
Analysis of Eberly’s Method of Separating Axes

Algorithm

Peter Gels, 1536478

18-06-2009

Abstract

In his paper called ”‘Intersection of Convex Objects: The Method of
Separating Axes”’, David Eberly [1] proposes a method of separating axes
for convex objects. This article examines this for convex polygons in 2D.

1 Separating Axes

The Method of Separating Axes works like this: suppose you have two convex
objects c0 and c1, which are both collections of points and lines between those
points. If you are able to find an axes, so that c0 in its entirety lies on one side
of the axes, and c1 in its entirety lies on the other side of the axes, then the
two objects don’t collide. If there is not such an axis, then the two objects do
collide. Try to imagine this by having a regular 2D-axis, in which c0 consists
out of points where the horizontal and vertical values are both positive, and the
points of c1 all have positive vertical values, but negative horizontal ones.

Let us first consider the simple case in which the algorithm is applied to
two convex polygons in a 2D-environment. In order to implement this, we need
to separate three cases in which the two objects could have collided with each
other: you can have two of the edges exactly touching each other, you can have
one point touching an edge (which is most likely going to happen) and there is
the case in which two points of the opposing objects touch each other.

For the implementation, we need two functions. The first, Perp(x, y), says
that given an edge (x, y) (with x and y both vertexes), it will return its outward
pointing normal. The second, WhichSide(S, D, P) takes as input a set of points
S, the direction of an axis D and the place of an axis P . It will return a value
less than zero if S is entirely on the left side of D, it will return a value greater
than zero if S is entirely on the right side of D and otherwise it will return a 0,
meaning that D intersects the polygon in S.

The pseudo-code for the algorithm is as follows:

bool TestIntersection2D (ConvexPolygon C0, ConvexPolygon C1) {
// Test edges of C0 for separation. Only try to determine
// if C1 is on the ’positive’ side of the line.

1

for (i0 = 0, i1 = C0.N-1; i0 < C0.N; i1 = i0, i0++) {
D = Perp(C0.V(i0) - C0.V(i1));
if (WhichSide(C1.V,D,C0.V(i0)) > 0) {

// C1 is entirely on ’positive’ side of the line
return false;

}
}

// Test edges of C1 for separation. Only try to determine
// if C0 is on the ’positive’ side of the line.
for (i0 = 0, i1 = C1.N-1; i0 < C1.N; i1 = i0, i0++){

D = Perp(C1.V(i0) - C1.V(i1));
if (WhichSide(C0.V,D,C1.V(i0)) > 0) {

// C0 is entirely on ’positive’ side of the line
return false;

}
}

return true;
}

What happens in the above piece of code is the following: you have two con-
vex polygons C0 and C1, in which all of the edges are sorted counter-clockwise,
and you want to determine whether or not the two collide with each other. Then
for C0, you check for every edge of C0 whether or not the axes that is formed by
constructing the normal of the vector between that edge and the opposing edge
of C1 with one of the points on the edge as base separates all of the vertices of
C1 on one side of this axes. If this is the case, then false is returned, indicating
that the polygons are not intersecting. The same process is repeated for C1.

One reason why this algorithm is efficient is that you can simply quit once
you’ve found an axes that separates both the polygons, since the algorithm
says that if you can find such an axis, then the two polygons in question don’t
intersect. This can often save a lot of time when the polygons aren’t intersecting,
which is usually the case.

References

[1] David Eberly. Method of separating axes.
www.geometrictools.com/Documentation/MethodOfSeparatingAxes.pdf ,
2001.

2

