

ODYSSEE

EXPLORATIONS IN MIXED REALITY THEATRE USING DIRECTX9

A. Eliëns
Intelligent Multimedia Group,

Department of Computer Science
Vrije Universiteit

De Boelelaan 1081, 1081 HV Amsterdam,
Netherlands

E-mail: eliens@cs.vu.nl

KEYWORDS
mixed reality theatre, multimedia applications, DirectX9.

ABSTRACT

In this paper we will discuss our experiences in developing a
mixed reality application for a theatre production of the
Odyssee. The Odyssee is a wellknown account of the travels
of Ulysse leaving Troje, in 24 episodes ending in his return
to Ithaca and his reunion with Penelope. The actual theatre
production, which is performed in temporarily empty office
buildings, takes 12 parts which are played in 12 successive
rooms through which the audience, subdivided in small
groups, is guided one room after another for about five
minutes per room. The initial idea was to have a large
number of see-through goggles and augment the actual
performance with additional information using text and
images. In the course of the project, however, we had to
scale down our ambitions, and we ended up using simple
LCD-projection goggles with a low-resolution camera, for
which we developed a mixed reality application, on the
DirectX platform, using video capture projection in 3D with
text and images. What we will describe here covers our final
application, the criteria and guidelines we used in our
production, as well as what may in retrospect be
characterized as our explorations of DirectX.

INTRODUCTION

In june 2003, our group was asked to advise on the use of
VR in a theatre production of the Odyssee. Lacking
experience in this field, we accepted the invitation to
participate with some reluctance, since at the time we didn't
have any clue what the VR for the theatre production should
look like. Nevertheless, we took the invitation as a challenge
and started looking for appropriate hardware, bothering
collegues for information on mixed reality art productions,
and downloading code to explore software technologies.
Many hurdles ware to be taken. We had to deal with
organizational issues, such as finding the money for
financing the actual production (which proved to be quite a
hurdle), finding the right people (students, in our case) to
select material and contribute to the code; aesthetic issues, in
particular to determine which approach to take to reach at an
effective solution; and not in the least technical issues, to
realize the production on a sufficiently efficient low-cost
platform.

In this short paper, we will first briefly describe the Odyssee
theatre production. Then we will report on how we arrived at
our present mixed reality solution. And, after a brief
characterization of our platform of choice, we will look at
our mixed reality solution in somewhat more (technical)
detail. We finish with recapitulating the lessons we learned
from our explorations in mixed reality theatre, and a brief
discussion of the further development and implementation of
our system.

BACKGROUND THE ODYSSEE THEATRE
PRODUCTION

The Odyssee. theatre production was initiated by Ground
Control (www.ground-control.org), as a successor of
previously succesful theatrical spectacles, including an open
air performance of Faust. In effect, two performances of the
Odyssee were planned, an out-door (external) version,
involving real ships at the shore of a lake, and an in-door
(internal) version, to be played in temporarily empty office
buildings. The in-door version is meant to give a more
psychological rendering of the Odyssee, see (Entanaclaz,
2003), where the travels of Ulysses are experienced by the
audience as a confrontation with themselves. Our
contribution was asked for the in-door version, to enhance
the experience of the audience with additional VR.

The Odyssee is a wellknown account of the travels of
Ulysses leaving Troje, in 24 episodes ending in his return to
Ithaca and his reunion with Penelope. The actual theatre
production takes 12 parts which are played in 12 successive
rooms through which the audience, subdivided in small
groups, is guided one room after another for about five
minutes per room. Our initial idea was to add information in
the form of text and images, to direct the interpretation of the
audience towards a particular perspective. In that beginning
stage, somewhat optimistically, we planned to offer multiple
perspectives to each participant, in an individualized
manner, dependent on the actual focus of attention of the
individual participant.

INITIAL IDEAS VR AND AUGMENTED REALITY

Our first problem was to find suitable hardware, that is see-
through goggles. Searching the Internet gave us the name of
a relatively nearby company, Cyber Mind NL
(www.cybermind.nl) , that specialized in entertainment VR
solutions. Both price-wise and in terms of functionality

http://www.ground-control.org

semi-transparent see-through glasses appeared to be no
option, so instead we chose for simple LCD-projection
goggles with a (head-mounted) low-resolution camera. This
solution also meant that we did not need expensive head
orientation tracking equipment, since we could, in principle,
determine focus using captured image analysis solutions
such as provided by the AR Toolkit
(www.hitl.washington.edu/artoolkit). Moreover, captured
video feed ensured the continuity and reactiveness needed
for a true (first-person perspective) VR experience.

Augmented or mixed reality is an interesting area of research
with many potential applications, see (Grau, 2003).
However, in the course of the project we dropped our
ambition to develop personalized presentations using image
analysis, since we felt that the technology for doing this in a
mixed reality theatre setting was simply not ripe, and instead
we concentrated on using the captured video feed as the
driver for text and image presentation. In addition, we
developed image manipulation techniques to transform the
(projection of the) captured video, to obtain more implicit
effects, as to avoid the explicit semantic overload resulting
from the exclusive use of text and images.

TECHNOLOGICAL CONSTRAINTS THE
DIRECTX9 PLATFORM

After a few experiments with the AR Toolkit, it soon
appeared that the frame rate would not be sufficient, on the
type of machines our budget would allow for. Moreover,
reading the AR Toolkit mailing list, marker tracking in a
theatrical context seemed to be more or less unfeasible. So,
we shifted focus to the DirectX SDK 9, both for video
capture and projection in 3D. The DirectX9 toolkit is a
surprisingly functional, and very rich technology for
multimedia applications, supporting streamed video,
including live capture, 3D object rendering and precise
synchronisation between multimedia content-related events,
Adams (2003). At that time, and still at the time of writing,
our own intelligent multimedia technology was no option,
since it does not allow for using live video capture and is
also lacking in down-to-the-millisecond synchronisation.

After exploring texture mapping images copied from the
incoming captured video stream, we decided to use the
VMR-9 video mixing renderer introduced in DirectX 9, that
allows for allocating 3D objects as its rendering surface, thus
avoiding the overhead of explicit copies taken from a video
processing stream running in a separate thread. Although
flexible and efficient, DirectX is a low-level toolkit, which
means that we had to create our own facilities for processing
a scenegraph, world and viewpoint transformations, and,
even more importantly, structuring our mixed reality
presentations in time.

STRUCTURING TIME

MAINTAINING SEE
THROUGH AESTHETICS

One of the problems we encountered in discussing what we
conveniently may call the VR with the producer of the
Odyssee theatre performance was the high expectancy

people have of VR, no doubt inspired by movies as the
Matrix and the like. In mixed reality applications,
manipulating persons, warps in space, and basically any
intensive image analysis or image manipulation is simply not
possible in real time. Moreover, there is a disturbing
tendency with the layman to strive for semantic overload by
overlaying the scene with multiple images and lines of text,
thus obscuring the reality captured by the camera and
literally blocking the participants view and awareness of the
scene. Basically, as a guideline, we tend to strive for 70%
visibility of the scene, 20% image or projection
transformations and only 10% of information in the form of
text and images.

The total duration of our presentation is only 2 minutes, or
118 seconds to be precise. We made a subdivision in 4
scenes, with transitions inbetween, hierarchically ordered in
a tree-like structure. Initially, we abstracted from the actual
duration, by taking only the fraction of the time passed (in
relation to the total duration) as an indication for which
scene to display. However, when the development reached
its final stages, we introduced actual durations that allowed
us to time the sequence of scenes to the tenth of a second. In
addition, we used multiple layers of presentation, roughly
subdivided in background captured image, the transformed
captured image projected on 3D objects, and, finally,
pictures and text. These layers are rendered on top of
eachother, triggered in a time-based fashion, semi-
independent of one another. The frame rate varies between
20 and 30, dependent on the number of images
simultaneously used for texturing. Our final mixed reality
theatre application may be considered a prototype, awaiting
to be put to the test by a larger audience.

LESSONS LEARNED OUR EXPLORATIONS
REVISITED

Altogether, the development of the mixed reality theatre
application has been quite an experience, in multiple ways.
Not in the least it has been (and still is) a challenge to
explain the possibilities of mixed reality applications to the
layman, that do not take the abstractions we use in our daily
academic life for granted.

Reinventing the wheel is not as simple as it seems.
Nevertheless, developing scenegraph processing facilities
and the appropriate timing mechanisms for controlling the
mixed reality presentation was, apart from being a rekindling
of basic skills, a learnful experience.

In our project, the major obstacle became the hardware,
since our approach required one PC and goggle set per
visitor. Also, providing multiple visitors with a goggle
became a problem, due to the wiring.

TECHNICAL ISSUES PROGRAMMING THE
PRESENTATION SYSTEM

In the course of time, I continued working on the system and
it has been used for parties as well as for enlivening my

lectures. It actually does include many of the features of a VJ
system, and is currently named ViP (www.virtualpoetry.tv).
The major challenge, when I started development, was to
find an effective way to map live video from a low/medium
resolution camera as textures onto 3D geometry. I started
with looking at the ARToolkit but I was at the time not
satisfied with its frame rate. Then, after some first
explorations, I discovered that mapping video on 3D was a
new (to some extent still experimental) built-in feature of the
DirectX 9 SDK, in the form of the VMR9 (video mixing
renderer) filter.

The Video Mixing Renderer filter

The VMR filter is a compound class that handles
connections, mixing, compositing, as well as
synchronization and presentation in an integrated fashion,
Pesce (2003). Before discussing the VMR9 in more detail,
let's look first at how a single media stream is processed by
the filter graph. Basically, the process consists of the phases
of parsing, decoding and rendering. For each of these
phases, dependent on respectively the source, format and
display requirements, a different filter may be used.
Synchronization can be either determined by the renderer, by
pulling new frames in, or by the parser, as in the case of live
capture, by pushing data on the stream, possibly causing the
loss of data when decoding cannot keep up with the
incoming stream.
The VMR was originally introduced to allow for mixing
multiple video streams, and allowed for user-defined
compositor and allocator/presenter components. Before the
VMR9, images could be obtained from the video stream by
intercepting this stream and copying frames to a texture
surface. The VMR9, however, renders the frames directly on
Direct3D surfaces, with (obviously) less overhead. Although
the VMR9 supports multiple video pins, for combining
multiple video streams, it does not allow for independent
search or access to these streams. To do this you must
deploy multiple video mixing renderers that are connected to
a common allocator/presenter component.
When using the VMR9 with Direct3D, the rendering of 3D
scenes is driven by the rate at which the video frames are
processed.

The ViP system

In developing the ViP system, I proceeded from the
requirement to project live video capture in 3D space. As
noted previously, this means that incoming video drives the
rendering of 3D scenes and that, hence, capture speed
determines the rendering frame rate.
I started with adapting the simple allocator/presenter
example from the DirectX 9 SDK, and developed a scene
management system that could handle incoming textures
from the video stream. Inherited by all classes is the scene
class interface, which allows for (one-time) initialization,
time-dependent compositing, restoring device settings and
rendering textures. The scene graph itself was constructed as
a tree, using both arrays of (sub) scenes as well as a
dictionary for named scenes, which is traversed each time a
video texture comes in.

Later on, I adapted the GamePlayer which uses multiple
video mixing renderers, and then the need arose to use a
different way of indexing and accessing the textures from
the video stream(s).
Adopting the scene class as the unifying interface for all 3D
objects and compound scenes proved to be a convenient way
to control the complexity of the ViP application. However,
for manipulating the textures and allocating shader effects to
scenes, I needed a global data structure (dictionaries) to
access these items by name, whenever needed. As a final
remark, which is actually more concerned with the software
engineering of such systems than its functionality per se, to
be able to deal with the multiple variant libraries that existed
in the various releases of DirectX 9, it was needed to
develop the ViP library and its components as a collection of
DLLs, to avoid the name and linking clashes that would
otherwise occur.

CONCLUSIONS

We have described, in a somewhat anecdotical fashion, our
experiences in developing a mixed reality application for the
Odyssee theatre production, to enhance the participants
experience of the performance. Our explorations involved,
among others, to deal with expectancies of VR, aesthetic
issues, not to mention production schedules, cooperation,
financial issues, but above all it meant setting the first steps
in developing technology for mixed reality theatre. Most
important, however, is that our explorations show the
richness of the DirectX toolkit, not only for games but also
for realtime multimedia presentations.

ACKNOWLEDGEMENTS

We thank Bart Gloudemans and Rutger van Dijk (both
students at the Vrije Universiteit) for their practical work on
the project, as well as their general contribution to the final
contents of the work. Furthermore, we are grateful to Johan
Hoorn and Bert Barten for engaging us in the Odyssee
theatre project.

REFERENCES

Adams J. 2003. Advanced Animation with DirectX . Premier
Press.

Entabaclaz A.. 2003. Les metamorphoses d'Ulysse -- reecritures
de l'Odyssee . Editions Flammarion, Paris.

Grau O.. 2003. Virtual Art -- From Illusion to Immersion . MIT
Press.

Pesce M. 2003. Programming Microsoft DirectShow for digital
video and television . Microsoft Press.

AUTHOR BIOGRAPHY

ANTON ELIENS studied art, psychology, philosophy, and
computer science. He is lecturer at the Vrije Universiteit
Amsterdam, where he teaches multimedia courses. He is also
coordinator of the Master Multimedia for Computer Science.
He has written books on distributed logic programming and
object oriented software engineering.

http://www.virtualpoetry.tv

This document was created with Win2PDF available at http://www.daneprairie.com.
The unregistered version of Win2PDF is for evaluation or non-commercial use only.

http://www.daneprairie.com

