XSTEP: An XML-based Markup Language for
Embodied Agents

Zhisheng Huang, Anton Eliéns and Cees Visser

Intelligent Multimedia Group
Division of Mathematics and Computer Science
Vrije University Amsterdam
De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
{huang,eliens,ctv}@cs.vu.nl

Abstract

In this paper we propose a XML-based markup language for embodied agents, called XSTEP, based
on the scripting language STEP. XSTEP is XML-encoded STEP. STEP is developed on the formal se-
mantics of dynamic logic, and has been implemented in the distributed logic programming language DLP,
a tool for the implementation of 3D web agents. In this paper, we discuss the issues of markup language
design for embodied agents and several aspects of the implementation and application of XSTEP.

Keywords: embodied agents, avatars, humanoids, H-anim, STEP, XSTEP, XML

Contents

1

2

Introduction

Design of Markup Languages for Embodied Agents

2.1 What XSTEP wants tohave e

2.2 What XSTEP does not want to become

2.3 A Recommended Reference System for XSTEP
2.3.1 Direction Reference
2.3.2 Body Reference e
2.3.3 Time Reference e

XSTEP:XML-encoded STEP

3.1 Actions Operators e
3.2 High-level Interaction Operators
3.3 Example: Walk and its Variants Lo L L o

XSTEP: Components and Implementation
4.1 Components of XSTEP
4.2 TImplementation of XSTEP e

Conclusions
5.1 CompariSon e e
5.2 Further work e

Appendix A: XSTEP DTD

Appendix B: XSTEP XSL: translation of XSTEP into STEP

[

o NN

(=2 e

11
12
12

14

17

1 Introduction

Embodied agents are autonomous agents which have bodies by which the agents can perceive their world
directly through sensors and act on the world directly through effectors. Embodied agents whose experienced
worlds are located in real environments, are usually called cognitive robots [19]. Web agents are embodied
agents whose experienced worlds are the Web; typically, they act and collaborate in networked virtual
environments. In addition, 3D web agents are embodied agents whose 3D avatars can interact with each
other or with users via Web browsers [11].

Embodied agents usually interact with users or each other via multimodal communicative acts, which
can be non-verbal or verbal. Gestures, postures and facial expressions are typical non-verbal communicative
acts. One of the main applications of embodied agents are virtual presenters, or alternatively called pre-
sentation/conversation agents. These agents are designed to represent users/agents in virtual environments,
like virtual meeting spaces, or virtual theaters, by means of hypermedia tools as part of the user interface.

These kinds of applications appeal for human markup languages for multimedia presentations. These
markup languages should be able to accommodate the various aspects of human-computer interaction, includ-
ing facial animation, body animation, speech, emotional representation, and multimedia. In [7], we outline
the requirements for a software platform supporting embodied conversational agents. These requirements
encompass computational concerns as well as presentation facilities, providing a suitably rich environment
for applications deploying conversational agents.

The avatars of 3D web agents are typically built in the Virtual Reality Modeling Language (VRML)!.
These avatars are usually humanoid-like ones. The humanoid animation working group? proposes a specifica-
tion, called H-anim specification, for the creation of libraries of reusable humanoids in Web-based applications
as well as authoring tools that make it easy to create humanoids and animate them in various ways. H-anim
specifies a standard way of representing humanoids in VRML. We have implemented STEP for H-anim based
humanoids in the distributed logic programming language DLP [3, 5]. DLP is a tool for the implementation
of 3D intelligent agents [13, 14].

STEP introduces a Prolog-like syntax, which makes it compactable with most standard logic programming
languages, whereas the formal semantics of STEP is based on those in dynamic logic [10]. Thus, STEP has a
solid semantic foundation, in spite of a rich number of variants of the compositional operators and interaction
facilities on the worlds.

In this paper, we propose a XML-based markup/scripting language for embodied agents, called XSTEP,
based on the scripting technology STEP. Thus, XSTEP is XML-encoded STEP. In this paper, we discuss
the issues of markup language design for embodied agents and several aspects of the implementation and
application of XSTEP.

This paper is organized as follows: Section 2 discusses the general requirements on a markup language
for embodied agents, and examine in what extend the scripting language STEP would satisfy these require-
ments. Section 3 proposes the language XSTEP, namely, the XML-encoded STEP, and discuss the examples.
Section 4 discusses the components of XSTEP and its existing implementation. Section 5 compares XSTEP
with other markup/scripting languages, discusses the future work, and concludes the paper.

2 Design of Markup Languages for Embodied Agents
2.1 What XSTEP wants to have

We consider the following requirements for the design of the markup language for embodied agents.

Temporary The specification of communicative acts, like gestures and facial expressions usually involve
the changes of geometrical data with time, like ROUTE statements in VRML, or movement equations,
like those in the computer graphics. A markup language for the presentation of embodied agents should be
designed to base on a solid temporal semantics. A good solution is to use existing temporal models, like those
in temporal logics or dynamic logics. The scripting language STEP, thus, the markup language XSTEP, is

Lhttp://www.vrml.org
2http://www.h-anim.org

based on the semantics of dynamic logics. The typical temporal operators in STEPare: the sequential action
seq and the parallel action par. Thus, in XSTEP, we have the corresponding tags <par> and <seq>.

Agent-orientation Markup languages for embodied agents should be different from those markup lan-
guage for general multimedia presentation, like SMIL. The formers have to consider the expressability and
capability of their targeted agents. However, It’s not our intention to design a markup language with fully-
functional computation facilities, like other programming languages as Java, DLP or Prolog, which can be
used to construct a fully-functional embodied agents. we separate external-oriented communicative acts
from internal changes of the mental states of embodied agents because the former involves only geometrical
changes of the body objects and the natural transition of the actions, whereas the latter involves more
complicated computation and reasoning. The markup language is designed to be a simplified, user-friendly
specification language for the presentation of embodied agents instead of for the construction of a fully func-
tional embodied agent. A markup/scripting language should be interoperable with a fully powered agent
implementation language, but offer a rather easy way for authoring. This kind of interaction modes can be
achieved by the introduction of high-level interaction operators, like those in dynamic logic. The typical
higher level interaction operators are: the operator ’do’ and the operator 'conditional’. In XSTEP, these
two operators are presented as two markup tags <do> and <if_then_else> respectively, which are discussed
in the section 3.

Prototypability The presentation of embodied agents usually consists of some typical communicative
acts, say, a presentation with greeting gesture. The specification of the greeting gesture can also be used for
other presentation. Therefore, a markup language for embodied agents should have the re-usability facilities.
XML-based markup languages offer a convenient tool for the information exchange over the Web. Thus,
an inline hyperlink in the markup language is an easy solution for this purpose. That would lead to the
design of prototypability of markup languages, like the internal/external prototypes in VRML. The scripting
language STEP is designed to be a rule-based specification system. Scripting actions are defined with their
own names. These defined actions can be re-defined for other scripting actions. XSTEP uses the similar
strategy like STEP for the prototypability. One of the advantages of this kind rule-based specification is
parametrization. Namely, actions can be specified in terms of how these actions cause changes over time to
each individual degree of freedom, which is proposed by Perlin and Goldberg in [18]. Another method of
parametrization is to introduce variables or parameters in the names of scripting actions, which allows for
a similar action with different values. That is one of the reasons why STEP introduces Prolog-like syntax.
Thus, XSTEP also uses the similar method of the parametrization like that in STEP. Just like those in
Prolog, an action rule is said to be general if there exists unbounded variable on it. An instantiated rule is
one in which there exists no unbounded variable. Similarlly in Prolog, both in STEP and XSTEP, a variable
is denoted by a name starting with a upper-case character, whereas a constant is denoted by a name starting
with a lower-case character.

Ontological-relevance XSTEP is designed for the purpose of convenience, in the sense that it can be
used for non-professional authors, and the XSTEPcodes are interoperable across the Web. The principle of
the convenience implies that the use of the flexible terms, most are natural-language-like, for its reference
systems. A good solution to maintenance of the interoperability is to make XSTEP ontological-relevance. So-
called Ontology is a description of the concepts or bodies of knowledge understood by a particular community
and the relationships between those concepts. In the existing version of XSTEP, we recommend a typical
ontological specification as its reference system. This typical ontology claim is based on H-anim specification,
which is discussed in details in Subsection 2.3.

2.2 What XSTEP does not want to become

XSTEP is designed to be a markup language for the presentation of embodied agents. Naturally, XSTEP
is considered to be one which includes a lot of functionality on the relevant specifications, like on those for
2D/3D avatar, multimedia, and agents. There is a lot of work have been done on these areas. Most of them
are quite mature already. XSTEP does not want to overlap these existing work. These language/specification
can be embedded into XSTEPin some degrees. Here are several examples:

e 2D /3D graphical markup languages The specification of the scalable vector graphics (SVG)? is
a typical XML-based language for describing two-dimensional graphics. SVG drawings can serve as
XML-based 2D avatars for embodied agents. The X3D?#, the new generation of VRML, is a typical
XML-based language for 3D object specification. X3D can be used a tool for the design of XML-based
3D avatars. XSTEP codes can be used to manipulate these avatars specified by SVG/X3D. Moreover,
these SVG/X3D codes can also be embedded into XSTEPcodes. Thus, it is not necessary for XSTEP
to overlap the functionality of the languages SVG and X3D.

e XML-based multimedia markup languages The Synchronized Multimedia Integration Language
(SMIL)? is a typical XML-based multimedia specification language, which integrates streaming audio
and video with images, text or any other media type. Again, XSTEP does not want to replace/overlap
the functionality of the language SMIL. The SMIL codes can also embedded into XSTEP ones.

e Humanoid markup languages H-anim® is typically used to be a specification for humanoid based
on VRML. The body references in H-anim are well suitable to be used as an ontology of the body
parts for 3D embodied agents. Therefore, the body reference based on h-anim becomes a typical
ontological specification in STEP and XSTEP. That would be disucssed in details in Subsection 2.3.
The X3D extension of H-anim can be considered a typical XML-based Humanoid markup specification.
The HumanMarkup specification (HumanML) is another example to represent human characteristics
through XML.

e Agent specification languages Embodied agents can be constructed by means of different ways.
They can be directly built by programming languages like Java, prolog, or DLP. Agents specification
languages offer indirect ways to build embodies agents, in the sense that they are built with high-
level abstraction. The Foundation for Intelligent Physical Agents (FIPA)® produces standards for
heterogeneous and interacting agents and agent-based systems. XSTEP does not want to replace any
existing work on agent specification languages. The existing version of XSTEP is able to interact with
the internal states of embodies agents which are directly built via the high-level interact operators/tags.
The approach to interact with embodied agents built by agent specification languages is one of the
further work for XSTEP.

2.3 A Recommended Reference System for XSTEP

H-anim is a typical specification for 3D avatars based on VRML. It can serve as a point of departure for the
design of the reference system in XSTEP. In this paper, we recommend this typical ontological specification
for XSTEP.

2.3.1 Direction Reference

Based on the standard pose of the humanoid, we can define the direction reference system as sketched in
figure 1. The direction reference system is based on these three dimensions: front vs. back which corresponds
to the Z-axis, up vs. down which corresponds to the Y-axis, and left vs. right which corresponds to the
X-axis. Based on these three dimensions, we can introduce a more natural-language-like direction reference
scheme, say, turning left-arm to ’front-up’, is to turn the left-arm such that the front-end of the arm will
point to the up front direction. Figure 2 shows several combinations of directions based on these three
dimensions for the left-arm. The direction references for other body parts are similar. These combinations
are designed for convenience for non-professional authors. However, they are in general not sufficient for
more complex applications. To solve this kind of problem, we introduce interpolations with respect to the
mentioned direction references. For instance, the direction ’left_front2’ is referred to as one which is located
between ’left_front’ and ’left’, which is shown in Figure 2. Natural-language-like references are convenient

3http://www.w3.org/Graphics/SVG/

4www.web3d.org/x3d.html

Shttp://www.w3.org/AudioVideo/

6http://www.h-anim.org
Thttp://www.oasis-open.org/committees/humanmarkup/index.shtml
8http://www.fipa.org/

up

back

— left

right

front

down

Figure 1: Direction Reference for Humanoid

left back up

left up
left frong-ap,

| — ey left back
4

—?’/ left front2
o left front

left back dowm

left down

left front down

Figure 2: Combination of the Directions for Left Arm

for authors to specify scripting actions, which does not require the author have a detailed knowledge of
reference systems in VRML. Moreover, STEP also supports the orginal VRML reference system, which is
useful for experienced authors. Directions can also be specified to be a four-place tuple (XY, Z, R), say,
rotation(1,0,0,1.57). Thus, the directions consists of a complex composited types, which cannot be simplely
represented as an attributes in an XML elements. Therefore, in XSTEP, the directions are represented either
the tug 'dir’, like <dir value="front” /> or the tug 'rotation’, like <rotation x="1" y="0" z="0" r="1.57" />.
In XSTEP, the elements of the directions are defined in DTD as follows:

<!ELEMENT dir EMPTY>
<VATTLIST dir
value /Direction; #REQUIRED>

<!ELEMENT rotation EMPTY>
<ITATTLIST rotation

x CDATA #REQUIRED

y CDATA #REQUIRED

z CDATA #REQUIRED

r CDATA #REQUIRED>

2.3.2 Body Reference

An H-Anim specification contains a set of Joint nodes that are arranged to form a hierarchy. Figure 3 shows
several typical joints of humanoids. Therefore, turning body parts of humanoids implies the setting of the
relevant joint’s rotation. Body moving means the setting of the HumanoidRoot to a new position. For
instance, the action 'turning the left-arm to the front slowly’ is specified as:

<turn actor="Agent" part="1l_shoulder">
<dir value="front"/>
<speed value="slow"/>
</turn>

2.3.3 Time Reference

The proposed scripting language has the same time reference system as in VRML. For example, the action
turning the left arm to the front in 2 seconds can be specified in STEPas:

<turn actor="Agent" part="1l_shoulder">
<dir value="front"/>
<time unit="second" value="2"/>
</turn>

This kind of explicit specification of duration in scripting actions does not satisfy the parametrization
principle. STEP introduces a more flexible time reference system based on the notions of beat and tempo.
A beat is a time interval for body movements, whereas the tempo is the number of beats per minute. By
default, the tempo is set to 60. Namely, a beat corresponds to a second by default. However, the tempo
can be changed. Moreover, we can define different speeds for body movements, say, the speed 'fast’ can be
defined as one beat, whereas the speed 'slow’ can be defined as three beats. In XSTEP, the elements of the
time reference are defined in DTD as follows:

<!ENTITY % Speed "(fast|slow|intermedialvery_fast|very_slow)">

<!ELEMENT time EMPTY>

<IATTLIST time

value CDATA #REQUIRED

unit (second|minute|beat) #REQUIRED>

HumanoidRoot skullbase

r_shoulder I_shoulder

r_elbow I_elbow
r_wrist I_wrist
I_hip
r_hip
r_knee I_knee
r_ankle I_ankle

sacroiliac

Figure 3: Typical Joints for Humanoid

<!ELEMENT speed EMPTY>
<IATTLIST speed
value %Speed; #REQUIRED>

3 XSTEP:XML-encoded STEP

3.1 Actions Operators

Turn and move are two main primitive actions for body movements. Turn actions specify the change of the
rotations of the body parts or the whole body over time, whereas move actions specify the change of the
positions of the body parts or the whole body over time. In XSTEP, the elements of the primitive actions
are defined in DTD as follows:

<!ELEMENT turn ((dir|rotation), (speed|time))>
<ITATTLIST turn
actor CDATA #REQUIRED

part YBodyPart; #REQUIRED>

<!ELEMENT move ((dir|increment|position), (speed|time))>
<IATTLIST move

actor CDATA #REQUIRED

part YBodyPart; #REQUIRED>

<!ELEMENT position EMPTY>
<!VATTLIST position

x CDATA #REQUIRED

y CDATA #REQUIRED

z CDATA #REQUIRED>

<!ELEMENT increment EMPTY>
<TATTLIST increment

x CDATA #REQUIRED

y CDATA #REQUIRED

z CDATA #REQUIRED>

Similar with SMIL, XSTEP has the same timing operators/tugs: sequence action ’seq’ and parallel action
par’. Based on the semantics of dynamic logics, XSTEPhas the following action operators:

)

e non-deterministic choice operator ’choice’: the action <choice> Action, ..., Action,, </choice> de-
notes a composite action in which one of the Actiony, ...,and Action,, is executed.

e repeat operator 'repeat’: the action <repeat action="Action” times="T"/> denotes a composite
action in which the Action is repeated T times.

3.2 High-level Interaction Operators

When using high-level interaction operators, XSTEP can directly interact with internal states of embodies
agents or with external states of worlds. These interaction operators are based on a meta language which is
used to build embodied agents, say, the distributed logic programming language DLP. In the following, we
use lower case Greek letters ¢, 1,y to denote formulas in the meta language. Examples of several higher-level
interaction operators:

e execution: <do state="¢" />, make the state ¢ true, i.e. execute ¢ in the meta language.

Figure 4: Walk

e conditional: <if then_else cond="¢” then="action,” else="actiony” />: if ¢ holds, then execute
action else execute actions.

3.3 Example: Walk and its Variants

A walking posture can be simply expressed as a movement which exchanges the following two main poses:
a pose in which the left-arm/right-leg move forwardly while the right-arm/left-leg move backward, and a
pose in which the right-arm/left-leg move forwardly while the left-arm /right-leg move backward. The main
poses and their linear interpolations are shown in Figure 4. The walk action can be described in XSTEP as
follows:

<action name="walk(Agent)">
<seg>
<par>
<turn actor="Agent" part="r_shoulder">
<dir value="back_down2"/>
<speed value="fast"/>
</turn>
<turn actor="Agent" part="r_hip">
<dir value="front_down2"/>
<speed value="fast"/>
</turn>
<turn actor="Agent" part="1_shoulder">
<speed value="fast"/>
<dir value="front_down2"/>
</turn>
<turn actor="Agent" part="1l_hip">
<dir value="back_down2"/>
<speed value="fast"/>
</turn>
</par>
<par>
<turn actor="Agent" part="1_shoulder">
<dir value="back_down2"/>
<speed value="fast"/>
</turn>
<turn actor="Agent" part="1_hip">
<dir value="front_down2"/>
<speed value="fast"/>
</turn>
<turn actor="Agent" part="r_shoulder">
<dir value="front_down2"/>
<speed value="fast"/>

</turn>
<turn actor="Agent" part="r_hip">
<dir value="back_down2"/>
<speed value="fast"/>
</turn>
</par>
</seq>
</action>

Thus, a walk step can be described to be as a parallel action which consists of the walking posture and
the moving action (i.e., changing position) as follows:

<action name="walk_forward_step(Agent)">
<par><script_action name=walk_pose(Agent)/>
<move actor=Agent part="humanoidRoot">
<dir value="front"/><speed value="fast"/>
</move>
</par>
</action>

The step length can be a concrete value. For example, for the step length with 0.7 meter, it can be
defined as follows:

<action name="walk_forward_step07(Agent)">
<par><script_actionn name="walk_pose(Agent)"/>
<move actor="Agent" part="humanoidRoot">
<increment x=0 y=0 z=0.7/><speed value="fast"/>
</move>
</par>
</action>

Alternatively, the step length can also be a variable like:

<action name="walk_forward_stepO(Agent,StepLength)">
<par><script_action name="walk_pose (Agent)">
<move actor="Agent" part="humanoidRoot">
<increment x="0" y="0" z="SteplLength"/><speed value="fast"/>
</move>
</par>
</action>

Therefore, the walking forward IV steps with the StepLegnth can be defined in XSTEP as follows:

<action name="walk_forward(Agent,StepLength,N)">
<repeat action="walk_forward_stepO(Agent,StepLength)" times="N"/>
</action>

The animations of the walk based on those definitions are just simplified and approximated ones. As analysed
in [8], a realistic animation of the walk motions of human figure involve a lot of the computations which rely
on a robust simulator where forward and inverse kinematics are combined with automatic collision detection
and response. We do not want to use XSTEP to achieve a fully realistic animation of the walk, because
they are seldom necessary for most web applications. However, we would like to point out that there does
exist the possibility to accommodate some inverse kinematics to improve the realism by using STEP. That
is discussed in details in [16].

10

4 XSTEP: Components and Implementation

4.1 Components of XSTEP
A complete XSTEP code consists of these three components: library, head and embedded_code.

e library. XSTEP is mainly used to construct gesture/action libraries. These definitions of scripting
actions are located in the XSTEP library component. Namely, they are located inside the tag <
library > with or without a name of the library. The scripting actions in the libraries are usually
formatted as general rules with variables according to the requirement on the prototypability. They
can be re-usable by the calling from other internal/external actions. So-called internal actions are ones
located at the same XSTEP files, whereas the external actions are ones located at other files.

e head. The head component in XSTEP consist of the following elements:

1. world: states the url of the virtual world/avatar, or whether avatar codes are embedded, so that
XSTEP can load the virtual world into the web browser;

2. starting action: states an instantiated action so that XSTEP can start the action for the presen-
tation;

3. meta-language statement: states the meta-language for the high-level interact operators. The
meta-language is considered to be the DLP as default;

4. ontology claim: states the inline url, or indicates the embedded specification, for the ontology of
XSTEP codes. The default ontology claim is considered to the recommended reference system
based on H-anim specification in this paper.

e embedded_code. Embedded codes consists of other XML-based codes, like SVG/X3D codes which
specify virtual-worlds/avatars, or XML-based ontological specification, which will be further studied
in [17].

4.2 Implementation of XSTEP

We have implemented a STEP kernel by using the Distributed logic programming language DLP?[15]. The
scripting actions in STEP can be embedded into DLP codes of embodied agents with the STEP kernel. These
actions can be called by the interfacing predicates of the STEP kernel for the purpose of the presentation of
the embodied agents.

A STEPtestbed with respect to the default ontology, i.e., the recommended reference systems, has been
implemented. Users can use the STEP testbed on web browsers to construct their own STEP scripting
actions and test them online without any knowledge of DLP and VRML.

We have also implemented an XSTEPeditor based on IBM’s XML editor Xeena'®. This XSTEP editor
would help the author to edit XSTEP codes and translate them into STEP scripts so that they can be run
from the STEP tool, testbed, or DLP codes. A screenshot of the XSTEP editor on Xeena is shown in Figure
5.

We are now working on the development of the tool so that the STEP and XSTEP codes can be run
from a standalone file.

5 Conclusions

In this paper we have proposed the markup language XSTEP for embodied agents. Moreover, we have
discussed the requirements on the markup language design for embodied agents and several aspects of the
implementation and application of the markup language XSTEP. In the following, we would like to make a
comparison on XSTEP with other XML-based markup languages for humanoids, and discusses the further
work.

9http://wasp.cs.vu.nl/step
Ohttp://www.alphaworks.ibm.com/tech /xeena

11

S XS TEP Editor HE E]
File Edit Insert Seleeion Grammar Tools Help

D|c (B BgR| || «x[s |n[8|8|@(8] b[|-~|tli] ||| z|alw|] 2

HEEE i H
Standart
Elemerts Il C:ixmI/STEP. XML
o Al =B <wmiversion="1.0" encoding="UTF-g"?> =
= STEP
Il par B, library
lnhnlce =] ‘x action: name: walkfAgent)
. == seq
T um]
2
: mave
'»z’
}; move_bady
A ,ﬂﬂ = W tum: actor Agent, part r_hip
i (,%_%\“, dir: value: frant_down?2
{rw_then_else = ‘ I-\"Ispean' value: fast
~ repeat =] ‘:tum. actor: Agent, part |_shoulder
- = - I'\"Ispeed. value: fast
L& crint_action :

= <£,§; dir: value: front_down2
L4 B ,'tum' actor: Agent, part I_hip

A,
I e I T <q£\r dir. value: back_downZ2

lactor Agent B |\/ | speed: value: fast

part r_shoulder 5 II par |

Figure 5: Screenhot of XSTEP editor on Xeena

5.1 Comparison

XSTEP can be considered to be one of VHML (Virtual Human Markup Language)-like languages[20]. The
language VHML is designed to accommodate the various aspects of human-computer interaction, including
facial animation, body animation, speech, emotional representation, and multimedia. XSTEP and VHML
share a lot of the common goals.

One of the difference between XSTEP and the existing vhml is: XSTEP is developed based on the formal
semantics of dynamic logic, so that it has a solid semantic foundation, in spite of a rich variants of the
compositional operators and the interaction facilities on the worlds. Secondly, Prolog-like parametrization
in XSTEP would make it more suitable for the interaction with intelligent embodied agents.

An interesting examples for the animated humanoid avatars is provided by Signing Avatar.'' The script-
ing language for Signing Avatar is based on the H-anim specification and allows for a precise definition of a
complex repertoire of gestures, as examplified by the sign language for the deaf. Nevertheless, this scripting
language is of a proprietary nature and does not allow for high-order abstractions of semantically meaningful
behavior.

More comparison and related work discussion with STEP and XSTEP can be found in the papers [7, 15].

5.2 Further work

e architecture of gesture/action libraries. In the existing implementation of STEP/XSTEP, we
consider only the unique action/gesture library which is embedded in the applications. A flexible and
powerful approach is to allow inline libraries and hierarchical architecture of the libraries. A further
investigation on the architectures of gesture libraries is needed so that the libraries can be reusable
more efficiently and can be shared by different authorship.

e ontology of human markup languages. More human markup languages are expected to be pro-
posed in coming years. These languages may use completely different terminology and semantics
models. An ontological investigation for human markup language is needed so that the presentations
and their libraries can be interoperable[17].

e facial expression and emotion models in XSTEP. We are going to extend XSTEP with facial
expressions. These facial expression can be marked as the tags ’anger’, ’happy’ and ’sad’, like those

Hhttp://www.signingavatar.com

12

are suggested in VHML. The terminology can be formalized based on emotion models and further
specified by the corresponding ontological claim which is based on the survey in [17].

speech and other multimedia modes in XSTEP. We are also planning to extend XSTEP with
speech /voice and other multimedia modes, so that we can enrich embodied agents with the functionality
needed to create convincing embodied agents in a meaningful context.

References

[1]
2]

=

[17]

[18]

Alice web site: http://www.alice.org.

Bell, J., A Planning Theory of Practical Rationality. Proc. AAAT’95 Fall Symposium on Rational
Agency: Concepts, Theories, Models and Applications, 1-4.

DLP web site: http://www.cs.vu.nl/~eliens/ projects/logic/index.html.

R. Earnshaw, N. Magnenat-Thalmann, D. Terzopoulos, and D. Thalmann, Computer Animation for
Virtual Humans, IEEE Computer Graphics and Applications 18(5), 1998.

Anton Eliéns, DLP, A Language for Distributed Logic Programming, Wiley, 1992.
Anton Eliéns, Principles of Object-Oriented Software Development, Addison-Wesley, 2000.

Anton Eliéns, Zhisheng Huang, and Cees Visser, A platform for Embodied Conversational Agents based
on Distributed Logic Programming, Proceedings of AAMAS 2002 WORKSHOP: Embodied conversa-
tional agents - let’s specify and evaluate them, 2002.

Franois Faure, Gilles Debunne, Marie-Paule Cani-Gascuel, Franck Multon, Dynamic analysis of hu-
man walking, Proceedings of the 8th Eurographics Workshop on Computer Animation and Simulation,
Budapest, September 1997.

Humanoid animation working group: http://h-anim.org/Specifications/H-Anim1.1/, 2001.

D. Harel, Dynamic Logic, Handbook of Philosophical Logic, Vol. II, D. Reidel Publishing Company,
1984, 497-604.

Zhisheng Huang, Anton Eliéns, Alex van Ballegooij, Paul de Bra, A Taxonomy of Web Agents, Proceed-
ings of the 11th International Workshop on Database and Expert Systems Applications, IEEE Computer
Society, 765-769, 2000.

Zhisheng Huang, Anton Eliéns, and Paul de Bra, An Architecture for Web Agents, Proceedings of the
Conference EUROMEDIA 2001, SCS, 2001.

Zhisheng Huang, Anton Eliéns, and Cees Visser, Programmability of Intelligent Agent Avatars, Pro-
ceedings of the Autonomous Agents’01 Workshop on Embodied Agents, 2001.

Zhisheng Huang, Anton Eliéns, and Cees Visser, 8D Agent-based Virtual Communities, Proceedings of
the 2002 Web 3D Conference, ACM Press, 2002.

Zhisheng Huang, Anton Eliéns, and Cees Visser, STEP: a Scripting Language for Embodied Agents,
submit to the workshop of lifelike animated agents, Tokyo, 2002.

Zhisheng Huang, Anton Eliéns, and Cees Visser, STEP: a Scripting Language for Em-
bodied Agents (full version), WASP Research Report, Vrije University Amsterdam, 2002.
http://wasp.cs.vu.nl/step/paper/script.pdf.

Zhisheng Huang, Anton Eliéns, and Cees Visser, An ontological investigation on human markup lan-
guages, in preparation, 2002.

K. Perlin, and A. Goldberg, Improv: A System for Scripting Intereactive Actors in Virtual Worlds,
ACM Computer Graphics, Annual Conference Series, 205-216, 1996.

13

[19] Stuart C. Shapiro, Eyal Amir, Henrik Grosskreutz, David Randell, and Mikhail Soutchan-
ski, Commonsense and Embodied Agents: A Panel Discussion, Common Sense 2001: The
Fifth International Symposium on Logical Formalizations of Commonsense Reasoning, Courant
Institute of Mathematical Sciences, New York University, New York, NY, May 20-22, 2001.
http://www.cs.buffalo.edu/~shapiro/Papers/commonsense-panel . pdf

[20] VHML web site: http://www.vhml.org.

[21] WASP project home page: http://wasp.cs.vu.nl/wasp.

6 Appendix A: XSTEP DTD

<!-- XSTEP DTD, version 0.35-->

<!ENTITY % BodyPart "(1_shoulder|r_shoulder|1l_hiplr_hip|l_elbow|r_elbow|l_knee|r_knee]|
1_wrist|r_wrist|1l_ankle|r_ankle|humanoidRoot|skullbase|sacroiliac)">
<!ENTITY % Direction "(front|back|left|right |up|down|back_down2|back_down|front_down2 |

front_down|front_downl|back_up|front_up|turn_90|turn_45|turn_180|
turn_270|turn_360|turn_n90|turn_n45|turn_n180|turn_n270|turn_n360|
front_right|front_right2|front_rightl|back_down_turn_90]|
left_back_down_turn_90|right_back_down_turn_n90|left_front_down_turn_9(
left_front_down|right_front_down|down_from_front|up_via_center|
up_via_right|up_via_side|up_via_left|side_upl|side|left_upl|side_down]|
left_down|side2_down|left2_down|sidel_down|leftl_down|center_up)">

<!ENTITY % Speed "(fast|slow|intermedialvery_fast|very_slow)">
<!ENTITY 7% Operator "(do|if _then_else|repeat)">
<!ENTITY % Action "(seq | par | choice | turn | move |move_body |do | if_then_else |

repeat | script_action|tempo)">
<!ENTITY % MoveElementl "((dir|increment|position), (speed|time))">
<!ENTITY % MoveElement2 "((speed|time), (dir|increment|position))">
<IENTITY % MoveElement " (%MoveElementil; | %MoveElement2;)">

<!ENTITY % TurnElementl "((dir|rotation), (speed|time))">
<!ENTITY % TurnElement2 "((speed|time), (dir|rotation))">
<VENTITY % TurnElement " (%TurnElementl; | %TurnElement2;)">

<!ELEMENT step (head?, library+, embedded_code?)>
<!ELEMENT head (world?,start?,meta_language?,ontology_claim?)>

<!ELEMENT world EMPTY>
<VATTLIST world

url CDATA #IMPLIED
embedded (yes|no) #IMPLIED
>

<!ELEMENT start EMPTY>
<VATTLIST start

action CDATA #REQUIRED
library CDATA #IMPLIED
>

<!ELEMENT meta_language EMPTY>

14

<VATTLIST meta_language
value (dlpljavalprolog) #REQUIRED
>

<!ELEMENT ontology_claim EMPTY>
<IATTLIST ontology_claim

name CDATA #REQUIRED

url CDATA #IMPLIED

embedded (yes|no) #IMPLIED

>

<!ELEMENT embedded_code (avatar?,ontology?)>

<!ELEMENT avatar ((svgl|x3d)7)>
<IATTLIST avatar

name CDATA #IMPLIED

>

<!ELEMENT ontology CDATA>

<!ELEMENT tempo EMPTY>
<VATTLIST tempo

value CDATA #REQUIRED
>

<!ELEMENT library (action)* >
<VATTLIST library

name CDATA #IMPLIED

>

<V/ELEMENT action %Action;>
<IATTLIST action

name CDATA #REQUIRED

>

<V/ELEMENT turn %TurnElement;>
<IPATTLIST turn
actor CDATA #REQUIRED

part YBodyPart; ’1_shoulder’>

<!ELEMENT move %MoveElement; >
<!ATTLIST move

actor CDATA #REQUIRED

part 7%BodyPart; °’1_shoulder’>

<!ELEMENT move_body %MoveElement ;>
<!ATTLIST move_body
actor CDATA #REQUIRED>

15

<!ELEMENT time EMPTY>

<IATTLIST time

value CDATA #REQUIRED

unit (second|minute|beat) #REQUIRED>

<!ELEMENT speed EMPTY>
<VATTLIST speed
value %Speed; #REQUIRED>

<!ELEMENT dir EMPTY>
<VATTLIST dir
value %Direction; #REQUIRED>

<!ELEMENT position EMPTY>
<VATTLIST position

x CDATA #REQUIRED

y CDATA #REQUIRED

z CDATA #REQUIRED >

<!ELEMENT rotation EMPTY>
<ITATTLIST rotation

x CDATA #REQUIRED

y CDATA #REQUIRED

z CDATA #REQUIRED

r CDATA #REQUIRED>

<!ELEMENT increment EMPTY>
<!'ATTLIST increment

x CDATA #REQUIRED

y CDATA #REQUIRED

z CDATA #REQUIRED >

<!ELEMENT script_action EMPTY >
<IATTLIST script_action
name CDATA #REQUIRED>

<!ELEMENT do EMPTY >
<IATTLIST do
state CDATA #REQUIRED>

<!ELEMENT if_then_else EMPTY >
<IATTLIST if_then_else
condition CDATA #REQUIRED
then CDATA #REQUIRED

else CDATA #REQUIRED>

<!ELEMENT repeat EMPTY >
<IATTLIST repeat

action CDATA #REQUIRED
times CDATA #REQUIRED>

16

<!ELEMENT par (%Action;)+ >
<!ELEMENT seq (%Action;)+ >

<!ELEMENT choice (%Action;)+ >

7 Appendix B: XSTEP XSL: translation of XSTEP into STEP

<?xml version="1.0"7>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">
<xsl:output method="text"/>

<xsl:template match="/step">
%% STEP script

%% Created by Xstep.xsl
<xsl:apply-templates/>

%% End of STEP script
</xsl:template>

<xsl:template match="head">

%% created from the head of xstep
<xsl:apply-templates/>

%hend of the head

</xsl:template>

<xsl:template match="library">

%% start of the action library <xsl:value-of select="@name"/>
<xsl:apply-templates/>

%% end of the action library <xsl:value-of select="@name"/>
</xsl:template>

<xsl:template match="action">

script(<xsl:value-of select="@name"/>,Action):-
Action =<xsl:apply-templates/>,

]

</xsl:template>

<xsl:template match="start">
start_action(<xsl:value-of select="Qaction"/>).
</xsl:template>

<xsl:template match="world">

worldURL (<xsl:value-of select="Qurl"/>).
</xsl:template>

<xsl:template match="meta_language">

meta_language (<xsl:value-of select="@value"/>).
</xsl:template>

<xsl:template match="seq">

17

seq([<xsl:apply-templates/>
1)<xsl:if test="not(position()=last())">,</xsl:if></xsl:template>

<xsl:template match="par">
par ([<xsl:apply-templates/>
1)<xsl:if test="not(position()=last())">,</xsl:if></xsl:template>

<xsl:template match="choice">
choice([<xsl:apply-templates/>
1)<xsl:if test="not(position()=last())">,</xsl:if></xsl:template>

<xsl:template match="dir"><xsl:value-of select="@value"/></xsl:template>
<xsl:template match="speed"><xsl:value-of select="@value"/></xsl:template>

<xsl:template match="increment">increment (<xsl:value-of select="0x"/>,
<xsl:value-of select="@y"/>,<xsl:value-of select="0z"/>)</xsl:template>

<xsl:template match="position">position(<xsl:value-of select="@x"/>,
<xsl:value-of select="Qy"/>,<xsl:value-of select="0z"/>)</xsl:template>

<xsl:template match="rotation">rotation(<xsl:value-of select="@x"/>,
<xsl:value-of select="@y"/>,<xsl:value-of select="0z"/>,
<xsl:value-of select="Qr"/>)</xsl:template>

<xsl:template match="time">time(<xsl:value-of select="@value"/>,
<xsl:value-of select="@unit"/>)</xsl:template>

<xsl:template match="turn">

turn(<xsl:value-of select="Qactor"/>, <xsl:value-of select="@part"/>,

<xsl:apply-templates select="(dir|rotation)"/>,<xsl:apply-templates select="(speed|time)"/>)
<xsl:if test="not(position()=last())">,</xsl:if></xsl:template>

<xsl:template match="move">

move (<xsl:value-of select="@actor"/>, <xsl:value-of select="@part"/>,
<xsl:apply-templates select="(dir|position|increment)"/>,
<xsl:apply-templates select="(speed|time)"/>)

<xsl:if test="not(position()=last())">,</xsl:if></xsl:template>

<xsl:template match="move_body">

move_body (<xsl:value-of select="@actor"/>,

<xsl:apply-templates select="(dir|position|increment)"/>,
<xsl:apply-templates select="(speed|time)"/>)

<xsl:if test="not(position()=last())">,</xsl:if></xsl:template>

<xsl:template match="script_action">
script_action(<xsl:value-of select="@name"/>)

<xsl:if test="not(position()=last())">,</xsl:if></xsl:template>

<xsl:template match="if_then_else">
if_then_else(<xsl:value-of select="Q@condition"/>,

18

<xsl:value-of select="@then"/>, <xsl:value-of select="Qelse"/>)
<xsl:if test="not(position()=last())">,</xsl:if></xsl:template>

<xsl:template match="do">
do(<xsl:value-of select="@state"/>)
<xsl:if test="not(position()=last())">,</xsl:if></xsl:template>

<xsl:template match="repeat">

repeat (<xsl:value-of select="Q@action"/>,

<xsl:value-of select="@times"/>)

<xsl:if test="not(position()=last())">,</xsl:if></xsl:template>

<!-- ignore all not matched -—>
<!-- xsl:template match="*" priority="-1"/ -->

</xsl:stylesheet>

19

