Codecs

0.1 compression is the key to effective information delivery

Media	uncompressed	compressed
voice 8k samples/sec, 8 bits/sample	64 kbps	2-4 kbps
slow motion video 10fps 176x120 8 bits	$5.07 \; \mathrm{Mbps}$	$8-16~\mathrm{kbps}$
audio conference 8k samples/sec 8bits	64 kbps	$16-64~\mathrm{kbps}$
video conference 15 fps 352x240 8bits	30.4 Mbps	64-768 kbps
audio (stereo) 44.1 k samples/s 16 bits	1.5 Mbps	128k-1.5Mbps
video 15 fps 352x240 15 fps 8 bits	$30.4 \; \mathrm{Mbps}$	384 kbps
video (CDROM) 30 fps 352x240 8 bits	$60.8 \; \mathrm{Mbps}$	1.5-4 Mbps
video (broadcast) 30 fps 720x480 8 bits	248.8 Mbps	3-8 Mbps
HDTV 59.9 fps 1280x720 8 bits	$1.3 \; \mathrm{Gbps}$	20 Mbps

Codec = (en)coder + decoder

images, video, audio are amenable to compression:

- statistical redundancy in signal
 - spatial correlation neighbour samples in single frame
 - spectral correlation between multiple sensors
 - temporal correlation between segments (frames)
- information that is irrelevant from perceptual point of view
- redundant features (accross space and time)

B. Vasudev & W. Li, Memory management: Codecs $\,$ Handbook of Multimedia Management, p 237-278

encoding & decoding

```
signal -; source coder -; channel coder (encoding)
signal ;- source decoder ;- channel decoder (decoding)
```

codec design problem

From a systems design viewpoint, one can restate the codec design problem as a bit rate minimization problem, meeting (among others) constraints concerning:

- specified levels of signal quality
- implementation complexity
- communication delay (start coding end decoding)

classification of compression methods

- model-based LPC, polynomial fitting, object-based
- waveform-based

lossless:

- statistical gilbert, hufmann
- universal arithmetic, pattern matching

lossy:

- spatial & time domain delta modulation
- frequency domain
 - * filter-based subband, wavelet
 - * transform-based fourier, DCT

tradeoffs

- coding efficiency compression ratio
- coder complexity memory, power requirements, ops/sec
- signal quality bit error probability, signal/noise, ...

issues in compression selection

- resilience to transmission errors
- degradations in decoder output (lossy)
- data representation (browsing & inspection)
- interplay of data modalities audio & video (conferencing)
- transcoding to other formats (interoperability)

standard-based codecs

- JPEG ISO/IEC 10918-1, ITU-T (T.81)
- MPEG
 - ISO 11172 (up to 1,5 Mbps) MPEG-1
 - ISO 13818 ITU-T H.262 MPEG-2
- H3.20 for ISDN-like environments
- ITU-T H.261 P x 64 standard (rate in kbs, p=1..30)

0.1. COMPRESSION IS THE KEY TO EFFECTIVE INFORMATION DELIVERY3

• H.324 – video conferencing for GSTN, 26kbps/sec

pixels versus objects

${\bf pixel\text{-}based\ standards}$

• MPEG-1, MPEG-2, H3.20, H3.24

$object-based\ codec(s)$

• MPEG-4 – segmentation-based DFD (Displaced Frame Difference)