DOLORES:
A System for Logic-Based Retrieval of Multimedia Objects

Norbert Fuhr, Norbert Gdévert, Thomas Rolleke
University of Dortmund, Germany

Abstract We describe the design and implementation
of a system for logic-based multimedia retrieval. As high-
level logic for retrieval of hypermedia documents, we have
developed a probabilistic object-oriented logic (POOL)
which supports aggregated objects, different kinds of
propositions (terms, classifications and attributes) and
even rules as being contained in objects. Based on a
probabilistic four-valued logic, POOL uses an implicit
open world assumption, allows for closed world assump-
tions and is able to deal with inconsistent knowledge.
POOL programs and queries are translated into prob-
abilistic Datalog programs which can be interpreted by
the HySpirit inference engine. For storing the multime-
dia data, we have developed a new basic IR engine which
vields physical data abstraction. The overall architec-
ture and the flexibility of each layer supports logic-based
methods for multimedia information retrieval.

1 Introduction

New multimedia applications like digital libraries, video-
on-demand or electronic kiosks are reaching the end user.
Thus, the development of multimedia information sys-
tems is a growing area of research. A crucial issue in
many of the applications is content-oriented access to
multimedia objects.

Most multimedia information systems are based on
(object-oriented) database management systems. For
content-based retrieval, however, these systems are not
adequate, since they hardly offer any support for per-
forming uncertain inference.

On the other hand, current information retrieval (IR)
approaches lack the support for multiple abstraction lev-
els. In the database field, there are semantic data mod-
els (like e.g. the entity-relationship model) as high-level
models which allow for a more application-oriented mod-
eling of the domain under consideration. Next, there is
the logical level (e.g. the relational model) which includes
logical (i.e. descriptive) query languages (e.g. SQL). At
the bottom layer, there is the physical level which deals
with access structures (e.g. indexes) and the algorithms
operating on them. The concept of data independence
ensures a clear separation between all three levels, mak-
ing e.g. query formulation at the logical level independent
of the organization at the physical level. Looking at IR,
we see that so far, no approach covering these three ab-

Permission to make digital/hard copy of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial ad-
vantage, the copyright notice, the title of the publication and its
date appear, and notice is given that copying is by permission of
ACM, Inc. To copy otherwise, to republish, to post on servers or
to redistribute to lists, requires prior specific permission and/or
fee. SIGIR’98, Melbourne, Australia © 1998 ACM 1-58113-015-5
8/98 $5.00.

straction levels has been described. In classic IR systems
like e.g. SMART ([Buckley 85]) or INQUERY ([Callan
et al. 92]), there is only a basic logical level where docu-
ments typically are represented as sets of weighted terms,
and queries are either like documents or Boolean com-
binations of terms. This logical structure is mapped
one-to-one onto the physical level, only organized in in-
verted files for speeding up query processing. However,
problems arise with this organization when the set of
terms is not fixed in advance, e.g. with phrases or com-
pound words. Multimedia retrieval, e.g. typical methods
for similarity-based image retrieval, also cannot be per-
formed within this traditional framework.

Another shortcoming of current IR approaches is the
poor suitability of the underlying classical models (orig-
inally developed for unstructured text documents) for
multimedia environments, namely for three major rea-
sons:

1. Since text retrieval typically only considers the
presence/absence of terms, it is logically founded on
propositional logic, where each term corresponds to
a proposition, to which a document assigns truth
values (see [Rijsbergen 89]). In multimedia IR,
however, we have to deal with e.g. temporal or spa-
tial relationships which cannot be expressed in this
logic.

2. Classic IR models treat documents as atomic units.
On the other hand, since multimedia documents
comprise different media, they are always struc-
tured documents. Through the additional use of
links, hypermedia documents have an even more
complex structure. Thus, document nodes linked
together may form a single answer item.

3. When combining the knowledge of linked hyperme-
dia nodes, these nodes may contain contradictory
information, which cannot be handled properly by
most models.

In this paper, we present a new logic-based approach
for hypermedia' retrieval which remedies the shortcom-
ings of classical IR models. Our system DOLORES
(Dortmund logic-based object retrieval system) is based
on a multi-layered architecture which corresponds to the
different data abstraction levels mentioned above. The
major contributions of this paper are the following:

e We show how several advanced approaches to hy-

permedia retrieval can be integrated within a single
IR system.

o A multi-layered system architecture for hypermedia
retrieval is devised, ranging from a graphical user
interface for object-oriented query formulation and
result display to the low-level data structures as
used by most classical text retrieval systems.

1We regard hypermedia documents as the most general case,
subsuming multimedia, structured and hypertext documents.

e In order to bridge the gap between logic-based IR
and classical retrieval algorithms and data struc-
tures, we have defined a logical level for basic IR
systems; this allows for physical data independence,
i.e. the logical level is independent of physical de-
sign issues (e.g. presence or absence of indexes)
which are more related to efficiency.

In the remainder of this paper, we first give a sur-
vey on the overall architecture of DOLORES and de-
scribe its underlying multimedia retrieval model. Then
we present a probabilistic object-oriented logic for real-
izing this model, which uses probabilistic Datalog as in-
ference mechanism. The underlying basic IR engine is
described in section 5. A description of the implementa-
tion and some application examples are given in section 6.
Finally, we summarize our results and give an outlook on
further work.

2 General approach

2.1 System architecture

In order to cope with the shortcomings of classical IR
models in the context of hypermedia IR, we have devel-
oped a logic-based approach; logic-based IR allows for
more complex inferences and flexible retrieval strategies.
For coping with hypermedia retrieval, we have devised
probabilistic Datalog as a combination of uncertain in-
ference with a restricted form of predicate logic (i.e. horn
clause predicate logic without function symbols); Datalog
has the advantage that it can be processed efficiently even
on large databases. Contradictory information is handled
by extending probabilistic Datalog to a probabilistic four-
valued logic allowing for “unknown” and “inconsistent” as
additional truth values. Using this logic as basic infer-
ence mechanism, we have designed POOL (Probabilistic
Object-Oriented Logic) as a high-level logic for retrieval
of hypermedia objects.

P) GORSBI
resentation
Graphical Object Retrieval and Browsing Interface
) POOL
Semantical Probabilistic Object-Oriented Logic
p4D
Probabilistic 4-valued Datalog
Logical 0o mm e e ————— - - -~

HySpirit
Probabilistic Datalog Engine

BIRE
Basic IR Engine

RDBMS

Logical to physical Relational DBMS

Figure 1: Overall architecture of DOLORES

For integrating these different approaches, we have
designed a multi-layered architecture for IR systems,
where we have a presentation layer above three layers
corresponding to the different data abstraction levels (see
also figure 1).

Presentation: The top level of our system consists of
a graphical object retrieval and browsing inter-
face (GORBI). This component supports dictio-
nary browsing, graphical query formulation, result
survey and display of hypermedia objects. (Due to
space limitations, this component is not described
further in this paper).

Semantical: Our approach is based on the FERMI mul-
timedia retrieval model as semantic data model
(see below). For implementing this model, we use
POOL.

Logical: The corresponding layer consists of two sublay-
ers: POOL programs are transformed into probabi-
listic four-valued Datalog, which in turn is mapped
onto probabilistic (two-valued) Datalog (pD). Our
basic inference engine HySpirit executes pD pro-
grams.

Logical to physical: The facts HySpirit operates on
are stored in a new basic IR engine (BIRE) which
provides physical data abstraction. For retrieval,
this system offers a set of logical predicates which
are independent from the actual physical data struc-
tures and algorithms used for implementing these
predicates. In addition, facts also can be stored in
a relational database management system.

2.2 The FERMI multimedia retrieval model

There are three different views for multimedia docu-
ments, namely the logical, layout and content view (see
e.g. [Meghini et al. 91]). The logical view deals with the
logical structure of the document (e.g. chapters, sections
and paragraphs) and the layout view with the presenta-
tion of the document on an output medium (e.g. pages
and rectangular areas within a page). The content view
addresses the semantic content of a document, and thus
is the focus of IR.

The FERMI multimedia model (FMM) presented in
[Chiaramella et al. 96] considers a content structure
which is closely related to the logical structure (in con-
trast to classical IR models treating documents as atomic
units). Thus, the answer to an IR query may not only re-
turn whole documents, but also substructures according
to the logical structure. For this purpose, the FMM uses
a representation for the logical structure which focuses
on those elements which are important for retrieval, thus
neglecting issues dealt with by other models (e.g. ODA,
SGML) which also relate to other tasks (e.g. authoring,
presentation).

A database is a set of documents, and each document
is a tree consisting of typed structural objects (e.g. book,
chapter, section, paragraph, image), where the leaves
contain single-media data. Hypermedia documents also
contain links between different nodes (possibly from dif-
ferent documents). Nodes are assigned attributes, which
can be either standard attributes (e.g. author or creation
date) or so-called index expressions describing the con-
tent of a node. The latter are initially assigned to the
leave nodes only, where the indexing language depends
on the media type. For example, for text, there are lan-
guages for describing the physical, the structural and the
symbolic content, whereas for images, there is in addition
also a spatial and a perceptive content.

Depending on the class of an attribute, attribute val-
ues may be ascending or descending along the hierarchy.
For example, the authors of different nodes are propa-
gated upwards (involving an attribute-specific merge op-
eration), whereas the publishing date of a complete doc-
ument is propagated downwards. The index expressions
assigned to leave nodes are also propagated upwards.
Like any data model, the FMM also supports typing of
nodes, links and attributes.

Retrieval in this model follows the logical approach,
i.e. search for document nodes n which imply the query

q. In order to consider the hierarchical structure of doc-
uments, the overall retrieval strategy is to search for
the smallest possible units (i.e. low-level nodes) fulfilling
this criterion. This strategy is supported by the upward
propagation of index expressions. The original formula-
tion of the FMM uses predicate logic as basic retrieval
logic, whereas in [Lalmas 97|, a refinement of the re-
trieval model (but restricted to propositional logic) using
Dempster-Shafer theory is described.

3 A probabilistic object-oriented logic

3.1 Description
The motivation behind the development of POOL ([R6l-

leke 98]) was the need for a logic for retrieval of struc-
tured objects, like e.g. hypermedia documents. Its ma-
jor features are the support of nested objects and the
combination of a restricted form of predicate logic with
probabilistic inference.

Objects in POOL have an identifier and a content,
which is a POOL program. Objects with a nonempty
content are also called contexts, because the logical for-
mulas forming the content first are valid only within
this object/context. Propagation of this knowledge into
other contexts is performed via the process of augmen-
tation (see below). A program is a set of clauses, where
each clause may be either a context, a proposition or a
rule. In the following example, we have several nested
contexts: an article al consisting of two sections s11
and s12, where the latter again contains two subsec-
tions ss121, ss122. A proposition is either a term?
(like image), a classification (e.g. article(al)) or an
attribute (e.g. s11.author(smith)). Propositions also
may be negated (e.g. not presentation) or assigned a
probability (e.g. 0.6 retrieval).
all s11[image 0.6 retrieval presentation]

s12[ss121[audio indexing]
£8122[video mnot presentation]]]
g11.author (smith)
£121.author(miller) s122.author (jones)
al.pubyear (1997)
article(al) section(sll) section(s12)
subsection(ss121) subsection(ss122)

docnode (D) :- article(D)
docnode (D) :- section(D)
docnode (D) :- subsection(D)

1~ docnode(D) &

D[audio & retrieval]
german-paper (D) :- D.author.country(germany)

A rule consists of a head and a body, where the head
is either a proposition or a context containing a propo-
sition; the rule body is a conjunction of subgoals, which
are propositions or contexts containing a rule body. In
the example program shown above, the first three rules
state that articles, sections and subsections are docu-
ment nodes. Next, we classify documents talking both
about audio and retrieval as mm-ir-doc. We also
allow for path expressions in rule bodies as shown in
the last rule, which is a shorthand for D.author(X) &
X.country(germany).

A query consists of a rule body only, e.g. 7- D[audio
& indexing], for which ss121 would be an answer.

A basic assumption underlying POOL is that clauses
only hold for the context in which they are stated. For

mm-ir-doc(D)

2Throughout this paper, we use the word “term” in the typical
IR meaning, not in the usual logical meaning. Logically, terms
stand for argument-free predicates.

example, the query 7- D[audio & video] cannot be an-
swered by an atomic context, since audio occurs in ss121
and video in ss122. For dealing with content-based re-
trieval of aggregated contexts, POOL uses the concept of
augmentation. For this purpose, propositions are propa-
gated to surrounding contexts — similar to upward prop-
agation of attribute values in the FMM. This way, the
content of a context is augmented by the content of its
components. Thus, the last query would be fulfilled by
the context s12. However, augmentation also may lead to
inconsistencies: when we ask 7- D[image & video] and
combine contexts s11 and s12, then we get a contradic-
tion with respect to presentation. In classical logic, this
inconsistency would allow us to infer anything. In order
to avoid these problems, POOL is based on four-valued
logic (as described in [Rélleke & Fuhr 96]), treating only
presentation as inconsistent and yielding al as correct
answer to the last query. We describe the four-valued
logic in some detail in section 4.1.

Since we have no inference engine which implements
POOL directly, we map POOL programs onto probabilis-
tic datalog programs, for which we have the HySpirit in-
ference engine presented in section 4.1.

3.2 FMM and POOL

From the description of POOL given above, it is obvious
that it is more general than the FMM. The FMM poses
a number of reasonable restrictions on hypermedia doc-
uments (e.g. that only leaf nodes have a content, or the
type hierarchy on document nodes) which are not present
in POOL. On the other hand, both approaches deal with
nested objects, and the retrieval strategy of the FMM is
already integrated in POOL.

The only feature of FMM that we have to model ex-
plicitly in POOL is propagation of attribute values. This
can be achieved by formulating an appropriate rule for
each attribute, depending on the propagation direction,
e.g.

D.author(A) :- D[S] & docnode(D) & docnode(S) &
S.author (A)
:- D[S] & docnode(D) & docnode(S) &

D.pubyear (Y)

The first rule performs (recursively) upward propagation
of author names: When a document node D contains a
subnode 8, then any author of S also is an author of D.
In a similar way, the second rule yields downward prop-
agation of the publication year.

S.pubyear (Y)

4 Probabilistic Datalog

4.1 Description

Probabilistic Datalog (pD) is an extension of ordinary
(two-valued) Datalog (2D). On the syntactical level, the
only difference is that with facts and rules, also a proba-
bilistic weight may be given, e.g.

0.7 docterm(di,ir). 0.8 docterm(dl,db).
link(d2,d1).

0.5 related(D,D1) « 1ink(D,D1).

about (D,T) < docterm(D,T).

about (D,T) « related(D,D1) , about(D1,T).

ql(X) « about(X,ir) , about(X,db).

Informally speaking, the probabilistic weight gives the
probability that the following predicate is true. In our
example, document d1 is with probability 0.7 about IR
and with probability 0.8 about databases (DB). The first
rule states that two documents are semantically related

(with probability 0.5) if there is an explicit link in be-
tween. The rule for q1 searches for documents dealing
with both of these topics. Assuming that index terms
are stochastically independent, we can compute a prob-
ability of 0.7 -0.8 = 0.56 for q1(d1). As a more complex
example, consider the case of d2involving the second rule
for about (D, T) stating that a document is about a term
if it is related to another document indexed with this
term. Thus, we retrieve document d2 with probability
0.5-0.7 - 0.8 = 0.28 (The relatedness between d1 and d2
is the same probabilistic event for both terms).

In addition to independent events, pD also supports
disjoint events. Besides modeling imprecise attribute val-
ues, this feature makes it possible to use linear retrieval
functions like e.g. in the vector space model. For this
purpose, we can treat query terms as disjoint events, e.g.
0.6 queryterm(q2,ir). 0.4 queryterm(q2,db).
ret(Q,D) + queryterm(Q,T), docterm(D,T).

?- ret(q2,D)

Here we state that with probability 0.6, the query g2 is
about ir and with probability 0.4, it is about db. Search-
ing for documents which have terms in common with the
query, we retrieve d1 with probability 0.6-0.74+0.4-0.8 =
0.74.

In [Fuhr & Rolleke 98], we describe the extension of
probabilistic Datalog to a probabilistic four-valued logic.
Let us first consider deterministic four-valued Datalog
(4D). In the model-theoretic semantics of 2D, an interpre-
tation only contains the (unnegated) atoms of the Her-
brand base. In contrast, we now assume that for 4D,
an interpretation may contain both positive and negated
atoms. Thus, for a specific fact, a model may contain the
positive atom, the negated atom, both the positive and
the negated atom or none. This corresponds to the four
truth values true (T), false (F), inconsistent(I) and un-
known (U). In this logic, rules are viewed as conditional
facts, not as implication formulas. A rule like p « ¢ is
interpreted such that the positive atom p is in the model
M, given that g € M A (—~q) ¢ M. Thus the precedent
g must be true (and not inconsistent), from which we
conclude that the consequence is true or possibly incon-
sistent (in case there is evidence for the negative fact as
well).

Based on this interpretation, we map 4D programs
onto 2D such that for each predicate g in 4D, we have
two predicates p_q and n__g in 2D, where the first gives
the positive information (true or inconsistent) and the
latter the negative information (false or inconsistent) for
q. Thus, we are also able to infer negative facts or state
them explicitly. For example, the 4D program
- person(fido).
student (X) ¢+ person(X), enrolled(X).

— student (X) < - person(X).

is mapped onto

n_person(fido).

p_student(X) + p_person(X), — n_person(X),
p_enrolled(X), — n_enrolled(X).

n_student(X) < n_person(X), — p_person(X).

Queries in 4D are mapped onto four separate queries
in 4D, namely one for each truth value in 4D. E.g. for the
4D query 7- student (X), we get the instances yielding a
truth value of false (i.e. fido) by means of the following
query:

?7- n_student (X), - p_student (X).

4D uses an implicit open world assumption. This fits
with basic IR requirements, since we typically know what
a document is about, but it is difficult to state for sure
that a document is certainly not about a specific topic.

Thus, our approach would yield unknown as truth value
when a user asks for a topic which is not explicitly cov-
ered by a document. On the other hand, when we have
to deal with document attributes (e.g. authorship), then
a closed world assumption (cwa) should be used. This
behavior can be achieved by stating a cwa in 4D, e.g.
#cwa(author(D,A)). This declaration is translated into
the 2D rule

n_author(D,A) < - p_author(D,A).

Thus, the 4D program

docterm(dl,ir). author(di,smith).

yields unknown for 7- docterm(di,db), but false for 7-
author(dl,miller).

Probabilistic four-valued Datalog (p4D) differs from
4D only in the additional specification of the probabilis-
tic parameters, i.e. we have to note three probabilities
(for true/false/inconsistent), from which the probability
of unknown can can be derived as the complement to 1.

4.2 POOL and probabilistic Datalog

In order to implement an inference engine for POOL, we
map POOL onto p4D. This mapping is fairly straightfor-
ward. POOL propositions are mapped onto predicates
with an additional argument, namely the id of the con-
text to which the proposition belongs:

e Terms are mapped onto the predicate term(Term,

Context).

e Classifications are represented by the predicate

class(Class,Instance,Context).

o Attributes are transformed into the predicate

attr (Attribute,Object,Value,Context).

The aggregation structure of contexts is represented by
means of facts for the predicate part(D,P), where the
first parameter denotes the surrounding context and the
latter the embedded one. Probabilities and negations in
POOL can be mapped directly onto the corresponding
p4D notation. By element-wise transformation, we can
map propositions as well as rules, queries and the context
structure of a POOL program into the corresponding p4D
program.

For augmentation, we have to add a few rules to the
resulting program. Instead of deterministically propagat-
ing statements of a context to all surrounding contexts,
we use a probabilistic version based on the notion of ac-
cessibility: It is only with a certain probability that a
context has access to (comprises) the content of its em-
bedded contexts. For this purpose, we define an acces-
sibility predicate: for a pair of contexts (c1,cz2), it gives
the probability that the content of context ¢z is contained
in context ci. The strength of the relationship and the
stochastic dependencies between different pairs can be
defined in arbitrary ways, depending on the actual appli-
cation. Here we consider a simple solution only, where
all direct subcontexts of a supercontext are accessed in-
dependently and with the same probability. Thus, we
can derive the accessibility relationship from the part re-
lation:

0.6 acc(D,P) « part(D,P).
0.6 acc(D,P) « part(D,P1), acc(P1,P).

The concept of augmentation also can be applied for
dealing with hypermedia retrieval. When there is a link
from node n; to nz, then the content of nz should be
considered as being contained in n; in a similar way as
that of any subnode of n;. In order to implement this
retrieval strategy, we extend the definition of the acc
predicate such that it also considers links (formulated as
link attribute in POOL) between document nodes:

0.4 acc(D,L) « attr(link,D,L,C).

0.4 acc(D,L) + attr(link,D,L1,C), acc(L1,L).
Then we can formulate the following rules for augmenting
both positive and negative propositions:

term(T,C) < acc(C,C1), term(T,C1).

- term(T,C) < acc(C,C1), = term(T,C1).
class(C1,I,C) < acc(C,C1), class(C1,I,C1).

- class(C1,I,C) « acc(C,Cl1), - class(C1l,I,C1).
attr(4A,0,V,C) < acc(C,C1), attr(4,0,V,C1).

- attr(4,0,V,C) < acc(C,Cl1), — attr(A,0,V,C1).

As an application of these rules, consider the following
POOL program:
d1[si[audio indexing] s2[image retrievall

g3[video not retrieval]]

Based on an open world assumption, here the query 7-
D[audio & indexing] would retrieve s1 with probabili-
ties 1/0/0/0 (for true/false/inconsistent/unknown). For
d1, the corresponding probabilities are 0.6/0/0/0.4 only,
due to the definition of accessibility. So the more spe-
cific document node gets a higher probability than its
supernode in case the subnode already implies the query.
Thus, we have implemented a probabilistic version of
the FMM retrieval strategy. On the other hand, asking
?- D[audio & image] yields only d1 as possible answer,
with probabilities 0.36/0/0/0.64: only when both sec-
tions are accessible, the document implies the query, oth-
erwise the result is unknown. Inconsistency gets involved
when we ask e.g. 7- D[video & retrieval]. Here s3
yields false and s2 yields unknown; d1 returns an incon-
sistent value when both s2 and 83 are accessible; thus,
the probabilities for d1 are 0/0.24/0.36,/0.40.

Like p4D, POOL is based on an implicit open world
assumption. However, it is possible to state closed world
assumptions. In principle, one could choose arbitrary
units for applying a cwa, e.g. objects (i.e. assuming that
we know everything about a specific object), specific
combinations of objects and types of propositions (e.g.
we know all authors of this document) or specific at-
tributes/classifications (e.g. we know all document au-
thors or all books). Among these possibilities, the last
choice seems to be most reasonable, thus we support it
in POOL. Attributes and classifications can be closed by
stating that the cwa should be applied to them, e.g.
#cwa(author) . #cwa(article).

For incorporating these declarations in the retrieval strat-
egy, we map them directly onto appropriate statements
and rules in pD, since the cwa mechanism of p4D (which
refers to predicates) is not appropriate in our case. Thus,
we generate facts stating that the cwa holds for specific
attributes and classifications, e.g.

cwa(author). cwa(article).

Now we only need two rules for applying the cwa:
n_class(C1,I,C) « cwa(Cl), - p_class(Cl,I,C).
n_attr(4,0,V,C) < cwa(A), — p_attr(4,0,V,C).

5 The basic IR engine

5.1 Description

In the description of pD given above, we have assumed
that the indexing facts (like e.g. 0.7 docterm(d1,ir))
are stored explicitly, e.g. in a relational database or an IR
system. In principle, it would be fairly easy to implement
such an interface to an IR system. However, not all basic
queries to an IR system can be answered this way. In fact,
the retrieval functionality of current IR systems is not
appropriate for interfacing to a logical retrieval engine:
there are several weaknesses of current IR systems which

make them inappropriate for being integrated in a logic-

based IR engine:

Physical data dependence: The retrieval functions
offered are not independent from the availability of
access paths: Most systems only allow for queries
which can be answered by accessing the inverted
file; when there is a possibility for scanning docu-
ment texts directly, then other operators have to
be used in the query. In order to achieve physical
data independence (like in any database manage-
ment system), query formulations should be inde-
pendent from the presence or absence of indexes —
the physical structure only affects efficiency, which
should be kept separately from the logical query
formulation.

Inappropriate query operators: When searching for
phrases instead of single words only, then most IR
systems provide special operators (e.g. for proxim-
ity search) in order to process this request based
on the information available in its inverted lists.
From a logical point of view, we just want to search
for a phrase without caring about implementation
details; the system itself should use the proximity
information or syntactic structure in order to assign
an indexing weight.

Propositional logic only: Most IR systems are based
on the assumption that index terms are indepen-
dent (or disjoint) propositions. Thus, they have
problems even with real-world text retrieval needs:
Users want to search in the text in different ways,
e.g. by phonetic similarity (also for proper names)
or for similar compound words — e.g. the German
word Donaudampfschiffahrisgesellschaft (Danube
steamship company) should also be matched by
Donauschiffahrt (Danube shipping). The concept
of similarity plays an even more important role
in multimedia retrieval e.g. most image retrieval
methods are similarity-based.

In order to solve these problems, we apply the con-
cept of attributes with vague predicates as introduced in
[Fuhr 90] (and extended to text retrieval in [Fuhr 92]).
A vague predicate is similar to a builtin predicate like in
most database query languages, but instead of a Boolean
value only, it returns a probability when it compares two
values (e.g. “Jones” ~ “Johnson”). For text retrieval, we
assume that one argument of the vague predicate is a
search term (e.g. a phrase) and the other one is the text
of a document node which we check for the occurrence
of this term. Analogous methods are used e.g. in im-
age retrieval, where search for images with similar colors,
texture or contours is based on similarity measures com-
paring the query image with any image in the database
(see e.g. [Flickner et al. 95]).

These ideas lead us to the development of a new ba-
sic IR engine (BIRE) which is designed for supporting
logic-based IR. Whereas the logical components of DO-
LORES are rather general, BIRE is restricted to hyper-
media retrieval according to the FMM. Thus, it manages
document nodes and offers vague predicates for searching
the attribute values (both content and other attributes)
of these nodes. However, although all nodes of a hyper-
media document are stored in BIRE, the functionality of
BIRE is restricted to single nodes. Functions operating
on whole documents are implemented at the higher lev-
els of DOLORES by means of logical rules. The BIRE
interface to the logical level consists of a set of (binary)
predicates, each applying a specific vague predicate to
a specific attribute of document nodes (e.g. stem search,

phrase search and full word search on node texts, equality
and phonetic similarity on author names).

Similar to IR systems like ECLAIR [Harper & Walker
92] or FIRE [Sonnenberger & Frei 95], BIRE is based on
an object-oriented design (figure 2 shows the class dia-
gram in UML [Fowler & Scott 97| notation); however,
only BIRE implements physical data independence’®. A
database contains a set of document nodes (doc-node),
where each node has a unique node number nodeno. This
node number is used as external reference in the logic-
based parts of DOLORES. There are different classes of
nodes (which we have omitted here), e.g. leaf nodes for
different media and non-leaf-nodes, as well as nodes with
different sets of attributes. A doc-node is an aggregation
of node attributes (node-attr). A node attribute has a
name (attr-name) and a value V which is derived from
the document node. FEach node attribute corresponds
to a database-wide attribute which manages all corre-
sponding values of all nodes. An attribute is mainly
an aggregation of vague predicates with two arguments,
namely a node number N and an attribute value V, giv-
ing the probability that the predicate holds for value Vin
the document node with number N. These predicates form
the interface to the logical levels of DOLORES. Depend-
ing on the data type of the attribute values, there are
different classes of attributes with different sets of pred-
icates (thus implying an inheritance hierarchy on data
types, as described in [Fuhr 96]). For example, for the
data type english_ text, there are at least predicates for
full word search, stem search and phrase search. For the
data type person_name (e.g. for the attributes author or
editor), there would be a predicate supporting phonetic
search. In each case, there is also an equality predicate
for directly accessing an attribute value.

Logically speaking, each argument of a predicate may
be either free (f) or bound (b) — thus, there are in prin-
ciple four different methods which have to be invoked on
the procedural level. However, we do not allow for both
arguments to be free (e.g. give me all words in all doc-
uments), and not all predicates allow for the attribute
value to be free (e.g. give all phrases occurring in a docu-
ment, or all names which are phonetically similar to the
author names of a document). Thus, each predicate
provides at least the methods fb(V) and bb(N,V). The
former corresponds to the standard retrieval method in
classical IR system in that it searches for all node num-
bers where the predicate holds for the specified attribute
value V. The latter returns the probability that the pred-
icate holds for value V in the node with number N; this
is implemented by means of the method pt (N,V) of the
subobject pred-test. In addition, some predicates (class
v-predicate) provide the method bf (N) giving all val-
ues for which the predicate holds in node N. For exam-
ple, for equality on author names, there would be such a
v-predicate, but not for phonetic similarity (the system
can only decide whether or not a given name is phonet-
ically similar to one of the authors’, by means of fb(V)
or bb(N,V)).

In order to describe how physical data independence
is achieved in BIRE, we give an overview on the retrieval
and indexing process for the standard retrieval method.

The retrieval task is implemented by the method
fb (V) of class predicate, which in turn invokes ps (V)
in class pred-search. Here we separate the logical and
the physical level of our IR system: Depending on the

3In fact, data abstraction is one of the basic principles of
object-oriented design, so it also should be realized in the sys-
tems developed using this method.

availability and the usage of access structures, there are
different subclasses of pred-search:
ps-direct uses an index-structure for direct search of
the corresponding document numbers and probabil-
ities. The latter class again has different subclasses
for different types of index structures like inverted
lists (e.g. for term search), B-trees (e.g. for numer-
ical values) or spatial access structures for multidi-
mensional values (e.g. for image retrieval).
ps-indirect uses in addition to an index structure also
a support-structure for performing a search. For
example, when there is an index on full word forms
already, a search for word stems can be imple-
mented by means of that index and a support-
structure which returns all possible word forms
for a given stem. These are used for invoking a
search on index-structure.
ps-filter also makes use of an existing index-
structure for a different predicate for the actual
attribute. Here an index is used only as filter for
possible answers, which are subsequently scanned.
For example, a full word search with an index-
structure for word stems could be implemented
this way. Another example is signature-based re-
trieval.
ps-noinx uses no access structure at all.
document nodes are scanned directly.
Like for retrieval, also the indexing task for predicate
pred-search is implemented such that it separates the
physical level from the logical level. When a document
node is inserted into a database the index methods for
any of its attributes are called to pass node number and
value to the corresponding database-wide attribute ob-
ject. This object invokes the method index (W, V) for each
of its predicates. For supporting the method £b(V) the
corresponding method psinx(N,V) of class pred-search
is called. As within ps for the retrieval tasks, the imple-
mentation of psinx(N,V) depends on the kind of index
support:
ps-direct calls for each (document number, value)-pair
the method insert(N,V) of index-structure for
storing it. In index-structure the probabilities
for tuples inserted are derived. For efficiency these
probabilities are not computed directly after insert-
ing an attribute value of a single document node.
Instead, method contextupdate has to be called,
at the latest when there is a search request for the
actual index or when the index structure is closed.
ps-indirect relies on the fact that there is an index-
structure for a different predicate and thus it has
to update the support-structure only by inserting
the appropriate pairs of values, e.g. (stem, full word
form) for supporting stem search based on an index
for full word forms.
ps-filter in most cases maintains no additional data
structure, since it only uses the index-structure of
a different predicate. (Signature-based retrieval can
be implemented as a subclass which also maintains
the signatures.)
ps-noinx maintains no additional data structure.
Retrieval and indexing for the other tasks are either
implemented by use of the according pred-search object
(pred-test just makes use of the ps (V) method; indexing
is not required since ps (V) depends on the indexing for
pred-search) or is done analogously to the implemen-
tation of pred-search: pred-values defines sub classes
similar to pred-search. Just indexing has to be done
inversely.

Instead, the

database 1 * attribute
- ¢ attr-name ¢
insert(doc-node) -
index(N,V)
contains
corresponds to
1.x
doc-node node-attr predicate
1.*
| nodeno: N @————— attr-name pred-name
value: vV bb(N,V):P1 v-predicate
fb(V):{P,N}
¥ index(N,V) bf(N):{P,N}
1 1 1 class name
pred-search uses pred-test pred-values attributes
predicati methods
ps(V):{P,N} pt(N,V}:P pv(N):{P,V}
psinx(N,V) pvinx(N,V)
scans —_—
association
-ps-noinx 'S
N ps-direct ps-indirect aggregation
_ uses index : —DD
uses index Uses index uses support- : inheritance
structure :
index-structure support-structure 33?1%2?3 In
insert(N,V) insert(V,V) N: node number
search(V):{P,N} support(V):{V} ' \P/: ;:torlt?;gﬁit\;alue
contextupdate {}: set of

Figure 2: Object-oriented design of BIRE

5.2 Probabilistic Datalog and the BIRE

As pointed out above, the BIRE offers binary predicates
as interface to the logical level of DOLORES. Further-
more, the current version of BIRE only manages positive
information.

In general, the BIRE predicates are a combination
of an attribute value and a vague predicate. For ex-
ample, phonetic search on author names by means of a
predicate author-phonsim(N,A) combines the attribute
author (N,X) with a vague predicate phonsim(X,A) for
phonetic similarity. We can also view the different text
search predicates this way, where the attribute text yields
the complete text of a document node and then there are
different vague predicates for testing on the occurrence of
full word forms, stems, phrases or compound words. Ask-
ing for the value of an attribute only (e.g. author names)
is a special case involving equality as a “vague” predi-
cate. Thus, the predicates offered by BIRE implement
a join operation between the relation given the attribute
value and an (intensional) relation representing the vague
predicate. For example, consider a POOL query like
?- D.author.phonsim(jones) which is equivalent to 7-
D.author(X) & X.phonsim(jones). Mapping onto p4D
generates the query 7- attribute(author,D,X,db) &
attribute(phonsim,X, jones,db), and the equivalent in
pD is
?7- p_attribute(author,D,X,db) &

p_attribute(phonsim,X, jones,db) &

- n_attribute(author,D,X,db) &

- n_attribute(phonsim,X, jones,db).

For efficiently processing the last query, the database

interface of HySpirit must be able to recognize join op-

erations that can be performed by the database system.

For this purpose, term rewriting rules are used. Thus,

we have

p-attribute (author,D,X,db) X

p_attribute(phonsim,X,A,db) —
author-phonsim(D,A).

Given the relational algebra equivalent of the last query,

this rule can be applied.

Since BIRE treats content and node attributes the
same way, but the mapping from POOL to pD makes a
distinction between these concepts, we need additional
rules for matching the BIRE interface. For text content,
the default is that POOL terms are mapped onto word
stems, namely by a rule
term(T,D) < text-stem(D,T).

Other text search methods are represented as classifica-
tions in POOL, so we have to formulate rules like e.g.
class(phrase,P,D) « text-stem(D,P).

6 Implementation and application

We have realized the complete DOLORES system. The
graphical user interface is implemented as Java applet
running in a WWW browser. The transformation of
POOL programs into p4D and subsequently into pD
is implemented in Perl. The HySpirit inference engine
for pD (see [Rolleke & Fuhr 97]) is implemented in the
object-oriented language Beta. HySpirit’s evaluation al-
gorithm is based on the magic sets strategy for modular

stratified programs ([Ross 94]). For accessing external
data, there are interfaces to different relational database
management systems and to BIRE. So far, the BIRE
(implemented in Perl) only supports text retrieval and a
limited number of vague predicates for attributes. Cur-
rently, we are working on the integration of similarity-
based image retrieval methods.

" T

Figure 3: Example images

Now we describe some applications of the DOLORES
system. As an example for demonstrating the expressive-
ness of POOL, we used the system for semantic-based
image retrieval. For this purpose, we have a collection
of 650 images from the city of Paris at the beginning of
this century. This collection was indexed manually by
describing symbolic, the structural and the spatial view
of each image. Therefore, an image is composed of ob-
jects with classifications and attributes. For example,
the leftmost picture in figure 3 is described in POOL as
follows:
pl[/#* pl structural */

o7[/* o7 structural */

o1[/* ol structural */
02[1 03[1 04[] 05[] o6[]
/* ol symbolic */
woman (02) man(o3) cherub(o4)
swan(o5) socle(o6)
02.represents(river) o2.represents(seine)
02.qualifier(naked) o02.position(sitting)
o3.represents(river) o3.represents(marne)
o3.qualifier(naked) o03.position(sitting)
/* ol spatial */
02.right_of(03)
02.above_2D(06) 03.above_2D(06)
o4.above_2D(06) o5.above_2D(06)
02.above_3D(06) 03.above_3D(06)
04.above_3D(06) o5.above_3D(06)]

/* o7 symbolic */

sculpture(ol)

ol.material(stone) ol.represents(allegory)]

/* pl symbolic */
parc(o7)]
/* database symbolic */
image (p1)

Asking for images where a woman is right from a man

can be formulated in POOL as

?7- image(I) &

I[man(X) & woman(Y) & Y.right_of (X)]

As answer, we get the three images shown in figure 3.

Since we search for images only, p1 is retrieved (via aug-

mentation). Had we omitted the restriction to images,

we would have got o1 in the highest rank, o7 in a lower
rank and p1 even further behind.

Further applications of POOL (described in more de-
tail elsewhere) are the following:

Large databases: In order to demonstrate the feasibil-
ity of our approach even for large databases, we
applied our system to a classical text retrieval task.
For this purpose, we used a part of the TREC col-
lection, namely 12 months of the AP newswire data
comprising 259 MB of text (about 85,000 docu-
ments). The index structure for stem search con-
sumed additional 70 MB (in comparison to 2 GB
when stored in a relational DBMS, see also [Fuhr
& Rolleke 98])). As queries, the first 150 TREC
queries were taken, but only terms occurring in less
than 1000 documents were considered, thus leaving
an average number of 16 query terms. It turned out
that the response time of our system is proportional
to the number of documents retrieved, whereas the
number of query terms has only a minor effect. On
average, the system outputs 30 documents per sec-
ond (on a 170MHz Sun Ultrasparc with 64 MB main
memory), where the performance bottleneck is the
HySpirit engine.

Hypertext retrieval: In [Rolleke & Blomer 97], we de-
scribe the application of several retrieval strategies
(formulated as logical rules) for the CACM collec-
tion, including strategies for considering hypertext
links. Like other researchers (not using logic-based
IR methods), we were able to improve retrieval ef-
fectiveness when using information about links be-
tween documents.

Image retrieval: Whereas the Paris collection was in-
dexed manually, the IRIS system ([Hermes et al.
95]) performs automatic indexing of images. For
the domain of landscape photos, IRIS detects basic
concepts like e.g. water, sand, stone, forest, grass,
sky and clouds. For each concept identified in an
image, its location (as minimum bounding rectan-
gle) and the certainty of identification are given.
The system was applied to a database of 1200 im-
ages, of which 300 contain landscapes. After trans-
forming the output of IRIS into POOL, we were
able to ask queries for both content and spatial re-
lationships (see [Fuhr & Rélleke 98]), e.g. searching
for images with water (lake, river, sea) in front of
stone (rocks):

7- D[water(A) & stone(B) & A.ylow(AY) &
B.ylow(BY) & AY.less(BY)]

Here x1ow gives the lower Y coordinate of the min-

imum bounding rectangle of an object, and less is

a builtin method for comparing numerical values.

7 Conclusions and outlook

The DOLORES system presented in this paper combines
several advanced concepts for the problem of hyperme-
dia retrieval. Starting from a logic-based approach and
combining it with the concept of data abstraction, we
have designed a multi-layered system, thus achieving a

clear separation of the issues to be dealt with at different
levels:

e POOL is an object-oriented logic for describing hy-
permedia objects. It supports aggregated objects,
different kinds of propositions (terms, classifica-
tions and attributes) and even rules as being con-
tained in objects. Based on a probabilistic four-
valued logic, POOL uses an implicit open world
assumption, allows for closed world assumptions
and is able to deal with inconsistent knowledge.

¢ Probabilistic Datalog supports (probabilistic) pred-
icates and rules as building blocks only. By using
it as basic inference logic for implementing POOL
retrieval, we have a non-procedural method for de-
scribing retrieval strategies, namely by specifying
appropriate pD rules.

e BIRE is a basic IR engine that yields physical data
abstraction. This feature makes it possible to sup-
port logic-based IR methods in a flexible way. On
the other hand, we are able to integrate different ac-
cess methods or algorithms within BIRE, without
affecting the interface to the logical level.

In comparison to other IR systems, the representa-
tion and query language of DOLORES provides a much
higher expressiveness, but for standard retrieval tasks,
the efficiency is much lower. This situation is rather
similar to the development of relational database man-
agement systems during the seventies when their per-
formance was clearly inferior to that of hierarchical sys-
tems. Traditional IR systems are much like hierarchical
database management systems in that they have fixed
access paths, lacking physical data independence and an
expressive query language. In fact, the technology used
in DOLORES corresponds to deductive databases, thus
yvielding a tremendous progress in terms of expressive-
ness.

In order to increase the efficiency of DOLORES, we
are working on the development of new query processing
strategies which focus on the top-ranking elements of the
answer (see e.g. [Pfeifer & Fuhr 95]) — in contrast to the
magic sets evaluation strategy currently used in HySpirit
which considers all objects yielding a nonzero probability
of implying the query.

Our work is focused on the development of retrieval
methods for hypermedia objects. In order to make full
use of these methods, however, appropriate indexing
methods have to be available. Most of today’s indexing
and retrieval methods are restricted to the syntactical
level of multimedia objects (e.g. color, texture and con-
tour for images), but the major part of user needs can
be satisfied only by semantic-based methods. Since the
application of manual indexing is hardly ever feasible,
there is a clear need for further research on semantic-
based indexing methods for multimedia data.

References

Buckley, C. (1985). Implementation of the SMART In-
formation Retrieval System. Technical Report 85-686,
Department of Computer Science, Cornell University,
Ithaca, NY.

Callan, J.; Croft, W.; Harding, S. (1992). The
INQUERY Retrieval System. In: Proc. DEXA, pages
78-83. Springer, Berlin et al.

Chiaramella, Y.; Mulhem, P.; Fourel, F. (1996). A
Model for Multimedia Information Retrieval. Techni-

cal report, FERMI ESPRIT BRA 8134, University of
Glasgow.

Flickner, M.; Sawhney, H.; Niblack, W.; Ashley,
J.; Huang, Q.; Dom, N.; Gorkani, M.; Hafner,
J.; Lee, D.; Petkovic, D.; Steele, D.; Yanker,
P. (1995). Query by Image and Video Content: The
QBIC System. Computer 28(9), pages 23-32.

Fowler, M.; Scott, K. (1997). UML Distilled. Apply-
ing the Standard Object Modeling Language. Addison
Wesley, Reading, Mass.

Fuhr, N.; Rolleke, T. (1998). HySpirit — a Proba-
bilistic Inference Engine for Hypermedia Retrieval in
Large Databases. Proc. EDBT pages 24-38. Springer,
Berlin et al.

Fuhr, N. (1990). A Probabilistic Framework for Vague
Queries and Imprecise Information in Databases. In:
Proc. VLDB, pages 696-707. Morgan Kaufman, Los
Altos, Cal.

Fuhr, N. (1992). Integration of Probabilistic Fact and
Text Retrieval. In: Proc. SIGIR, pages 211-222. ACM,
New York.

Fuhr, N. (1996). Object-Oriented and Database Con-
cepts for the Design of Networked Information Re-
trieval Systems. In: Proc. CIKM, pages 164-172.
ACM, New York.

Harper, D.; Walker, A. (1992). ECLAIR: an Ex-
tensible Class Library for Information Retrieval. The
Computer Journal 35(3), pages 256-267.

Hermes, T.; Klauck, C.; Kreyf, J.; Zhang, J.
(1995). Image Retrieval for Information Systems. In:
SPIE Proc. Vol. 2420: Storage and Retrieval for Image
and Video Databases I1l. San Jose, CA, USA.

Lalmas, M. (1997). Dempster-Shafer’s Theory of Ev-
idence Applied to Structured Documents: Modelling
Uncertainty. In: Proc. SIGIR, pages 110-118. ACM,
New York.

Meghini, C.; Rabitti, F.; Thanos, C. (1991). Con-
ceptual Modeling of Multimedia Documents. [EFE
Computer 24(10), pages 23-30.

Pfeifer, U.; Fuhr, N. (1995). Efficient Processing of
Vague Queries using a Data Stream Approach. In:
Proc. SIGIR, pages 189-198. ACM, New York.

van Rijsbergen, C. J. (1989). Towards an Information
Logic. In: Proc. SIGIR, pages 77-86. ACM, New York.

Rdolleke, T.; Blomer, M. (1997). Probabilistic Logi-
cal Information Retrieval for Content, Hypertext, and
Database Querying. In: Hypertext — Information Re-
trieval — Multimedia (HIM), pages 147-160. Univer-
sitdtsverlag Konstanz.

Rolleke, T.; Fuhr, N. (1996). Retrieval of Complex
Objects Using a Four-Valued Logic. In: Proc. SIGIR,
pages 206-214. ACM, New York.

Raélleke, T.; Fuhr, N. (1997). Probabilistic Reason-
ing for Large Scale Databases. In: Datenbanksysteme
in Biro, Technik und Wissenschaft, pages 118-132.
Springer, Berlin et al.

Raolleke, T. (1998). Probabilistic Logical Representa-
tion and Retrieval of Complex Objects. University of
Dortmund. Dissertation (in preparation).

Ross, K. (1994). Modular Stratification and Magic Sets
for Datalog Programs with Negation. Journal of the
ACM 41(6), pages 1216-1266.

Sonnenberger, G.; Frei, H.-P. (1995). Design of a
Reusable IR Framework. In: Proc. SIGIR, pages 49—
57. ACM, New York.

