research directions — architectural patterns

Facing the task of developing a multimedia information system, there are many
options. Currently, the web seems to be the dominant infrastructure upon which
to build a multimedia system. Now, assuming that we chose the web as our
vehicle, how should we approach building such a system or, in other words, what
architectural patterns can we deploy to build an actual multimedia information
system? As you undoubtly know, the web is a document system that makes a
clear distinction between servers that deliver documents and clients that display
documents. See [OO], section 12.1. At the server-side you are free to do almost
anything, as long as the document is delivered in the proper format. At the
client-side, we have a generic document viewer that is suitable for HTML with
images and sound. Dependent on the actual browser, a number of other formats
may be allowed. However, in general, extensions with additional formats are
realized by so-called plugins that are loaded by the browser to enable a particular
format, such as shockwave, flash or VRML. Nowadays, there is an overwhelming
number of formats including, apart from the formats mentioned, audio and video
formats as well as a number of XML-based formats as for example SMIL and
SVG. For each of these formats the user (client) has to download a plugin. An
alternative to plugins (at the client-side) is provided by Java applets. For Java
applets the user does not need to download any code, since the Java platform
takes care of downloading the necessary classes. However, since applets may be
of arbitrary complexity, downloading the classes needed by an application may
take prohibitively long.

The actual situation at the client-side may be even more complex. In many
cases a media format does not only require a plugin, but also an applet. The plugin
and applet can communicate with eachother through a mechanism (introduced
by Netscape under the name LiveConnect) which allows for exchanging messages
using the built-in DOM (Document Object Model) of the browser. In addition,
the plugin and applet may be controlled through Javascript (or VBscript). A
little dazzling at first perhaps, but usually not to difficult to deal with in practice.

Despite the fact that the web provides a general infrasructure for both (mul-
timedia) servers and clients, it might be worthwhile to explore other options, at
the client-side as well as the server-side. In the following, we will look briefly at:

e the Java Media Framework, and

e the DLP+X3D platform

as examples of, respectively, a framework for creating dedicated multimedia ap-
plications at the client-side and a framework for developing intelligent multimedia
systems, with client-side (rich media 3D) components as well as additional server-
side (agent) components.

Java Media Framework The Java platform offers rich means to create (dis-
tributed) systems. Also included are powerful GUI libraries (in particular, Swing),
3D libraries (Java3D) and libraries that allow the use and manipulation of images,



audio and video (the Java Media Framework). Or, in the words of the SUN web
site:
http://java.sun.com/products/java-media

The JavaTM Media APIs meet the increasing demand for multimedia in
the enterprise by providing a unified, non-proprietary, platform-neutral so-
lution. This set of APIs supports the integration of audio and video clips,
animated presentations, 2D fonts, graphics, and images, as well as speech
imput/output and 3D models. By providing standard players and integrating
these supporting technologies, the Java Media APIs enable developers to
produce and distribute compelling, media-rich content.

However, although Java was once introduced as the dial tone of the Internet
(see [0OQ], section 6.3), due to security restrictions on applets it is not always
possible to deploy media-rich applets, without taking recourse to the Java plugin
to circumvent these restrictions.

DLP+X3D In our DLP+X3D platform, that is introduced in section 77 and
described in more detail in appendix 7?7, we adopted a different approach by
assuming the availability of a generic X3D/VRML plugin with a Java-based
External Authoring Interface (EAI). In addition, we deploy a high-level ditributed
logic programming language (DLP) to control the content and behavior of the
plugin. Moreover, DLP may also be used for creating dedicated (intelligent)
servers to allow for multi-user applications.

The DLP language is Java-based and is loaded using an applet. (The DLP
jar file is of medium size, about 800 K, and does not require the download of any
additional code.) Dua, again, to the security restrictions on applets, additional
DLP servers must reside on the site from where the applet was downloaded.

Our plugin, which is currently the blazzun VRML plugin, allows for incor-
porating a fairly large number of rich media formats, including (real) audio and
(real) video., thus allowing for an integrated presentation environment where rich
media can be displayed in 3D space in a unified manner. A disadvantage of
such a unified presentation format, however, is that additional authoring effort is
required to realize the integration of the various formats.



