of the shell window can be changed by right clicking thei€®n at the upper left corner of the win-
dow, and select Properties menu to make changes. Note théfifdows Vista, you need to run ChIDE
with the administrative privilege to make such a change. dikplayed directoryC: / Docunent s and
Set ti ngs/ Admi ni strat or is also called theurrent working directory If the user account is not the
administrator, the account narA@ministratorshall be changed to the appropriate user account name. The
prompt indicates that the system is in a Ch shell and is readygdept the user’s terminal keyboard input.
The default prompt in a Ch shell can be reconfigured. If theitimpped in is syntactically correct, it will
be executed successfully. Upon completion of the executiensystem prompt will appear again. If an
error occurs during the execution of the program or exppesshe Ch shell prints out the corresponding
error messages to assist the user in debugging the program.

All statements and expressions of C can be executed intagiyain a Ch command shell. For example,
the outputHel | o, wor | d can be obtained by calling the functigmintf () interactively as shown below
and as seen in Figure 21.

C./ Docunents and Settings/Adm nistrator> printf("Hello, world")
Hell o, world

In comparison with Figure 21, the last pron@t/ Docunent s and Setti ngs/ Admi ni strator>

is omitted to save the space in the presentation of this ddote that the semicolon at the end of a statement
in a C program is optional when the corresponding statenseexecuted in command mode. There is no
semicolon in calling the functioprintf in the above execution.

5.1 Portable Commands for Handling Files.

At the system prompt-, not only C programs and statements, but also any other coasr(@uch apwd
for printing the current working directory) can be executeuthis scenario, Ch is used as a command shell
in the same manner as MS-DOS shell in Windows.

Commands can be executed in a Ch command shell or Ch prograene @re hundreds of commands
along with their respective online documentation in theesys No one knows all of them. Every computer
wizard has a small set of working tools that are used all thne tiplus a vague idea of what else is out
there. In this section, we will describe how to use the mostroonly used commands, listed in Table 1,
for handling files through examples. It should be emphasargin that these commands running in the Ch
shell are portable across different platforms such as Wisdar Linux. Using these commands, a user can

effectively manipulate files on the system to run C programs.

Assume that Ch is installed @ / Ch in Windows, the default installation directory. The cutremrk-
ing directory isC: / Docunent s and Setti ngs/ Adm ni strat or, which is also the user's home
directory. The application of portable commands for filediang can be illustrated by interactive execution
of commands in a Ch shell as shown below.

C:. / Docunments and Settings/ Administrator> nkdir c99

17

5 GETTING STARTED WITH CH COMMAND SHELL 5.1 Portable Commagitbr Handling Files.

Table 1. Portable commands for handling files.

Command Usage Description
cd cd change to the home directory
cddir change to the directongir
cp cpfilel file2 copyfilelto file2
Is Is list contents in the working directory
mkdir mkdir dir create a new directorgir
pwd pwd print (display) the name of the working directory
rm rm file removefile
chmod chmod +xfile change the mode dile to make it executable
chide chidefile.c launch Ch IDE for editing and executitiide.c

C:. / Docunents and Settings/Administrator> cd c99

C./ Docunents and Settings/Adm ni strator/c99> pwd

C./ Docunents and Settings/Adm ni strator/c99

C:. / Docunents and Settings/ Administrator/c99> cp C./Ch/denos/bin/hello.c hello.c
C./ Docunents and Settings/Admi nistrator/c99> |s

hello.c

C:. / Documents and Settings/ Admi nistrator/c99> chide hello.c

As shown inUsagein Table 1, the commanohkdir takes one argument as a directory to be created. We
first create a directory called®9 using the command

nkdir c99

Then, we change to this new directd@y/ Docunment s and Setti ngs/ Adm ni strator/c99 us-
ing command

cd c99
Next, we display the current working directory with the coamd
pwd

A C programhel | 0. ¢ shown in Figure 2 in the director@. / Ch/ denos/ bi nis copied to the working
directory with the same file name using the command

cp C./Ch/denos/bin/hello.c hello.c
Files in the current directory are listed using the command
l's

At this point, there is only one file hello.c in the directory
C./ Docunents and Settings/Admi nistrator/c99. Itis recommended that you save all your
developed C programs in this directory so that you may eéisitiall programs later on. Finally, program
hel | o. ¢ is launched by the command

chide hello.c

to be edited and executed in Ch IDE as shown in Figure 2.

18

5 GETTING STARTED WITH CH COMMAND SHELL 5.2 Interactive Exation of Programs

5.2 Interactive Execution of Programs

It is very simple and easy to run C programs interactivehhaut compilation in a Ch shell. For example,
assume thaC:. / Docunent s and Settings/ Adm ni strator/c99 is the current working direc-
tory as presented in the previous section. The prodrai o. c in this directory can be executed in Ch to
get the output oHel | o, wor | d as shown below.

C. / Docunents and Settings/Administrator/c99> hello.c

Hell o, world
C./ Docunents and Settings/Adm ni strator/c99> _status
0

The exit code from executing a program in a Ch command shképs in the system variablestatus
Because the prograimel | o. ¢ has been executed successfully, the exit code is 0 as shoile sbove
output when statusis typed in the command line.

In Unix, in order to readily use the C programe! | 0. ¢ as a command, the file has to be executable.
The commanahmod can change the mode of a file. The following command

chnod +x hello.c

will make the prograniel | 0. ¢ executable so that it can run in a Ch command shell.

5.3 Setup Paths and Finding Commands in Ch

When a command is typed into a prompt of a command shell faruddan, the command shell will search
for the command in prespecified directories. In a Ch shadl sifstem variablepath of string type contains
the directories to be searched for the command. Each diyeisteeparated by a semicolon inside the string
_path. When a Ch command shell is launched, the system variphbtl contains some default search paths.
For example, in Windows, the default search paths are

C./Ch/bin;C./Ch/sbin;C /Ch/toolkit/bin;C/Ch/toolkit/sbin;C: /WNDOW5; C./ WNDON5/ SYSTEM32;

The user can add new directories to the search paths for thenaad shell by using the string func-
tion stradd() in the startup file, which will be discussed in detail a litd#er. This function adds argu-
ments of string type and returns it as a new string. For exatpe directoryC. / Docunent s and
Settings/ Admi ni strator/c99is notin the search paths for a command. If you try to run @ogr
hello.c in this directory when the current working directory is
C:. / Docunents and Settings/ Admi ni strator, the Ch shell will not be able to find this pro-
gram, as shown below, and give two error messages.

C. / Docunents and Settings/Adm nistrator> hello.c
ERROR: variable '"hello.c’ not defined
ERROR: command ' hell o.c¢c’ not found

When Ch is launched or a Ch program is executed, by defawlil] éxecute the startup filehrc in Unix
or _chrc in Windows in the user’s home directory if the startup fileséxi In the remaining presentation, it
is assumed that Ch is used in Windows with a startup_@lec in the user's home directory. This startup
file typically sets up the search paths for commands, funstibeader files, etc. In Windows, a startup file
_chr ¢ with default setup is created in the user’s home directomnduinstallation of Ch. However, there
is no startup file in a user's home directory in Unix by defadlhe system administrator may add such a
startup file in a user’'s home directory. However, the useresacute Ch with the option -d as follows

19

5 GETTING STARTED WITH CH COMMAND SHELL5.3 Setup Paths anahfing Commands in Ch

B1_chrc - ChIDE _lol x|

File Edit Search View Tools Debug | Options Language Bufers Heln
(DG SRR X o Qe AlwaysOnTop

12 //_lpath stradd(_lpath, Open ChIDE Locale File
13 //_pathext = stradd(_path

| Wotart ¥ Cortinie @ Abot S=Step L= Open Files Here b Run 43 St
1_chrc | Wrap
1 // Note: This file is cal Wrap Output nvoked. a
2 // This file must be loca Read-Only effective
3 [/ HEREEEH AR RE RS SRR HEHEEHEE
a4 // umask(0022) : Line End Characters 4
5 //_warning = 3: // p Convert Line End Characters ious warr
e i | L Change Indentation Seffings... Crl+Shift+]
g ,f,f:pa th = stradd(_path, “n Use Monospaced Font Cirl+Fi1
10/ fhath - stradd(epath, OB ST Statip Pl drc
11 / /: Il = stoadd (: ipath, Cipen Ch Local Startup File _chire

Cipen ChIDE Global Options File
Open ChIDE Local Cptions File

15 /* for Web-Based Enterpri trator *,
16 // path = stradd(path, COpen ChIDE User Options File

17 /* for wordpad.exe */ 7

18 7/ path = stradd(path, Cipen CCh/C++ Pro;laert\/ File sy

19 /* for winword.exe, you n Open C55 Property File ‘ rsion 11
20 //_path = stradd(_path, v QpenHTMLAM. Property File el ;
20 Open SCL Property File

22 - /* .NET 2008 Open TeX Property File

23 _bath = stradd(_path, "C: gpen Others Property File 9.0/ve/b:
24 _path = stradd(_path, "C:7rrogram FIIes/TIICIUSOLC visual stuaro 9.0 /COMMC

25 _path stradd(_path, "C:/Program Files/Microsoft SDKs/Windows/V6.0a/bin

26 putenv(stradd("LIB=C:/Program Files/Microsoft Visual studio 9.0/vC/lib;"

27 "C:/Program Files/Microsoft SDKs/Windows/v6.0R/lib; ™,

28 "C:/Program Files/Microsoft Visual Studio 9.0/atlmfc/lib;", getem

29 ¥ %
4| | »
li=1 co=1 INS (CR+LF) 4

Figure 22. Open the local Ch initialization startup file folitang.
ch -d

to copy a sample startup file from the direct@tHOME /config/ to the user's home directory if there is
no startup file in the home directory yet. Note titiiHOME is not the string'CHHOME” , instead it
uses the file system path under which Ch is installed. For pkarby default, Ch is installed i@: / Ch in
Windows and usr /1 ocal / chin Unix. In Windows, the command in a Ch shell below

C./ Docunents and Settings/Adm nistrator> ch -d

will create a startup file _chrc in the user’s home directory
C./ Docunents and Setti ngs/ Adm ni strator. This local Ch initialization startup filechr c
can be opened for editing the search paths by ChIDE editdiasrsin Figure 22.

To include the directoryC. / Docunent s and Setti ngs/ Adm ni strator/c99 in the search
paths for a command, the following statement

_path = stradd(_path, "C:./Docunents and Settings/Adm nistrator/c99;");

needs to be added to the startup fidarc in the user’s home directory so that the command hello.c in
this directory can be invoked regardless of what the curvemrking directory is. After the directory
C./ Docunments and Settings/ Admi ni strator/c99 has been added to the search papiath,

you need to restart a Ch command shell. Then, you will be abéx¢cute the prograimel | 0. ¢ in this
directory as shown below.

C. / Docunents and Settings/Adm nistrator> hello.c
Hell o, world

20

5 GETTING STARTED WITH CH COMMAMDISHifietactive Execution of Expressions and Statements

Similar to_path for commands, the header files in Ch are searched in direstspecified in the system
variable_ipath. Each path is also delimited by a semicolon. For examplestdtement below

_ipath = stradd(_i path, "C./Docunents and Setting/Adm nistrator/c99;");

adds the directonC: / Docunent s and Setting/ Adm ni strator/c99 to the search paths for
header files included by the preprocessing diredtiwel ude such as

#i ncl ude <headerfile. h>
One can also add this directory to the search paths for fumdiles by the statement
_fpath = stradd(_fpath, "C /Documents and Setting/Adm nistrator/c99;");

A function file contains the function definition.
In Unix, the search paths for commands by default do not @omite current working directory. To include the
current working directory in the search paths for a comméralfollowing statement

_path = stradd(_path, ".;");
needs to be added in startup filechrc in the wuser's home directory. Function call
stradd(_path, ".;") addsthe currentdirectory represented by '’ to the systgnch pathspath.

5.4 Interactive Execution of Expressions and Statements

For simplicity, only the promp? in a Ch command shell will be displayed in the remaining pnéstéon. If a C
expression is typed in the command shell, it will be evalddig Ch and the result then will be displayed on the
screen. For example, if the expressior3* 2 is typed in, the output will be 7 as shown:

> 1+3*2
7

Any valid C expression can be evaluated in a Ch shell. Thezefeh can be conveniently used as a calculator.
As another example, one can declare a variable at the prardghan use the variable in the subsequent calcula-
tions as shown:

>int i

> sizeof (int)

4

>i =30

30

> printf (""", i)
le

> printf("%", i)
11110

> i = 0bl1l1110

30

> i = Ox1E

30

>i =-2

-2

> printf("%", i)
11111111111111111111111111111110
> printf("982b", 2)

00000000000000000000000000000010

21

5 GETTING STARTED WITH CH COMMAMDISHifietactive Execution of Expressions and Statements

In the above C statements, variablé declared as int type with 4 bytes. Then, the integer valu®8i is displayed
in decimal, hexadecimal, and binary numbers. The integmadtants in different number systems can also be assigned
to variablei as seen above. Finally, the two’s complement representatithe negative number2 is also displayed.
Characteristics for all other data types in C can also beepted interactively. Different format specifiers for the
families of input functiorfscanf() and output functiomfprintf () using file streams opened by functifmpen() can also
be tried out this way.

By default, a value of float or double type is displayed witlo v four digits after the decimal point, respectively.
For example,

> float f = 10
> 2*%f

20. 00

> double d = 10
>d

10. 00000

All C operators can be used interactively as shown:

> int i=0b100, j = 0bl001
> << 1

8

> printf("%", i]j)

1101

The concept of pointers and addresses of variables carubtdted as shown:

> int i=10, *p
> &i
leddfO
>p =&
leddf O

> *p

10

>*p = 20
20

>

20

In this example, the variabfe of pointer to int points to the variable In the next example, the relation of arrays and
pointers is illustrated as follows:

>int a[5] = {10, 20, 30, 40, 50}, *p;
> a
1eb438

> &a[0]
1eb438

> al[1]

20

> *(a+l)
20

>p = atl
leb43c

> *p

20

> p[0]

20

22

5 GETTING STARTED WITH CH COMMAND SHELL 5.5 Interactive Exation of Functions

Expressiong[1], *(a+l1), *p, andp[0] all refer to the same element. Multi-dimensional arraysaan be
handled interactively. The boundary of an array is checkech to detect potential bugs. For example,

> int a[5] = {10, 20, 30, 40, 50}

> a[-1]

WARNI NG subscript value -1 less than lower linit O
10

> a[5]

WARNI NG subscript value 5 greater than upper linmt 4
50

> char s[5]

> strcpy(s, "abc")

abc

> s

abc

> strcpy(s, "ABCDE")

ERROR: string length sl is less than s2 in strcpy(sl, s2)
ABCD

> s

ABCD

The allowed indices for arrag of 5 elements are from 0 to 4. Arrasycan only hold 5 characters including a null
character. Ch can catch bugs in existing C code related tartag boundary overrun such as these.
The alignment of a C structure or C++ class can also be exahaimehown:

> struct tag {int i; double d;} s
> s.i =20

20

> s

.io= 20

.d = 0.0000

> sizeof (8)

16

In this example, although the sizes of int and double are Banespectively, the size of structwseavith two fields of
int and double types is 16, instead of 12, for the proper atignt.

5.5 Interactive Execution of Functions

A program can be divided into many separate files. Each filsistsof many related functions, which can be acces-
sible to any part of a program. All functions in the C standéhries can be executed interactively and can be used
inside user defined functions. For example, in the intera@kecution:

> srand(ti me(NULL))

> rand()

4497

> rand()

11439

> doubl e add(doubl e a, double b) {double c; return atb+sin(1.5);}
> double ¢

> ¢ = add(10.0, 20)

30. 9975

23

5 GETTING STARTED WITH CH COMMAND SHELL 5.5 Interactive Exation of Functions

/* File: addition.chf

A function file with file extension .chf */
int addition(int a, int b) {

int c;

c =a-+b

return c;

Program 1. Function filaddi ti on. chf .

The random number generator functioand() is seeded with a time value sr and(ti me(NULL) . Function
add() which calls type-generic mathematical funct®inn() is defined at the prompt and then used.

A file that contains more than one function definition is ususiiffixed with. ch to identify itself as part of a Ch
program. One can create a function file in a Ch programming@mwent. Afunction file in Ch is a file that contains
only one function definition. The name of a function file ems ¢hf , such asaddi ti on. chf . The names of the
function file and function definition inside the function fileust be the same. The functions defined using function
files are treated as if they were system built-in functionSin

Similar to_path for commands, a function is searched based on the searchipatte system variablépath for
function files. Each path is delimited by a semicolon. By d#fahe variablefpath contains the pathisi b/ | i bc,
[ib/libch, [ib/libopt, andlibch/ numeri c inthe home directory of Ch. If the system variablpath
is modified interactively in a Ch shell, it will be effectivaly for functions invoked in the current shell interactiyel
For running scripts, the setup of function search pathserctirrent shell will not be used and inherited in subshells.
In this case, the system variahfpath can be modified in startup filehrc in Windows or.chrc in Unix at the user’s
home directory.

For example, if a file namedddi ti on. chf contains the program shown in Program 1, the function
addi ti on() will be treated as a system built-in function, which can biéedato compute the sum+ b of two input
arguments a and b. Assume that the function file addition.chf is located at
C. / Docunents and Settings/Adm ni strator/c99/addition.chf, the directory
C. / Docunents and Settings/Adm ni strator/c99 should be added to the function search path in the
startup file.chrc in Unix or _fpath in Windows in the user’s home directory with the followingt&ment.

_fpath=stradd(_fpath, "C /Docunents and Settings/Adm nistrator/c99;");

Functionaddi t i on() then can be used either interactively in command mode asrshelow,

>int i =9
> i = addition(3, i)
12

or inside programs. In Program 2, the functaddi t i on() is called without a function prototype in theain()
function so that the function prototype defined inside thecfion fileaddi t i on. chf will be invoked. The output
of Program 2 i = 5. If the search paths for function files have not been propiyp, a warning message such as

WARNI NG function "addition()' not defined

will be displayed, when the functicaddi ti on() is called.

When a function is called interactively in a Ch shell, thedtion file will be loaded. If you modify a function
file after the function has been called, the subsequent icatlse command mode will still use the old version of
the function definition that had been loaded. To invoke thelifiexd version of the new function file, you can either
remove the function definition in the system using the conuimamvar followed by a function name. or start a new
Ch shell by typingch at the prompt. For example, the command

> renvar addition

removes the definition for functioaddi t i on(). The command envar can also be used to remove a declared
variable.

24

6 INTERACTIVE EXECUTION OF BINARYSZEOMM&S EiyeNEX etttiiiod TP GFPRMagramming Features

/* File: programc
Program uses function addition() in function file addition.chf */
#i ncl ude <stdi o. h>

/* This function prototype is optional when function addition() in
file addition.chf is used in Ch */
int addition(int a, int b);

int main() {
int a=3, b =4, sum

sum = addition(a, b);
printf("sum= %\n ", sun;
return O;

Program 2. Program using function faeldi t i on. chf .
5.6 Interactive Execution of C++ Programming Features

Not only C programs can be executed in Ch, but also classesand C++ features are supported in Ch as shown
below for interactive execution of C++ code.

>int i

> cin >> |

10

> cout << i

10

> class tagc {private: int mi; public: void set(int); int get(int &;}
> void tagc::set(int i) {mi = 2*i;}

> int tagc::get(int &) {i++; return mi;}
> tagc c

> c.set(20)

> c.get(i)

40

>

11

> sizeof (tagc)

4

The input and output can be handled usiiigh andcout in C++. The public methotlagc: : set () sets the private
membem.i , whereas the public methadigc: : get () gets its value. The argument of methioaigc: : get () is
passed by reference. The size of the ctasgc is 4 bytes which does not include the memory for member foneti

6 Interactive Execution of Binary Commands in the Output Pare

Binary commands can also be executed interactively insideotitput pane as shown in Figure 23. In Figure 23,
commandpwd in the output pane prints the current working directory. @umandls lists files and directories in the
current working directory. Options of a command can alsorogigded. For example, the commalsctan invoked in
the form of

Is -F

to list directories with a forward slash at the end.

25

8 COMMONLY USED KEYBOARD COMMANDS IN CHIDE

=IE
File Edit Seach Wiew Toals Debug Cptions Language Buffers Help
DEEHE S| Bl X|o =3 a|ch
| Wstart ¥ Cortirue @ Abort S=Step (ENext 2=lp S=Down 9 Bresk & Clear || $=Parse » Run @ Stop
1hello.c |

1 -/* File: hello.c

2 Print 'Helle, world' on the screen. */

3 #include <stdio.h>

4

5 int main()

6 -{

i printf ("Helle, world\n";

8 return 0;

9 }
< | i
pd -
> pwd

C:/ch/demos/bin
>Exit code: 0
1s

>1s

arg.ch

cdemao -
<| | »
137 chars in 9 lines. Sel: O chars.

N

Figure 23. Execute commands inside the output pane.

7 Compiling and Linking C/C++ Programs

ChIDE can also compile and link an edited C/C++ program indtiing pane using C and C++ compilers. By

default, the ChIDE is configured to use the latest Microsigtisll Studio .NET installed in your Windows to compile

C and C++ programs. The environment variables and commandkd Visual Studio compiler can be modified in

the individual startup configuration file hr ¢ in the user's home directory, which can be opened for edésmghown

in Figure 22. In Linux, ChIDE uses compilers gcc and g++ to pdeC and C++ programs, respectively. The default
compiler can be changed by modifying the C/Ch/C++ propelé\cipp. pr oper ti es which can be opened under

the command Options.

The commandool s | Conpi | e as shown in Figure 24 can be used to compile a program.

The output and error messages for compiling a C or C++ prognandisplayed in the output window of the
ChIDE. In windows, compiling a program will create an objélgt with file extension .obj. The object file can be
linked using the comman@iool s | Li nk to create an executable program. The executable in Windawdile
extension .exe. If a Makefile is available in the currentctivey, the commandool s | Bui | d will invoke the
Makefile to build an application. The commahdol s | Go will execute the developed executable program.

8 Commonly Used Keyboard Commands in ChIDE

Keyboard commands in ChIDE mostly follow common Windows &K+ conventions. All move keys (arrows,
page up/down, home and end) allows to extend or reduce thanstselection when holding the Shift key, and the
rectangular selection when holding the Shift and Alt keysylboard equivalents of menu commands are listed in the
menus. Figure 2 shaws the most commonly used commands andahresponding keyboard commands.

26

8 COMMONLY USED KEYBOARD COMMANDS IN CHIDE

Blhello.c - ChIDE

File Edit Search Wiew Tools Debug Cptions Langusge Buffers Help

D&l i=a

1ol X]

Parse

| ®start ¥ Continuz @ At
1helloc |

Run Fz

Compile

awn WBresk GClear || 9zParse » Runm & Stop

[Su R B I VR I PU I o

dl

1 -/* File:

-1

|
}

hell

Print 'Hel Lipz .ox/

Build
G0

#include <stc

int main() Stop ExecUting F

printf ("H Indent Ctrl+0

return 0;

MNext Message
Previous Message
Swyitch Pane

hello.c

dl

Microsoft (R)

>ch ¢l -D_USE_MRTH DEFINES -D_CRT SECURE_NC_DEPRECATE /EHsc -c hello.c
3Z2-bit C/C++ Optimizing Compiler Version 13.10.3077 for BOxBEA
Copyright {(C) Microsoft Corporation 1984-2002. All rights reserved.

>Exit code: 0O

138 chars in 9 lines. Sel: O chars.

4 =

N

Figure 24. Compile a C/C++ program.

Table 2. Commonly used commands and their correpondingdegglzommands in ChIDE

Command Keyboard Command
Help F1

Run C/Ch/C++ program in Ch F2

Find Next F3

Find Previous Shift+F3
Stop Executing C/Ch/C++ program F4
Start (Debug the program) F5
Step (Single step) F6

Next (Step over the next statement) F7
Close/Open Output Window F8
Clear Output Window F9
Clear Debug Command Window F10
Close/Open Debug Console Window F11
Full screen F12

27

Index

.chrc, 19
_chrc, 19
_fpath, 24
_ipath, 21
_path, 20, 21

cd, 17

ChIDE, 1

chide, 17

chmod, 19

chrc, 19

commands, 25

compile, 26

Compile and Link Commands
Build, 26
Compile, 26
Go, 26
Link, 26

copyright, i

cp, 17

Debug Commands
Abort, 7
Continue, 6
Down, 7
Next, 6, 7
Parse, 4
Run, 1
Start, 6
Step, 6,7
Stop, 4
Up, 7

Debug Commands inside Debug Command Window

abort, 16
assign, 12
call, 12
clear, 16
clearfunc, 16
clearline, 16
clearvar, 16
cont, 14
down, 14
expr, 12
help, 12
locals, 14
next, 14
print, 12
remove, 14
remove expr, 14
run, 14
stack, 14

28

start, 13
step, 14
stopat, 15
stopin, 15
stopvar, 15
up, 14
variables, 14
watch, 14
Debug Window
Breakpoints, 6
Locals, 7
Stack, 9
Variables, 9
Watch, 14

Embedded Ch, 1

function

function files, 24

function keys, 26

IDE, 1

Integrated Development Environment, 1

keyboard commands, 26

link, 26
Is, 17

mkdir, 17

Output, 4
Output Window, 4

prompt, 16
pwd, 17

remvar, 24
rm, 17

stradd(), 20, 21

Unix Commands
cd, 17
cp, 17
Is, 17
mkdir, 17
pwd, 17
rm, 17
rmdir, 17

