

Game Development with DirectX 9

Marco Bouterse

mcbouter@cs.vu.nl
1142828

Vrije Universiteit, Amsterdam
Faculty of Exact Sciences

October 2005

Bachelor Project Computer Science

Supervised by Dhr. Anton Eliëns

 2

Contents

CONTENTS... 2

INTRODUCTION... 3

CHAPTER 1: DIRECTX... 4

1.1 HISTORY .. 4
1.2 DIRECTX 9 .. 4
1.3 ORGANIZATION OF DIRECTX .. 4

CHAPTER 2: DESIGN OF THE LIBRARY.. 6

2.1 OVERVIEW... 6
2.2 SUPPORT COMPONENT .. 7
2.3 WINDOW COMPONENT .. 7
2.4 SOUND COMPONENT ... 7
2.5 INPUT COMPONENT ... 7
2.6 GRAPHICS COMPONENT .. 7

CHAPTER 3: IMPLEMENTATION OF THE LIBRARY... 8

3.1 PROGRAMMING FOR WINDOWS... 8
3.2 GRAPHICS COMPONENT (2D) .. 9
3.3 THE INPUT COMPONENT.. 10
3.4 THE AUDIO COMPONENT .. 10
3.5 GRAPHICS COMPONENT (3D) .. 11
3.6 SOUND COMPONENT: CMUSIC.. 14
3.7 USEFUL EXTENSIONS .. 14

CHAPTER 4: DESIGN OF THE GAME ... 16

4.1 GENERAL OVERVIEW .. 16
4.2 TARGET SYSTEM AND REQUIREMENTS ... 16
4.3 THEME: GRAPHICS AND SOUND.. 16
4.5 MAIN MENU .. 16
4.6 PLAYING A GAME .. 16
4.7 CODE DESIGN .. 17

CHAPTER 5: PROGRAMMING THE GAME... 18

5.1 GAMEMAIN ... 18
5.2 CGAMEWINDOW ... 18
5.3 CGAME .. 18
5.4 CINTRO.. 19
5.5 CMENU.. 19
5.6 CTERRAIN ... 19
5.7 CPLAYER ... 20
5.8 CBONUSOBJECT .. 20
5.9 CUSERINTERFACE ... 20

CHAPTER 6: CONCLUSIONS... 21

APPENDIX A: CONTENTS OF THE CD-ROM .. 22

APPENDIX B: TECHNICAL INFORMATION.. 24

APPENDIX C: RESOURCES.. 25

APPENDIX D: LIBRARY DOCUMENTATION.. 26

 3

Introduction

Since the invention of the videogame in the 50s and 60s, which is most clearly
marked by the creation of the well-known game “Pong”, it took a few more decades
for this new form of multimedia to really break through. With the introduction of
Personal Computers in the early 80s, the need for entertainment on this new medium
also started to grow. Over the past years the game industry has rapidly grown into a
billion-dollar industry, making computer games a driving force in the multimedia
sector. While in the early days it was possible for a single person to create a
commercial game, nowadays large development teams work multiple years with
budgets of millions of dollars. Although the market for console games has outgrown
the PC game market, the latter is still very important. In this market, DirectX is the
language to speak. Almost every PC game has been developed using DirectX. The
only concurrent, OpenGL, is sometimes also supported, but very few games are
OpenGL only.

The goal of this project is to explore the possibilities of DirectX by building a library
of wrapper classes on top of it. This library should hide the complex details of
DirectX and provide simple easy-to-use functions. To demonstrate the use and
functionality of the resulting library a small demonstration game will also be created.
The library should be a reusable, extendable basis that can be used as the starting
point of building games or other DirectX based multimedia application.

The organization of this document is as follows. Chapter 1 provides a brief history of
DirectX and shows its basic structure. In chapter 2 the design for the library is
presented. Chapter 3 provides an overview of the most important functions of the
library. The design of the game is explained in chapter 4. The working of the game
classes is the subject of chapter 5. Finally an evaluation of the project is given in
chapter 6. Additional information and a complete overview of the library can be
found in appendices A, B, C and D.

 4

Chapter 1: DirectX

This chapter gives a short history of the DirectX library, describes the biggest
changes in version 9 and gives an overview of the structure of DirectX.

1.1 History
The first version of DirectX was released in 1995 by Microsoft to give game
developers the performance in Windows they could only get through DOS before,
without having to support all kinds of different hardware. In version 2.0 Direct3D was
added to support the hardware capabilities of upcoming video cards and the separate
graphic accelerator cards that appeared in that period (3DFX). With DirectX 3.0
Microsoft finally won over the game development community by creating an API
(Application Programming Interface) that was efficient, abstract and not hard to use
[2]. At the time DirectX 5.0 was released (for some reason there has never been a
version 4.0) most of the hardware manufacturers supported and developed drivers for
it. In DirectX 6.0 the Retained Mode was dropped and Immediate Mode became the
standard graphics mode to use. The changes in version 7.0 were mostly dealing with
the new hardware Transformation & Lighting features of the new generation video
cards. DirectX 8.0 was the first version since 5.0 that introduced major changes. The
former separate graphics components Direct3D and DirectDraw (2D) were merged
into the new component DirectX Graphics and a lot of new features were introduced
to enable support for the latest video cards. One of the biggest changes was the
introduction of vertex and pixel shaders (up to version ps_1_4 in DirectX 8.1).

1.2 DirectX 9
The API did not change much in version 9.0, but the biggest improvement is the
introduction of better vertex and pixel shaders. Standards up to vs_3_0 and ps_3_0 are
supported and a High-Level Shader Language (HLSL) has been introduced. The
HLSL is a special shader programming language that replaces the old assembly like
syntax [1]. The latest version is DirectX 9.0c and is freely available from the
Microsoft website. The SDK that is needed to create programs that use DirectX is also
freely available. It is continuously being improved to support the latest developments
in graphics card technologies.

1.3 Organization of DirectX
DirectX 9 consists of six different components that can be used more or less
independently. For example: it is possible to use the input component of DirectX with
the OpenGL library for the graphics. The components of DirectX are:

• DirectX Graphics. Introduced in DirectX 8.0 merging DirectDraw and
Direct3D to simplify the library and use the memory more efficient. This
component handles everything that the graphics card can produce.

• DirectX Audio. Also introduced in version 8.0 merging DirectSound and

DirectMusic. This component is an interface to the sound card.

 5

• DirectInput. This component takes care of all input devices that a computer
can handle. From mouse and keyboard to steering wheel and joysticks. It also
handles force feedback effects.

• DirectPlay. This is the networking component and provides an interface to

program multiplayer games.

• DirectShow. This component supports capturing and playback of multimedia
streams. Formerly known as DirectX Media.

• DirectSetup. A small component that can check for the installed version of

DirectX and can install another version. Useful for writing install programs.

To implement DirectX, Microsoft used a Hardware Abstraction Layer (HAL) and the
Component Object Model (COM). These techniques enable maximum speed, a
common interface and backward compatibility. The HAL is an abstraction layer right
on top of the graphics card driver. The HAL represents the capabilities of a graphics
card. Games can check the HAL for those capabilities and switch certain features on
or off. A fallback method for switched off features may be implemented. Up to
DirectX 7.0 a Hardware Emulation Layer (HEL) that could emulate certain features in
software was provided. Since DirectX 8.0 an interface to use an HEL or pluggable
software device is provided, but it is (almost) never used. Software developers have to
write it themselves. This makes games using DirectX 8 or higher very dependent on
what the graphics card can provide.

To handle version changes and backward compatibility the COM interface design is
used. A COM component is normally a .DLL (Dynamic Link Library) file that can be
accessed in a consistent and defined way. It has the following key properties:

• COM interfaces can never change.
• COM is language independent
• Only the methods of a COM component are accessible, never the data.

Every time that a component is changed, a new interface has to be provided. The old
interfaces still have to be supported, which result in the ability to play DirectX 3
games if you have DirectX 9 installed on your computer. DirectX 9 introduced
IDirect3D9 as the interface for Direct3D, but still supports IDirect3D2, which was
used in DirectX 3.
Using this technology Microsoft has created a very powerful library that gives game
developers an interface to get the ultimate performance out of the latest hardware.

 6

Chapter 2: Design of the Library

This chapter presents the design of the library of classes built on top of DirectX 9. First an overview of
the library is given, showing the different components and its classes. Next the different components
are briefly discussed. The design presented here is heavily based on the library design from the book
“Game Programming All in One” [2]. I have used the library presented in this book as the basis for this
project and adapted it to support DirectX 9 (the book uses DirectX 8). Where the book only goes into
2D graphics, I have extended the Graphics component considerably to support 3D too, using several
tutorials [7-10] and the book “Beginning Direct3D Game Programming” [1]. The purpose of this
library is to create a reusable code-base that can relieve the game programmer from having to deal with
the inner workings of DirectX and have more understandable game code.

2.1 Overview
Figure 2.1 shows the overall design of the library, which consists of five more or less
separate components.

Figure 2.1 - Overview of the library

The Support component handles supportive tasks like error checking and timing. The
Window component takes care of the creation of the base window (needed for every
Microsoft Windows compatible application) and hides the Windows specific code.
The Sound component provides classes to play well-known audio formats like WAV,
MP3 and MIDI and also supports CD playback. The Input component provides an
interface to the keyboard, the mouse and game-specific input devices (like gamepads
or joysticks). The biggest and most complicated is the Graphics component, which
contains classes for rendering 2D and 3D graphics and special effects.

 7

2.2 Support Component
The Support Component contains classes that are not directly using DirectX, but are
needed for the rest of the library. The CTimer class provides time and date
functionality. CDatatypes defines a couple of useful macro’s and datatypes,
providing names that contain the size and type of the datatype to improve portability.
Finally CError contains the definitions of all possible errors that can be generated
by the library.

2.3 Window Component
The Window Component contains a single class, CWindow, that takes care of all
Windows related code that is needed to set up a basic window, needed for any
application to run on the Windows platform. It provides a few simple calls to quickly
setup an empty window.

2.4 Sound Component
The Sound Component has a main class CSoundPlayer, that initializes the
DirectSound component and contains three other classes: CSound, CMusic and
CCDPlayer. CSound represents a sound buffer for sound effects in the WAV format
and provides functionality to control pan, volume and pitch. CMusic adds support for
other music formats like MP3 and Midi, that are mainly used for background music.
Finally CCDPlayer provides an interface to playing audio CD’s using the
computer’s CD-ROM player.

2.5 Input Component
The Input Component’s main class is CInputManager that initializes the
DirectInput component. CKeyboard acts as an interface to the keyboard, CMouse
provides the same function for the mouse and CJoystick provides an interface to
game control devices like gamepads and joysticks.

2.6 Graphics Component
The most complex component is the Graphics Component, that is initialized by the
CScreen class. CRGBAImage, CSurface, CTexture, CTemplateSet,
CAnimation, CABO and CFont provide 2D functionality. They represent image
buffers, background images, textures, animations and text. CABO uses most of the
other classes to represent a 2D animated object, that can contain multiple animations,
collision detection and more. With these classes, almost all 2D games can be built.
The other classes add 3D functionality. CCamera represents the viewer in a scene.
CWorld is an interface to the world matrix. CMaterial represents a material, used
for lighting calculations. CLight represents a light (can be a spotlight, directional
light or point light). CMesh represents a 3D model that can be loaded from a .X file
that is created with some sort of 3D modeling program. CFog represents fog, that can
be added to a scene to limit visibility or set a certain mood. CEffect represents a
shader effect that can be loaded and used to render objects with (to replace the classic
material/light method). CParticleSystem is a multipurpose special effects class
that uses point sprites to achieve effects like snow, fountains, fire or smoke. Finally
CBSPMap can be used to load 3D scenes from .BSP maps and render them.

 8

Chapter 3: Implementation of the Library

This chapter presents an overview of the most important functionality of the classes of the library and
the difficulties encountered when programming them. After each class or set of classes a test program
was created to test the working. These test programs can be found on the CD-ROM. An overview of all
test programs is given in appendix A. The order followed here is the order in which the classes were
created during the project. For an extensive overview of the classes of the library and all their functions
see appendix D in which a complete documentation is provided.

3.1 Programming for Windows
To get any application running on a computer that is running the Microsoft Windows
operating system, a window has to be created first. To show even a simple empty
window, quite some code is needed. One of the intentions of this project is to create a
library that simplifies the low-level DirectX interface and supplies a reusable base to
develop games and other multimedia applications. Therefore the first thing to do is
develop a reusable window class that provides a single call to create an empty
window.

3.1.1 Support Component
Before starting to program the window class, there are a few supporting files to create
first. CDatatypes.h contains type definitions of often used types and assigns
names to them that indicate the type, length and whether they are signed or unsigned.
For example an unsigned long (32 bits) integer becomes “u_int32”.
CError.h will contain all error definitions that can be generated by the library.
Having a unique return value for every possible error simplifies debugging and
enables testing for specific errors. As the library is being developed, all possible error
values will be added to this file.
The final supporting file is a little more complicated. CTimer is a general purpose
timer class that uses the built-in hardware timer to supply accurate timing
information. The most important function is GetDelta() that returns the time that
passed between the last two calls to Update() in seconds. This timer is very
accurate and useful for real-time applications. Finally it also supplies functions to get
the current system date and time information.

3.1.2 Window Component
After the supporting files the CWindow class can be developed. As said before this
class shields all overhead of creating an empty window and takes care of the message
processing. To create a simple window a user defined class must inherit from
CWindow and implement the virtual Frame() function. This function is called
whenever there are no messages to process, thus will normally be the place where all
the application processing and rendering is done. An instance of this class must call
Create() with the appropriate parameters to set up the window and Run() to enter
the message loop. To leave the message loop (thus quitting the application) the
Frame() function must return ‘b_false’. Additional functions to change size and
position are also provided. A detailed description of all the functions and parameters
can be found in appendix D. The first test program shows an empty window with title,
using these first classes.

 9

3.2 The Graphics Component (2D)

3.2.1 Direct3D Basics
Now that the window basics are covered, the DirectX programming can really start.
The CScreen class deals with setting up Direct3D. It hides the details of setting up a
Direct3D object and device (video adapter) by providing a simple interface. The
Init() function creates a DirectX 9 object. With the SetMode() function the
default display adapter is used to set up a window with the as parameters provided
properties. It also provides functions for clearing the screen to a certain color and
drawing some basic 2D shapes (line, square, circle). To make sure only one instance
of this class can exist it is implemented as a singleton. To demonstrate the drawing
functions a test program is created that shows a Direct3D window with a line, a
square and a circle. Every second one more vertex is added to the circle, which makes
the circle smoother.

3.2.2 Simple Surfaces
The next classes deal with 2D graphics. The first one, CRGBAImage, represents a
raw image: a buffer that contains all color information for each pixel in the image.
The important functions are LoadFromBitmap() and LoadFromTarga(), that
load image information from existing BMP and TGA files into a buffer. This class is
not entirely useful by itself, but is used by the following classes to hold image data.
The first class that uses it is CSurface, which represents a static image that can be
displayed on the screen, but has limited capabilities. It is only usable for static images
that stay inside the screen boundaries (no clipping), like backgrounds. The most
important functions are Create() and Render(), used to create and display an
image. The third test program shows all classes developed up until now in action: it
creates a window with a Direct3D screen and displays a background picture.

3.2.3 Animated Objects
CTexture also represents an image using a raw image as its source, but this image
is used more flexibly by the classes that follow to obtain images that are scalable, can
be rotated and support transparency. Create() is the most important function of
this class and off course is used to create a new texture from a raw image object. The
following class uses CTexture and is used to represent a template set, an organized
set of images, laid out on a grid. CTemplateSet uses a texture containing a grid of
images and provides access to the individual cells of the grid. It is mainly used for
animation as implemented in the CAnimation class that will be discussed next. The
important functions are Create() and GetUV(), which return the rectangle of the
texture that contains the image in a specific cell of the grid. By using a template set it
is possible to have lots of smaller images in one texture, needing only one source file,
which is more efficient. CAnimation is the class that represents a single animation
and uses a CTemplateSet object to hold the frames for the animation. Create(),
Update() and Render() are the most useful functions of this class. The
functionality of Create() and Render() is obvious, Update() advances the
animation one frame.
The final 2D graphics class puts everything together, using almost all classes that
have been created up until now. CABO represents a 2D object with support for
multiple animations, transformations (rotate, scale) and collision detection. It also
provides a single easy-to-use function to load an Animated Blittable Object (ABO)

 10

from file, hiding all details of the previous classes. LoadFromFile() accepts a file
name as a parameter, referring to a file with a specific format, that contains the
filename of a source image (containing a grid of frames), the type of image, the
transparent color (color key), the number of animations and for each animation the
number of frames and the cell coordinates of each frame. See the documentation for
CABO in Appendix D for the specifics of the format. With this class the 2D graphics
part of the library is finished and can be used to create the graphics for standard 2D
games like Tetris and BreakOut. The test program shows some of the features of the
ABO class, by displaying a very basic animation (only 2 frames).

3.3 The Input Component
Before getting into the difficulties of 3D programming, I decided to first develop the
library for the other (simpler) components of DirectX. The first one is DirectInput, the
component that deals with all input devices. This component is very important for a
game library, because it provides the property that is fundamental for games:
interactivity.

The base class in this component is CInputManager. This class just initializes the
DirectInput object of DirectX and its most import method is Init(), that takes care
of the initialization. The class is implemented as a singleton to ensure there is only
one instance at a time.

The next class is CKeyboard, that takes care of all input from the keyboard. The
Init() function initializes the device object and must always be called first.
Update() refreshes the key information and will record the current state. It must be
called before IsButtonUp() and IsButtonDown(), that are used to query the
state of a specific key. A small test program shows the use of this class. The
animation can be moved around using the arrow keys, ESC exits the test program.

The CMouse class is very similar to the keyboard class, only it has three more
functions: GetXAxis() and GetYAxis() for retrieving the relative movement of
the mouse and Clear() to reset the mouse buffer. The test program now allows
mouse control and the left and right mouse buttons rotate the animation.

The final input class is CJoystick, which represents a joystick or gamepad device.
The provided functions are comparable with the mouse except for the Init()
function that needs some extra configuration data. The test program shows the class
working and is similar to the mouse test program. During testing it appeared that this
class causes a crash if Init() is called, when there is no gamepad attached to the
computer. Unfortunately I haven’t been able to solve this problem.

3.4 The Sound Component
The next component handles sound, another very important aspect of video games.
The organization of this component is very similar to the input component.
CSoundPlayer is the entry point of the component that provides the Init()
function for initializing the DirectSound object.
CSound represents a single sound object. A sound can be loaded from a .wav file
using LoadFromFile() and played using Play() and Stop(). Additionally
there are some functions to alter the properties of the sound (frequency, volume, pan).

 11

The final class of this component does not actually use DirectX, but uses the Media
Control Interface to control CD playback functionality. The class CCDPlayer
provides the functions Eject(), Play() and Stop() to control the system’s CD
player in an recognizable way. The test program for this component shows a couple of
the functionalities. An explosion sound is repeatedly played and its properties can be
controlled using the keyboard. The CD playback is also shown, although the next
number function doesn’t seem to work really smooth: it skips more than one number.

3.5 The Graphics Component (3D)

3.5.1 Vertex Buffers
After exploring the other components of DirectX a little bit it is time to return to the
core of DirectX, Direct3D and try to do real 3D graphics programming. The
CScreen class is adapted slightly (the capability of the graphics card to do hardware
vertex processing is investigated and the result is used when creating the device
object). The first test program displays a colored triangle using a vertex buffer. This is
done by creating a buffer with vertex data (consisting of x, y , z and color
components), creating a vertex buffer and copying the vertex data into the vertex
buffer (after locking it). Using SetStreamSource() a specific pipeline on the
graphics card is assigned to the vertex buffer and with SetFVF() the format of the
vertices is set. Finally the triangle is drawn using DrawPrimitive().
The next step is to set up the perspective and the camera view. To control the
perspective a function SetPerspective() is created in the CScreen class that
accepts three parameters: field of view, near clipping plane and far clipping plane. A
special class is created to represent the camera. CCamera provides functions to set
the camera properties (eye position, the point it is looking at, up vector) and the call
SetCamera() that needs to be called every frame to position the camera according
to its current properties. To test the new class there is a little program that displays the
triangle in a perspective volume, viewed by a camera. By pressing the up and down
keys it is possible to zoom in or out.

3.5.2 Displaying Text
Before moving on with 3D, the CFont class is created, that allows for a very simple
interface to set up a font and display text with it. The important functions are Init()
to set up the type of font, SetPosition() or SetTextArea() to control the
position of the text and DrawText() to display a string in a specific color. Again
there is a test program, showing different types of fonts being used.

3.5.3 Spinning Cubes
To manipulate objects in world space, the world transformation is used to achieve
rotation, translation and scaling of objects. To provide an interface to the DirectX 9
world matrix, the CWorld class is used. This class can alter the world matrix and
provides the functions RotateX(), RotateY(), RotateZ(), Translate()
and Scale(). A test program shows the use of it by showing a colored cube that can
be manipulated by pressing certain keys. Another test program shows a small cube
orbiting a large cube plus a frames per second counter and uses time based instead of
frame based animation.

 12

3.5.4 Texture Mapping
The next step is to add textures to the cubes. We simply use the CTexture class
developed earlier to load and set the active texture. One new function is added to this
class: SetModulate() can be used to switch color modulation between texture and
object color on and off. This is demonstrated by another test program.

3.5.5 Turn on the Lights!
To create more realistic looking images, lights must be added to the scene. A class
CLight is created that provides the functionality to do this. The static function
EnableLighting() can be used to enable or disable lighting in DirectX. Another
static function SetAmbientLight() can be used to add ambient light (constant
light factor that is everywhere in the scene). With the Create() function, the
parameter specifies the type of light that should be created. There are three different
types of lights: a point light has a position and emits light in all directions, a
directional light has no position, but emits parallel rays of light in a specific direction
(like the sun), finally a spot light has a position, a direction and a cone that limits the
range of the light (like a point light, only focussed on a specific point). The
Switch() function is the virtual light switch: if the light is on, it will turn the light
off and vice versa. The rest of the functions can be used to manipulate the light
properties. To use light on objects in the scene, these objects must have material
properties set. Therefore the class CMaterial is created, that is used to represent a
material. After creating a material it can be used to call the SetActive() function
and draw the object that uses the material. The test program that shows this has also a
couple of modifications in the way that the cubes are drawn. The vertex buffer now
stores normals instead of colors and because the normals differ per face of the cube,
fewer vertices can be shared, so each face is drawn separately now (before all sides
were drawn as one triangle strip).

3.5.6 Complex Models
Until now I used a vertex buffer in the test programs to render cubes. The CMesh
class provides support for more complex models in an easy way. The LoadFromX()
function can read a 3D model from a file in the Microsoft .X format. This type of file
can be generated as or converted from output of 3D Modeling programs like
3DStudio MAX or Maya. After loading the model is rendered by simply calling the
Render() function. In the test program I used the tiger model that is used in the
DirectX SDK sample programs.

3.5.7 Advanced Camera
To support the camera control needs for gaming, the CCamera class developed
earlier is extended with a couple of functions. Move() and Strafe() allow camera
movement in the [x, z]-plane. Move() moves the camera forward or backward and
Strafe() takes the camera to the left or right. Rotate() comes in two flavors:
the first one takes an angle and a rotation vector as parameters and rotates the camera
around it’s own position, the second takes as extra parameter a point and rotates the
camera around this point. The second is useful for creating 3rd person games. The
rotating functions use quaternions to calculate the rotations. Quaternions are four
dimensional vectors, the fourth component being a rotation. The advantage of using
quaternions is that they are faster and require less code. Again there is a test program
to show the new camera features being used to create controls for a 1st person view.

 13

3.5.8 Fog
Before getting to advanced effects, the CFog class is created to allow simple fog
effects. The further away an object in the scene is, the more it will be blended with the
fog color, effectively reducing the visibility range. It can be used to boost
performance (all objects further than the fog range don’t need rendering or just to add
realistic looking fog effects. In the test program the fog color is the same as the
background color, making the model seem to disappear slowly when the camera goes
further away.

3.5.9 Shader Effects
Up until now I created classes to support the old fashioned way of creating lighting
effects. With the advent of DirectX 8.1 vertex and pixel shaders were introduced.
Vertex shaders should replace the task of the former Transformation & Lighting phase
in the graphics pipeline and pixel shaders are there to create effects formerly achieved
by multi-texturing. To write these shaders DirectX 9 has introduced a High Level
Shader Language (HLSL), a C-like programming language that can be used to write
all kinds of effects. To load these effect files into a scene, the CEffect class is
created. It has the Create() function to create a new effect, the SetMatrix() and
SetVector() functions to provide variables to the shader programs, the
SetTechnique() function to select a specific rendering technique (defined in the
shader program) and the RenderMesh() function that is capable of rendering a
mesh using the selected shader technique. The big advantage is that a different effect
can be achieved by loading a different file and without having to re-build the
program. The first of the shader test programs shows a very basic shader that
transforms the vertices using the current world, view and projection matrix and
provides ambient lighting only, so every pixel is lit the same amount. The second test
program adds diffuse lighting: there is a single directional light that shines on the
model. The third basic test adds specular light to the lighting model, resulting in the
appearance of reflection of light off the model. Finally the last basic shader test adds a
texture to the model.
I also extended the CTexture class with a CreateFromFile() function to load
textures directly from file, instead of first having to create a raw image. It also
supports more file types.
The final shader program uses a point light instead of a directional light, which adds
an attenuation factor to the light calculation. The further away the light source is, the
less influence it has on the model.

3.5.10 Particle System
To create special effects like fire, sparks, snowflakes, smoke, etc. often a particle
system is used. A particle system is a collection of individual elements (particles) that
have individual attributes like position, speed, direction and color. The system itself
also has properties like origin and external forces. By manipulating these properties
all kinds of effects can be simulated. The CParticleSystem class is an
implementation of a multi-purpose particle system. It can be configured with a
ParticleInfo structure, containing all kinds of parameters that are used for
creating new particles. These parameters can also be altered while the particle system
is active to provide even more flexibility. A test program shows the particle system in
action. By pressing the buttons 1-4, a different effect can be chosen.

 14

3.5.11 Viewports
Without using multiple computers and networking, it is still possible to create
multiplayer games. This is done by splitting the screen in multiple viewports, that
each show a different part of the game world, related to each player. The
CViewPort class allows the creation of multiple viewports. With Create() a new
viewport with specified properties is created. Using viewports changes the normal
way of rendering between StartFrame() and EndFrame(). Instead for each
viewport the Begin() function must be called, that takes the clear color for that
viewport as a parameter. After rendering to the viewport is done, the End() function
must be called, unless it is the last viewport within the frame. After the rendering for
the last viewport has been done EndLastViewPort() must be called. This
function takes care of presenting everything to the screen.

3.6 The Sound Component: CMusic
To support a wider array of audio formats, like MP3 and MIDI, the Sound Component
is extended with an extra class, CMusic, that provides that kind of functionality. It
provides two functions to load these formats: LoadMP3() and LoadMidi(). The
latter also supports the WAV format as well. With the Play() function, playback is
started and Stop() stops it. Finally the IsPlaying() function can be used to
check if the music is currently playing.

3.7 Useful Extensions

3.7.1 Collision Detection
A very important aspect of game programming is collision detection: the technique
that is used to find out when two objects collide with each other. Although this is not
a real graphics issue the DirectX library has some functions to support it and therefore
I also added basic support for it to the library. The method used is called Axis Aligned
Bounding Box (AABB), which creates a box that is aligned with all three axis around
game objects and uses two points of this box (minimum and maximum bounds) to do
simple collision detection. The collision detection functionality is added to the CMesh
class. InitBoundingBox() calculates the AABB in model space. This function
should be called after creating the mesh. UpdateBoundingBox() takes the
current world matrix as a parameter and transforms the AABB to a Bounding Box in
world space (doesn’t need to be axis aligned anymore) and transform this box back to
an AABB. This function should be called before rendering the mesh. To check for
collisions the function CheckCollisionWith() can be used, that takes another
mesh as parameter. This method of collision detection is not very accurate, but it is
very fast and realizes acceptable results.

3.7.2 Binary-Space Partitioning Maps
To speed up the rendering of game worlds, often Binary-Space Partitioning (BSP)
Trees are used to sort and store the geometry. By storing polygons using their
relations (in front of, in back of another) the engine can quickly decide which ones to
draw and which ones not. It also offers the possibility to do collision detection with
world geometry. The CBSPMap class only supports the loading and rendering of
Quake 3 BSP maps using textures and light maps. It doesn’t offer support for collision
detection and model loading. Only TGA textures are supported.

 15

3.7.3 Lost Device Handling
Whenever the bit depth of the screen is changed while in windowed mode, or the
application loses focus while in full screen mode, the Direct3D device maintained by
CScreen changes from operational state to lost state. This can be detected by
checking the return value of EndFrame() or (EndLastViewPort() when
viewports are used). The application must take steps to recover from this situation.
Whenever it occurs, the CheckDeviceState() function should be called before
drawing. If it returns errorDeviceLost, the device cannot be recovered yet and
the frame should be skipped (just return b_true). If the return value is
errorNotReset, the device is ready to be reset. First all device objects must be
invalidated, the easiest way is to call a function InvalidateDeviceObjects()
that calls the Invalidate() function on all library objects that are being used and
have this function. If the application manages any Direct3D resources itself that are
created with D3DPOOL_DEFAULT, these must also be released. After invalidating all
device objects, the device can be reset, by calling the Reset() function of
CScreen. Next all objects must be restored / recreated again. Provide a
RestoreDeviceObjects() function that first resets the perspective, restores any
changes to the default render states, sets up lighting and recreates all device objects
that were released (or calls their Restore() function if they have one) in the
InvalidateDeviceObjects() function. The RestoreDeviceObjects()
function can also be used for initializing the device objects. After restoring, the device
should be operational again. However there still seems to be a bug in the process,
requiring to invalidate/restore two times, before everything works again. For example,
when in full screen, ALT-TAB out of the application and back will not correctly
display the objects, ALT-TAB out and back again does restore the objects correctly.

 16

Chapter 4: Design of the Game

In this chapter the design is presented of the demo game created
to show the usage and possibilities of the wrapper library.

4.1 General Overview
The game is designed to be very simple, but still showing as much functionality of the
library as possible. The main concept is that it is an arcade style space racegame. The
player controls a spaceship that flies around a circular track and has to pick up bonus
objects to score points and dodge mines that can destroy the ship. There are also
repair power-ups to repair the damage to the ship. After each lap the speed is
increased and it gets harder to hit the bonus objects and dodge the mines, but the
points awarded for hitting a bonus object also increase, so the further the player gets,
the higher the award for hitting a bonus object. The goal of the game is to get as far as
possible and register the highest score ever.

4.2 Target System and Requirements
The game uses DirectX and therefore will only be playable on the Microsoft
Windows platform, that has the latest DirectX 9 runtime installed. It will need an Intel
Pentium 4 or AMD Athlon XP processor and about 512 MB of RAM memory. A
graphics card that is fully DirectX 9 compatible will also be needed. To install the
game on harddisk about 7 MB of free space is needed.

4.3 Theme: Graphics and Sound
The setting of the game is on a rough planet, somewhere in the universe. The graphics
will be somewhat dark and the planet consists mainly of rock. The music theme and
sounds are inspired by old arcade style games.

4.5 Main Menu

• Start. The player will start a new game with an undamaged ship and no score.
• Resume. Only available when the player was playing a game and pressed ESC

to go back to the menu. The game will continue were it was before switching
to the menu.

• Settings. Here the player can switch the background music on and off.
• Highscores. Here an overview is given of the highest scores achieved with the

game.
• Quit. The game exits and the player will be back in Windows.

4.6 Playing a game
After a short introduction sequence the main menu will be shown. To start playing the
player selects “Start” and presses return, space or the left mouse button. A short fly-
through of the scene is shown, which can be skipped by pressing space or enter. Now
the camera shows the ship from behind. After a countdown from 3 the ship starts
moving and the player gets control. With the arrow keys, the player can move the ship
to the left or the right. Doing this he can hit green bonus objects, that generate points,
which will be added to his score. There are also mines on the track that will move
towards the player if he gets near. These mines should be evaded, otherwise they will
explode and result in damage to the ship, shown with a damage bar on the screen and

 17

by smoke, coming from the ship. If the ship is damaged the player can repair the it by
hitting special repair power-ups. When the player finishes a lap, the ship’s speed is
increased, the mines move towards the player more aggressively, but the bonus
objects are also worth more points. The game continues until the player fills up the
damage bar (after hitting mines) and explodes the ship. The main objective is to try to
achieve the highest score ever.

4.7 Code Design
Figure 4.1 gives an overview of the code design for the game. The entry point is
GameMain, which contains the WinMain() function, the Windows equivalent of
main(). It creates a new custom GameWindow, that implements the Frame()
function of the CWindow class. Inside the Frame() function, that is called each
frame, the Process() and Render() functions of CGame are called.

Figure 4.1 Global design of the game

CGame is a state machine that determines which classes need processing and
rendering and dependent on the current game state, the Process() and Render()
function of one or more of the classes to the right are called. CGame also takes care of
input processing. CIntro handles the introduction sequence and CMenu controls the
main menu. CTerrain is responsible for the scene in which the game takes place.
CUserInterface handles all status information that is displayed on the screen
during gameplay (score, highscore, current lap, damage). CPlayer contains all
player information and is responsible for the ship model, that the player controls.
Finally CBonusObject represents an object on the track that the player can interact
with, which can be a point scoring object, a repair power-up, but also a mine. For this
project I haven’t developed a very sophisticated game engine / architecture, because
that was not the focus of this project. For serious games, a more efficient and
complicated game engine should be constructed.
Chapter 5 provides more detailed information about the inner workings of the classes.

 18

Chapter 5: Programming the game

This chapter describes the inner workings of all the game classes that were presented in the previous
chapter. A description of the most important functions and their tasks is given. The source code of the
game classes can be found on the CD-ROM (see also Appendix A).

5.1 GameMain
This is the entry point of the application and contains only one function:
WinMain(), which is needed for any application using windows, like a normal
C/C++ program must start with main(). With a few simple calls a CGameWindow
object is created and initialized. If initialization succeeds, the Run() method is called
to enter the real-time message loop, which handles Windows-related messages and
calls the Frame() function of CGameWindow, whenever there are no messages to
process. This code can be used for any windows application, changing only the
window title and possibly the window size.

5.2 CGameWindow
This class initializes the graphics component by calling the Init() and
SetMode() functions of CScreen. Also the Init() function of CGame is called
to initialize the game classes. In the Frame() function the Process() function of
CGame is called to do the needed processing. If this function returns a negative value,
the game has exited and b_false is returned to stop the message loop and exit to
Windows. After processing the frame buffer is cleared and between StartFrame()
and EndFrame() the Render() function of CGame is called to render the current
frame to the screen. The rest of the code is occupied with lost device recovery, which
was explained in more detail in chapter 3.

5.3 CGame
This is the main class of the game. It controls the flow of the game and calls the
remaining classes when needed. It is organized as a state machine, that decides which
functions to call depending on the current game state. The game states are:

− GameStateIntroduction: Short intro displaying text
− GameStateMenu: Main menu
− GameStateFlyThrough: Cinematic flythrough of the scene
− GameStateCountDown: Countdown before player gets control
− GameStatePlaying: Actual game is running
− GameStateGameOver: The player’s ship has been destroyed

The CGame class also manages all input and the star field particle system that is
shown as background during the introduction and the menu.
The Init() function initializes the Input component, the Sound component and all
other game classes. The Process() function first calls ProcessInput() to
handle the input and does the processing depending on the current state, what usually
comes down to calling the Process() function of one or more of the other classes.
The Render() function works similar, calling the Render() functions of other
classes to render all screen objects. InvalidateDeviceObjects() and

 19

RestoreDeviceObjects() are concerned with lost device recovery and call
their equivalents of the other game classes. The private functions
ProcessFlyThrough() and ProcessCountDown() are used to move the
camera through the scene and to show a 3, 2, 1, GO! countdown respectively.

5.4 CIntro
When the game is started a star field is shown (controlled by CGame) and a number of
sentences fade in and out in the middle of the screen. CIntro takes care of this.
Process() determines the level of fading depending on a timer and switches to the
next line, when needed. If all lines have been shown, it returns –1 to indicate the
CGame class that is has finished and the game state should be advanced. The
Render() function sets the text area to be the entire screen and renders the text
using the current alpha level in the middle of the screen.

5.5 CMenu
After the introduction (which can be skipped by pressing escape, the spacebar or
enter) the main menu is shown. This is where CMenu comes in. It is also organized as
a state machine, where the different menu states are:

- MenuStateBuildup: The menu is appearing from the middle of the
screen.

- MenuStateSelect: The player must highlight and select his choice
- MenuStateBeginGame: The player has selected “Start”
- MenuStateResumeGame: The player has selected “Resume”
- MenuStateQuitGame: The player has selected “Quit”
- MenuStateSettings: The player has selected “Settings”
- MenuStateHighscores: The player has selected “Highscores”

Depending on the current state CMenu does its processing by calling Process()
and the menu is rendered with Render().

5.6 CTerrain
The terrain class contains a terrain generator and additionally manages the
background and the scene objects. The terrain generator is based on the one presented
in chapter 8 of the book “OpenGL Game Programming” [3]. The OpenGL code was
translated to DirectX code. It loads the terrain using a heightmap, a bitmap with
grayscale values (white is the highest point and black the lowest). In the Init()
function this map is loaded into a vertex buffer. A buffer for the track is also created.
The terrain does not need much processing. The Process() function only triggers
vulcano eruptions at random times during the flythrough state. The Render() function
calls different functions to display the different parts of the scene. DrawSkybox()
shows a space environment by drawing a cube around everything with space
panorama textures on the inside. DrawTerrain() shows the planet surface with the
information from the heightmap and a rock texture. It also draws the track using a
different texture. Next the tunnel is drawn, which is a CMesh object that needs to be
rotated and translated into the correct position. Finally the particle system is rendered
if needed to show the eruptions.

 20

5.7 CPlayer
In the CPlayer class most of the game logic is situated. The Process() function
takes care of the ship movement. To achieve smooth controls the movement to the left
and the right is computed using the basic physics of applying forces to an object. If no
force is applied, the ship is slowed down, to simulate friction. The Render()
function is used to position and display the ship at the right position. If necessary the
smoke and explosion particle system are shown. MovePlayer() can be used by
other classes to apply a force to the ship. AdjustDamage() and
AdjustScore() enable access to these properties of the player. The
SetCamera() function calculates the position and orientation of the camera based
on the player’s position. Finally there are a few functions to enable other classes to
retrieve important values.

5.8 CBonusObject
First designed to represent a single bonus object containing a CMesh object holding
the model and some additional information, but completely rewritten, because this
proved to be highly inefficient and resource consuming. This version contains only
three CMesh objects, one for each separate object type. The class contains an array of
structures that holds the important information of all the bonus objects in the game. In
the Init() function the materials are created for the different objects and also the
sounds are loaded. The Reset() function (re)fills a single entry in the array of
structures. First the type of the object is determined using a random value. The
chances are: 75% to get a point scoring object, 24% to get a mine and 1% to get a
repair power-up. Next a random position is assigned, that is not right in front of the
player’s current position. Finally the rendering flag is set to true to make sure the
object will be shown. ResetAll() just goes through the entire array and calls
Reset() for each entry. Process() is the most important function of this class. It
determines whether the object is visible to the player or not and sets the rendering flag
accordingly. It also does the collision detection between the objects and the player and
takes the appropriate action if a collision occurs. Finally the Render() function
displays the visible objects at the proper positions.

5.9 CUserInterface
This class is responsible for displaying status information using 2D graphics. It uses
CABO for the graphical part and CFont for the numbers. The Process() function
retrieves the current lap, damage and score values from the CPlayer class, formats
the numbers into a string and selects the right animation frame for the damage bar.
The number of frames per second is also retrieved and will be rendered to the top left
of the screen if the player presses ‘F’ during the game. The Render() function puts
everything on the screen.

 21

Chapter 6: Conclusions

With this project I have studied the workings of a part of DirectX, Microsoft’s
interface between multimedia code and hardware. Although there is a lot left
unexplored, I did use a considerable number of functions from different components
of the DirectX library (DirectX Graphics, DirectX Audio and DirectInput). The goal
set beforehand was to develop a library that is a reusable base for multimedia projects
and provides a simpler interface than the original DirectX library. I think that the
resulting library of this project cannot be considered complete enough to be used in
practice, but it provides a very good starting point to build a custom interface library
to be used in projects. To be useful in practice the library must be extended more to
support at least also DirectPlay functionality for multiplayer games. It should also be
better debugged on different machines to reveal bugs I haven’t discovered. The
second part of the goal is clearly achieved. In most cases a considerable amount of
code is hidden behind a few simple function calls, for example to set up an empty
window or to initialize Direct3D.
Creating a simple game was a very good way to evaluate the use of the library. While
programming a few bugs and weak points were discovered, bot in general it was good
to work with. The result is a very simple, but complete game that shows most of the
library classes in action.

Besides everything I have learnt about DirectX, this project was also very valuable for
my C++ programming skills. During the project I have encountered numerous bugs
and code that wouldn’t work, but most of the time I managed to solve the problems,
using the DirectX documentation, internet tutorials and programming books. Beside
this I also got a modest impression of the time and effort that goes into developing a
real game. Even my simple game took much longer to develop and debug than I had
originally planned. All the little things like finding sounds and making simple models
took up more time than expected. No wonder big productions are almost always
delayed a few months, sometimes even years.

Beside the points of frustration, when something just would not work, I have enjoyed
the project and it raised the interest I had in programming with DirectX even more. If
there would have been more time there are things that I would have added to the
library, like more advanced shader effects (environment mapping, shadows) or a
whole new Network component that covers DirectPlay. I would also like to go a level
higher and develop a game architecture that enables the development of more
complex games.

 22

Appendix A: Contents of the CD-ROM

The CD-ROM contains all the files that were developed during this project. The file
organization is as follows:

Demo Game
This directory contains two subdirectories:

1. Project Files: Contains all source code and resource files that were
used to develop the demo game.

2. Release Build: Contains the executable and resources needed for the
demo game to run.

Documentation
Contains this document.

Test Programs
This directory contains all test programs created during the project. All test programs
come with complete source code of the project at the time the test program was
created. The following test programs were created:

1. Basic Window Just creates an empty window with title bar
2. Direct3D Basic Shows a white D3D screen with a line, a square and a

circle, that has a vertex added every second.
3. Surface Shows a window with a background image.
4. Animation Shows a very simple animation, consisting of two frames.
5. Keyboard Input Shows keyboard input, use the arrow keys to move the

animation around. From now on all test programs can be
exited by pressing Escape.

6. Mouse Input Same as the previous, only now the mouse controls the
movement. Press a mouse button to rotate the animation.

7. Joystick Input Same as previous, only now a gamepad / joystick controls
movement. Only works if a game device is connected.

8. Sound Repeatedly plays an explosion sound. Up and Down
arrows adjust the frequency, + and – the volume and Left
and Right arrows control pan (2d sound position). Audio
CD playback is also possible.

9. Vertex Buffer Uses a hardware accelerated vertex buffer to display a
colored triangle.

10. Camera Shows (very) basic camera control. Press Up or Down to
zoom in or out on the triangle.

11. Fonts Shows the capabilities of the font class.
12. World Transformations

a. World_test Shows a cube that can be rotated, translated and scaled.
b. World_test2 Shows a rotating cube that is orbited by a smaller cube.

 23

13. Texture Mapping Same as World_test2, only now with textured cubes.
Modulation between cube and texture colors can be
switched on and off by pressing ‘M’.

14. Lights & Materials
a. Light_test Same as the previous program, but with lighting. A

point light is added to the scene.
b. Spotlight_test Instead of a point light, a spotlight is used here. Also a

specular component is added to the small cube.
15. X Models Loads and renders a tiger model in the DirectX .X format.
16. Advanced Camera Shows more complex functions of the camera class, by

realizing First Person Shooter controls to navigate.
17. Fog Shows simple fog effect. Move away from the model to

make it slowly disappear.
18. Shader Basics

a. Shader_test1 A very simple shader that only shows ambient light.
b. Shader_test2 Here diffuse light from a directional source is added.
c. Shader_test3 This shader adds specular lighting to the model.
d. Shader_test4 Finally a texture is added to the model.

19. Point Light Same as the final basic shader, but using a point light, that
can be moved around.

20. Particle System This test shows the particle system class that uses point
sprites to achieve various special effects.

21. Viewports Divides the screen into 4 separate render surfaces. Shows
the same model from a different angle in each viewport.

22. Collision detection Shows a falling box, that stops falling when a collision
with another box is detected.

23. Mp3 & Midi Plays a mp3 and a midi file.
24. BSP Maps Loads and renders a very simple BSP map (textured box).
25. Device Loss Shows how resources can get lost by pressing ALT-TAB

and how to restore them.

 24

Appendix B: Technical Information

Development Platform

This project was developed in the C++ programming language using Microsoft Visual
Studio 6 as programming environment. The computer running it had the following
properties:

Operating System: Microsoft Windows XP Professional
Processor: AMD Athlon XP 3000+
Internal Memory: 1024 MB RAM
Graphics Card: ATI RADEON 9800 Pro (fully DirectX 9 compatible)
Sound Card: nVidia nForce APU / SoundStorm

SDK versions

For this project the original DirectX 9 SDK has been used. In the mean time several
updates have been released, but the main reason not to use a more recent version is
that the recent SDK versions do not support Visual Studio 6 anymore.

Visual Studio 6 Settings

To successfully compile and link the files created during this project, Visual Studio
should be configured correctly. Under Tools � Options � Directories the Include
and Lib directories of the SDK must be added and moved to the top of the list. Under
Project � Settings � Link the following libraries must be present:

• dsound.lib (needed for Sound Component)
• strmiids.lib (needed for Sound Component)
• winmm.lib (needed for Sound Component)
• dinput8.lib (needed for Input Component)
• dxguid.lib (needed for Input Component)
• d3d9.lib (needed for Graphics Component)
• d3d9x.lib (needed for Graphics Component)

 25

Appendix C: Resources

This section provides an overview of the resources used for this project. A distinction
is made between books, websites and software. The number before the resource is
used throughout the document as a reference.

Books

[1] Wolfgang F. Engel, Beginning Direct3D Game Programming, Premier Press,

Game Development Series, 2003.
[2] Bruno Miguel Teixeira de Sousa, Game Programming: All in One, Premier Press,

Game Development Series, 2002.
[3] Kevin Hawkins and Dave Astle, OpenGL Game Programming, Premier Press,

Game Development Series, 2001.
[4] Leen Ammeraal, Basiscursus C++, Academic Service, 1999.
[5] Brian Kernighan and Dennis M. Ritchie, C Handboek, Prentice Hall, 1990.

Websites

[6] http://msdn.microsoft.com/directx (DirectX SDK documentation)
[7] http://www.andypike.com/tutorials/directx8/
[8] http://www.ultimategameprogramming.com
[9] http://www.codesampler.com/dx9src.htm
[10] http://www.toymaker.info/Games/html/collisions.html

Software

[11] Microsoft Visual C++ 6.0
[12] Microsoft DirectX 9 Software Development Kit
[13] 3D Studio Max 7
[14] Macromedia Fireworks

 26

Appendix D: Library Documentation

This appendix contains a total overview of all the classes developed for the library.
For each class a short description is given and the basic usage of the class is
explained. Also a complete list of all functions is provided, with information about the
parameters, return value and a short description. The order in which the classes are
presented is the same as in chapter 3.

CTIMER ..27
CWINDOW ..28
CSCREEN ..30
CRGBAIMAGE ...34
CSURFACE ..36
CTEXTURE ..37
CTEMPLATESET..39
CANIMATION ..40
CABO ..41
CINPUTMANAGER ..44
CKEYBOARD...45
CMOUSE ...46
CJOYSTICK..47
CSOUNDPLAYER...48
CSOUND ...49
CCDPLAYER...50
CCAMERA...51
CFONT ..53
CWORLD ..54
CMATERIAL..56
CLIGHT ...57
CMESH ...59
CFOG ..62
CEFFECT ...63
CPARTICLESYSTEM ..64
CVIEWPORT ...67
CMUSIC ..69
CBSPMAP ..70

 27

CTimer

Class Description: This class provides timer functionality to support an accurate

timing mechanism that is needed by games. This class depends
on the availability of a hardware timer. If none is present, no
fallback mechanism is provided.

Basic Usage: Call Update() every frame. With GetDelta() the time between

two calls to Update() can be retrieved.

void Update (void)
Parameters - -
Return value - -
Description This function queries the hardware timer and calculates the

difference with the previous value. The result can be requested
with GetDelta(). It also updates the current time structure. This
function should be called prior to all other timing functions.

real32 GetDelta (void)
Parameters -
Return value The amount of seconds passed between the last two calls to

Update()
Description Returns the time that has passed between the last calls to

Update()

u_int32 GetSeconds (void)
Parameters -
Return value Seconds of current system time recorded by Update()
Description Returns the seconds part of the system time

u_int32 GetMinutes (void)
Parameters -
Return value Minutes of current system time recorded by Update()
Description Returns the minutes part of the system time

u_int32 GetHours (void)
Parameters -
Return value Hours of current system time recorded by Update()
Description Returns the hours part of the system time

GetDay / GetMonth / GetYear
Parameters -
Return value System date recorded by Update()
Description Returns the 3 parts of the system date

 28

CWindow

Class Description: This class provides a basic reusable window shell, that can be

used as the starting point for any Windows application.

Basic Usage: To use the CWindow class, a custom class derived from it must

implement the Frame() function. Next the Create() function must
be called, using the appropriate parameters and finally the Run()
function must be called to start the window. Every frame, the
Frame() function will be executed then, so here all the application
processing and rendering must be done.

eerr32 Create (HINSTANCE hInstance, LPSTR szTitle, int iWidth, int iHeight,

u_int32 iStyle)
Parameters hInstance

szTitle
iWidth
iHeight
iStyle

Instance that was passed to WinMain()
String containing the window title
Initial width of the window
Initial height of the window
Window style (see Win32 API)

Return value noError
errorRegisterClass

Window successfully created
The class could not be registered

Description This function creates a new window based on the passed
parameters. Only the first two parameters are obligatory, the
size and style are optional. If they are not present, default values
will be used.

void Run (void)
Parameters -
Return value -
Description This function enters the Windows real-time message loop. It

checks for messages and processes them. If there are no
messages the Frame() function is called. The function stops
when a WM_QUIT message is received (user has closed
window).

virtual bool32 MessageHandler (UINT iMessage, WPARAM wParam,

LPARAM lParam)
Parameters iMessage

wParam
lParam

Message type
Data specific to message
Data specific to message

Return value b_true
b_false

Message handled
Message not handled

Description This default message handler only checks for WM_CLOSE
messages, in which case the application will exit.

 29

virtual bool32 Frame (void)
Parameters -
Return value b_true

b_false
Frame processed, continue.
Application done, quit.

Description This virtual function needs to be implemented in a class
deriving from CWindow. In this function all the processing of
the application must be done. It is called every time there are
no Windows messages to process.

void SetPosition (int iX, int iY)
Parameters iX

iY
Horizontal position of the window
Vertical position of the window

Return value -
Description Displays the window’s upper left corner at position (iX, iY) on

the screen.

void GetPosition (int iX, int iY)
Parameters pkPosition Pointer to a POINT structure
Return value -
Description After calling this function, the current position of the upper left

corner of the window will be in the POINT structure.

void SetSize (int iWidth, int iHeight)
Parameters iWidth

iHeight
Width of the window
Height of the window

Return value -
Description Scales the window to the supplied values.

void GetSize (POINT * pkSize)
Parameters pkSize Pointer to a POINT structure
Return value -
Description After calling this function, the current size of the window will

be in the POINT structure.

HWND GetWindowHandle (void)
Parameters -
Return value Handle to the window
Description Used to obtain a handle to the window object, which is

necessary for a range of Windows related operations.

void Show (int iShow)
Parameters iShow Show state (e.g.: SW_SHOW, SW_HIDE, etc.)
Return value -
Description This function changes the show state of the window. See

Windows API documentation for details.

 30

CScreen

Class Description: This class initializes Direct3D, sets up the default device

(graphics card) and provides some basic drawing primitives.

Basic Usage: Call Init() to initialize Direct3D, then call SetMode() to set the

display mode. If using 3D, call SetPerspective() to define the
clipping region. To render, first call Clear() to clear the frame
buffer, then call StartFrame(), then call your rendering functions
and finally call EndFrame().

err32 Init (HWND hWindow)
Parameters hWindow Handle to parent window
Return value noError

error…
Initialization succeeded
See CError.h for possible error values

Description This function initializes Direct3D.

err32 SetMode (u_int32 iFullScreen, u_int16 iWidth, u_int16 iHeight,

 u_int16 iDepth, bool bHardware)
Parameters iFullScreen

iWidth
iHeight
iDepth
bHardware

0 = windowed, 1 = full screen
Screen width in pixels
Screen height in pixels
Screen color depth
Hardware acceleration on / off

Return value noError
error…

Mode correctly set
See CError.h for possible error values

Description This function configures the screen used, some settings may
only be available in full screen mode.

void SetPerspective (real32 fieldOfView, real32 nearPlane, real32 farPlane)
Parameters fieldOfView

nearPlane
farPlane

Field of view factor (0 - PI)
Near clipping plane
Far clipping plane

Return value - -
Description This function creates a viewing frustum, determining what part

of the world is visible on the screen..

D3DXMATRIXA16* CScreen::GetProjectionMatrix (void)
Parameters - -
Return value Pointer to projection matrix -
Description This function returns a pointer to the current projection matrix.

 31

err32 Clear (u_int8 iRed, u_int8 iGreen, u_int8 iBlue, u_int8 iAlpha)
Parameters iRed

iGreen
iBlue
iAlpha

Red clear color component
Green clear color component
Blue clear color component
Alpha channel of the clear color

Return value noError
error…

Screen cleared to specified color
See CError.h for possible error values

Description Clears the screen to the specified color.

err32 StartFrame (void) / err32 EndFrame (void)
Parameters - -
Return value noError

error…
Everything OK
See CError.h for possible error values

Description Prepare / End one frame for the screen, put all rendering code
between these calls (not when using viewports).

err32 CheckDeviceState (void)
Parameters - -
Return value noError

error…
Device operational
See CError.h for possible error values

Description Check for lost device, if so it must be reset.

err32 Reset (void)
Parameters - -
Return value noError

error…
Device reset
See CError.h for possible error values

Description Resets device to recover from lost state.

err32 DrawLine (real32 fX1, real32 fY1, real32 fX2, real32 fY2,
 u_int8 iRed, u_int8 iGreen, u_int8 iBlue, u_int8 iAlpha)
Parameters fX1, fY1

fX2, fY2
iRed, iGreen, …

Start position of the line
End position of the line
Color components of the line

Return value noError
error…

Line drawn
See CError.h for possible error values

Description Draws a colored line from specified start to end point.

err32 DrawRectangle (real32 fX1, real32 fY1, real32 fX2, real32 fY2,
 u_int8 iRed, u_int8 iGreen, u_int8 iBlue, u_int8 iAlpha)
Parameters fX1, fY1

fX2, fY2
iRed, iGreen, …

Upper left of the rectangle
Lower right of the rectangle
Color components of the rectangle

Return value noError
error…

Rectangle drawn
See CError.h for possible error values

Description Draws a colored rectangle using specified corners.

 32

err32 DrawCircle (real32 fCenterX, real32 fCenterY, real32 iRadius,
 u_int8 iRed, u_int8 iGreen, u_int8 iBlue, u_int8 iAlpha, u_int32 iVertices)
Parameters fCenterX/Y

iRadius
iRed, iGreen, …
iVertices

Coordinates of center of the circle
Radius of the circle
Color components of circle
Number of vertices used for circle

Return value noError
error…

Circle drawn
See CError.h for possible error values

Description Draws a colored circle, based on its parameters. The more
vertices, the smoother the displayed circle will be.

bool32 IsModeSupported (u_int16 iWidth, u_int16 iHeight, u_int16 iDepth)
Parameters iWidth

iHeight
iDepth

Width of queried mode in pixels
Height of queried mode in pixels
Color depth of queried mode

Return value b_false
b_true

Mode is not supported
Mode is supported

Description Check if a certain screen mode is supported by the system.

bool32 CheckMode (u_int16 iWidth, u_int16 iHeight, D3DFORMAT kFormat)
Parameters iWidth

iHeight
kFormat

Width of queried mode in pixels
Height of queried mode in pixels
Format of queried mode

Return value b_false
b_true

Mode is not supported
Mode is supported

Description Check if a certain screen mode is supported by the system.
View DirectX documentation for possible formats.

void ShowCursor (u_int32 iShowCursor)
Parameters iShowCursor 0 = hide cursor, 1 = show cursor
Return value - -
Description Show or hide the cursor.

void SetDefaultStates (void)
Parameters - -
Return value - -
Description Set default values for rendering / texture states

err32 GetCapabilities (D3DCAPS9* pCaps)
Parameters pCaps Pointer to D3DCAPS9 structure
Return value Error value See CError.h
Description Retrieves the capabilities of the current device.

LPDIRECT3DDEVICE9 GetDevice (void)
Parameters - -
Return value Pointer to the Direct3D device
Description Function to retrieve access to the Direct3D device

(representation of the graphics card).

 33

u_int32 GetFPS (void)
Parameters - -
Return value Number of frames per second
Description Retrieve the current FPS of the application

u_int32 GetFormat (void)
Parameters - -
Return value Current format used
Description Retrieve the D3DFormat currently used

u_int32 GetBitdepth (void)
Parameters - -
Return value Current bitdepth
Description Retrieve the bitdepth currently used

 34

CRGBAImage

Class Description: This class represents a raw image buffer. It is basically just a big

multidimensional array containing color information.

Basic Usage: Mainly used by other classes of the library. To load an image use

LoadFromBitmap() or LoadFromTarga(), depending on the
image format.

err32 LoadFromBitmap (LPSTR lpszFilename)
Parameters lpszFilename File name of the bitmap to load
Return value Error code See CError.h
Description Load a bitmap from a .bmp file into an image buffer

err32 LoadFromTarga (LPSTR lpszFilename)
Parameters lpszFilename File name of the targa file to load
Return value Error code See CError.h
Description Load a bitmap from a .tga file into an image buffer

void SetColorKey (u_int8 iRed, u_int8 iGreen, u_int8 iBlue)
Parameters iRed

iGreen
iBlue

Red component of color key
Green component of color key
Blue component of color key

Return value - -
Description Set the color components of the transparent color

void SetWidth (u_int32 iWidth) / SetHeight (u_int32 iHeight)
Parameters iWidth / iHeight Dimensions to be set
Return value - -
Description Set the width / height of the raw image.

void SetColor (u_int32 iX, u_int32 iY, u_int8 iRed, u_int8 iGreen, u_int8 iBlue,

u_int8 iAlpha)
Parameters iX, iY

iRed, iGreen, …
Position of target pixel
Color components

Return value - -
Description Set the pixel at (iX, iY) to the specified color.

void SetImageBuffer (u_int32 * pImage)
Parameters pImage Pointer to an image buffer
Return value - -
Description Set the image buffer of this object.

u_int32 GetWidth / GetHeigth (void)
Parameters - -
Return value Width / height of the image buffer -
Description Get width / height of the raw image

 35

u_int32 GetColor (u_int32 iX, u_int32 iY)
Parameters iX, iY Position in image buffer
Return value Color at position (iX, iY) -
Description Get the color of the pixel (iX, iY) in the image buffer

u_int32 * GetImageBuffer (void)
Parameters - -
Return value Pointer to the image buffer -
Description Get a pointer to the image buffer of this object.

 36

CSurface

Class Description: This class represents a static image surface that can be rendered

to the screen. This is mainly useful for background images,
because rotating, scaling and clipping are not supported.

Basic Usage: Load an image into a CRGBAImage object. Call Create()

providing a pointer to the raw image object as a parameter. Call
Render() to display it.

err32 Create (CRGBAImage * pkRawImage)
Parameters pkRawImage Pointer to raw (source) image
Return value Error code See CError.h for error descriptions
Description Create a new image surface, using a raw image object.

err32 Update (void)
Parameters - -
Return value Error code See CError.h for error descriptions
Description Update the current surface (when raw image is changed).

err32 Render (POINT * pkDestRect, RECT * pkSourceRect = NULL)
Parameters pkDestRect

pkSourceRect

Target screen area to display surface
(NULL means entire screen)
Source area from raw image to be used
(NULL means entire image)

Return value Error code See CError.h for error descriptions
Description Display (a part of) the surface on (specified part of) the screen

void SetRawImage (CRGBAImage * pkRawImage)
Parameters pkRawImage Pointer to raw image to be used
Return value - -
Description Set the raw image that needs to be used for this surface.

 CRGBAImage * GetRawImage (void)
Parameters - -
Return value Pointer to raw image that is being used -
Description Get a pointer to the current raw image used for this surface.

 37

CTexture

Class Description: This class represents a texture, another image representation that

can be used more dynamically than surfaces.

Basic Usage: Creating a texture can be done with Create() using a raw image

object or directly using CreateFromFile(). Call
SetActiveTexture() to activate it: all objects rendered will be
using the texture until another texture is activated.

err32 Create (CRGBAImage * pkRawImage)
Parameters PkRawImage Pointer to raw (source) image
Return value Error code See CError.h for error descriptions
Description Create a new texture, using a raw image object.

err32 CreateFromFile (LPCSTR lpszFileName)
Parameters LpszFileName Name of the texture file
Return value Error code See CError.h for error descriptions
Description Create a new texture directly from a source file.

err32 Update (void)
Parameters - -
Return value Error code See CError.h for error descriptions
Description Update the texture data.

void SetRawImage (CRGBAImage * pkRawImage)
Parameters pkRawImage Pointer to raw image to be used
Return value - -
Description Set the raw image that needs to be used for this texture.

CRGBAImage * GetRawImage (void)
Parameters - -
Return value Pointer to raw image that is being used -
Description Get a pointer to the current raw image used for this texture.

void Invalidate (void)
Parameters - -
Return value - -
Description Releases all resources used that are related to the device. This

function must be called before resetting the device.

err32 Restore (void)
Parameters - -
Return value Error value See CError.h
Description Recreates the texture. Only use if created with a raw image,

otherwise just recreate the texture from file to restore.

 38

void SetActiveTexture (void)
Parameters - -
Return value - -
Description Set this texture to be the current active texture so it will be

used when rendering.

static void SetModulate (bool32 bModulate)
Parameters bModulate b_true = color modulation on

b_false = color modulation off
Return value - -
Description Switch color modulation (combining of color values) on or off.

If this is turned on, the texture colors will be combined with
the original colors of the surface to which it is mapped.

u_int32 GetID (void)
Parameters - -
Return value Texture ID of this texture -
Description Get the texture ID of this texture object.

static u_int32 GetActiveTexture (void)
Parameters - -
Return value Texture ID of current active texture -
Description Get the texture ID of the current active texture object.

 39

CTemplateSet

Class Description: This class represents a template set: a texture divided into cells. It

also provides access to the individual cells. With template sets a
single texture file can contain multiple images, which can be used
for animations.

Basic Usage: This class is not intended to be used manually, but acts as a

supporting class for CAnimation.

void Create (CTexture * pkTexture, u_int32 iTextureWidth,
 u_int32 iTextureHeight, u_int32 iCellWidth, u_int32 iCellHeight)
Parameters PkTexture

iTextureWidth / Height
iCellWidth / Height

Pointer to source texture.
Texture dimensions
Cell dimensions

Return value - -
Description Create a new template set using the specified texture.

void GetUV (CCellID kPosition, CRectText * pkUVRect)
Parameters KPosition

pkUVRect
Position of the source cell
Pointer to destination texture rectangle

Return value - -
Description Get the texture rectangle of a specific cell.

void SetActiveTexture (void)
Parameters - -
Return value - -
Description Set texture used by this template set as the active texture.

u_int32 GetTextureWidth (void) / u_int32 GetTextureHeight (void)
Parameters - -
Return value Width / Height of the texture -
Description Get the dimensions of the source texture

u_int32 GetCellWidth (void) / u_int32 GetCellHeight (void)
Parameters - -
Return value Width / Height of a single cell -
Description Get the dimensions of a single cell in the template set.

 40

CAnimation

Class Description: This class represents a single two-dimensional animation

consisting of multiple frames.

Basic Usage: An animation can be created from a template set using Create()

and rendered with the Render() function. Call Update() to
advance the animation by 1 frame. It is easier to use the CABO
class, which is able to load multiple animations from file.

Void Create (CTemplateSet * pkTemplateSet, u_int32 iFrames,

CCellID * pkPosition)
Parameters pkTemplateSet

iFrames
pkPosition

Pointer to a template set object
Number of frames of this animation
Starting position of animation in grid

Return value - -
Description This function creates a new animation object, consisting of a

number of frames (cells in a template set).

void Update (void)
Parameters - -
Return value - -
Description This function moves the animation one frame forward. If it is

in the last frame, it will go back to the first one.

err32 Render (RECT kDestRect, u_int32 iColor, real32 fAngle)
Parameters kDestRect

iColor
fAngle

Position and size of the animation
Color filter
Angle of rotation for the animation

Return value - -
Description This function displays the current frame of the animation. It

uses top and left from the destination rectangle as the position
and bottom and right values as size parameters. The frame is
rotated by the specified angle (in degrees).

void SetCurrentFrame (u_int32 iFrame)
Parameters iFrame Frame ID that needs to be displayed
Return value - -
Description This function sets the specified frame number as the current

frame.

u_int32 GetCurrentFrame (void)
Parameters - -
Return value Current frame ID -
Description This function returns the current frame ID

 41

CABO

Class Description: This class represents an Animated Blittable Object (ABO), a

graphical 2D object that supports multiple animations, standard
transformations (scale, rotate and translate) and collision
detection.

Basic Usage: Load a configuration file (format shown below) with

LoadFromFile(). Make sure all colors are shown by using
SetColor(255,255,255,255) (or other values to achieve color
effects). To display it call the Render() function. For
transformations the Rotate(), SetPosition() and SetSize() can be
used.

ABO Format Example__________
[Source texture] [Image Type (1=bitmap, 2=targa)] Graphics/image.bmp 1
[Alpha red] [Alpha green] [Alpha blue] 255 128 255
[Cell width] [Cell height] 128 128
[Number of Animations] 2
[Number of frames 1st animation] 2
[Cell pos. first frame] 0 0
[Cell pos. second frame] 0 1
[Number of frames 2nd animation] 1
[Cell pos. first frame] 1 0

void Create (u_int32 iAnimations, CAnimation * pkAnimations)
Parameters iAnimations

pkAnimations
Number of animations
Pointer to array of animations

Return value - -
Description This function creates a new ABO with the specified

animations.

void Update (void)
Parameters - -
Return value - -
Description Updates the current animation.

void SetAnimation (u_int32 iAnimation, CAnimation * pkAnimation)
Parameters iAnimation

pkAnimation
Animation ID
New animation object

Return value - -
Description Set the animation on position iAnimation in the array to the

specified animation.

err32 LoadFromFile (LPSTR lpszFilename)
Parameters lpszFilename Name of ABO configuration file
Return value See CError.h for possible error values
Description Creates a new ABO using configuration data from the file.

 42

err32 Render (void)
Parameters - -
Return value - -
Description Displays current animation frame of ABO at current position.

void Rotate (real32 fAngle, u_int32 iAccumulate)
Parameters fAngle

iAccumulate
Angle of rotation (in degrees)
0 = fAngle is absolute
1 = fAngle is relative

Return value - -
Description This function rotates the ABO around its center.

bool32 Collide (CABO & rkABO, u_int32 iUseSphere)
Parameters RkABO

iUseSphere
Reference to other ABO
1 = Bounding Spere, 0 = Bounding rectangle

Return value b_false
b_true

No collision
Collision

Description This function does collision detection between this ABO and
another that is provided as parameter. It uses bounding sphere
or rectangle methods, depending on second parameter.

bool32 ContainsPoint (u_int32 iX, u_int32 iY)
Parameters iX, iY Pixel coordinates on the screen
Return value b_false

b_true
Point is not inside bounding rectangle
Point is contained in bounding rectangle

Description This function checks wheter a given point is contained in the
ABO’s bounding rectangle.

void Invalidate (void)
Parameters - -
Return value - -
Description Releases all resources used that are related to the device. This

function must be called before resetting the device.

void Restore (void)
Parameters - -
Return value - -
Description Restores the object, must be called after resetting the device.

void SetCurrentAnimation (u_int32 iAnimation)
Parameters iAnimation The animation ID that needs to be set
Return value - -
Description This function sets the specified animation to be the current.

u_int32 GetCurrentAnimation (void)
Parameters - -
Return value Current animation ID -
Description This function returns the current animation ID

 43

void SetPosition (u_int32 iX, u_int32 iY)
Parameters iX, iY Coordinates of new position
Return value - -
Description This function displays the ABO at the specified position.

void SetSize (u_int32 iWidth, u_int32 iHeight)
Parameters iWidth

iHeight
Width of the ABO
Height of the ABO

Return value - -
Description This function can be used to change the size of the ABO.

void SetColor (u_int8 iAlpha, u_int8 iRed, u_int8 iGreen, u_int8 iBlue)
Parameters iAlpha

iRed, iGreen, iBlue
Alpha component of color
Color components

Return value - -
Description This function can be used to change the ABO’s color

void SetRadius (real32 fRadius)
Parameters fRadius Bounding sphere radius
Return value - -
Description This function sets the radius of the bounding sphere that is

used for collision detection.

u_int32 GetXPosition (void) / u_int32 GetYPosition (void)
Parameters - -
Return value Current X / Y coordinate of ABO -
Description Get the current position of the ABO.

u_int32 GetHeight (void) / u_int32 GetWidth (void)
Parameters - -
Return value Current size of ABO -
Description Get the current size of the ABO.

u_int32 GetColor (void)
Parameters - -
Return value Current color components of ABO -
Description Get the current color of the ABO.

real32 GetDirection (void)
Parameters - -
Return value Current angle of the ABO -
Description Get the current angle of the ABO.

real32 GetRadius (void)
Parameters - -
Return value Current collision radius of ABO -
Description Get the current radius of the ABO’s bounding sphere.

 44

CInputManager

Description: This class initializes the DirectInput object, which must be done before
the other classes of the Input component can be used.

Basic Usage: Just call the Init() function before initializing the other input classes.

err32 Init (HINSTANCE hInstance)
Parameters hInstance Handle to window instance
Return value Error value See CError.h for error descriptions
Description This function initializes the DirectInput object.

LPDIRECTINPUT8 GetInput (void)
Parameters - -
Return value Pointer to DirectInput object
Description This function returns a pointer to the DirectInput object.

static CInputManager * GetSingleton (void)
Parameters - -
Return value Access point to InputManager
Description This function returns a pointer to the InputManager object.

 45

CKeyboard

Description: This class represents the keyboard and handles all input from it.

Basic Usage: Call Init() to initialize the keyboard. Call Update() every frame to

refresh the key states. Use IsButtonUp() and IsButtonDown() to check
the status of a specific key, using its code. The key codes can be found
in the DirectX documentation.

err32 Init (HWND hWindow)
Parameters hWindow Handle to parent window
Return value Error value See CError.h for error descriptions
Description This function initializes the keyboard device.

err32 Update (void)
Parameters - -
Return value Error value See CError.h for error descriptions
Description This function updates the key buffer with the current state.

bool32 IsButtonDown (u_int32 iButton)
Parameters iButton DirectX key code (see DirectX documentation)
Return value b_false

b_true
The button is not down
The button is being pressed

Description This function checks the status of a button on the keyboard.

bool32 IsButtonUp (u_int32 iButton)
Parameters iButton DirectX key code (see DirectX documentation)
Return value b_false

b_true
The button is being pressed
The button is not down

Description This function checks the status of a button on the keyboard.

 46

CMouse

Description: This class represents the mouse and handles all input coming from it.

Basic Usage: Call Init() to initialize the mouse. Use Update() to refresh the mouse

information every frame. With IsButtonDown() and IsButtonUp() the
mouse button states can be evaluated. GetWheelMovement() can be
used to check the wheel of the mouse. The movement of the mouse can
be retrieved using GetXAxis() and GetYAxis().

err32 Init (HWND hWindow)
Parameters hWindow Handle to parent window
Return value Error value See CError.h for error descriptions
Description This function initializes the mouse device.

err32 Update (void)
Parameters - -
Return value Error value See CError.h for error descriptions
Description This function updates the mouse buffer with the current state.

bool32 IsButtonDown (u_int32 iButton)
Parameters iButton Mouse button (0-3)
Return value b_false

b_true
The button is not down
The button is being pressed

Description This function checks the status of a button on the mouse.

bool32 IsButtonUp (u_int32 iButton)
Parameters iButton Mouse button (0-3)
Return value b_false

b_true
The button is being pressed
The button is not down

Description This function checks the status of a button on the mouse.

int32 GetXAxis (void) / int32 GetYAxis (void)
Parameters - -
Return value Relative movement along X / Y axis -
Description This function returns the relative movement of the mouse.

int32 GetWheelMovement (void)
Parameters - -
Return value Movement of mouse wheel -
Description This function returns the relative movement of the mouse

wheel. A positive value indicates upward movement and a
negative value indicates downward movement.

err32 Clear (void)
Parameters - -
Return value Error value See CError.h
Description This function removes all data from the mouse buffer.

 47

CJoystick

Description: This class represents a joystick / game device and handles all input
coming from it.

Basic Usage: Call Init() to initialize the joystick, providing values for minimal and

maximum value and a deadzone value (dependant on device). Use
Update() to refresh the device information every frame. With
IsButtonDown() and IsButtonUp() the joystick button states can be
evaluated. The movement of the game device can be retrieved using
GetXAxis() and GetYAxis().

err32 Init (HWND hWindow, int32 iMin, int32 iMax, int32 iDeadZone)
Parameters hWindow

iMin
iMax
iDeadZone

Handle to parent window
Minimum of joystick range
Maximum of joystick range
Deadzone (percentage of range in which no
movement is reported)

Return value Error value See CError.h for error descriptions
Description This function initializes the joystick device.

err32 Update (void)
Parameters - -
Return value Error value See CError.h for error descriptions
Description This function updates the device data with the current state.

bool32 IsButtonDown (u_int32 iButton)
Parameters iButton Joystick button
Return value b_false

b_true
The button is not down
The button is being pressed

Description This function checks the status of a joystick button.

bool32 IsButtonUp (u_int32 iButton)
Parameters iButton Joystick button
Return value b_false

b_true
The button is being pressed
The button is not down

Description This function checks the status of a joystick button.

u_int32 GetXAxis (void) / u_int32 GetYAxis (void)
Parameters - -
Return value Relative movement along X / Y axis -
Description This function returns the relative movement of the joystick.

 48

CSoundPlayer

Description: This class initializes the DirectSound object.

Basic Usage: Just call Init() to initialize Direct Audio before using the other classes

of the Sound component.

err32 Init (HINSTANCE hInstance)
Parameters hInstance Handle to window instance
Return value Error value See CError.h for error descriptions
Description This function initializes the DirectSound object.

LPDIRECTSOUND8 GetSound (void)
Parameters - -
Return value Pointer to DirectSound object
Description This function returns a pointer to the DirectSound object.

IDirectMusicPerformance8* GetPerformance (void)
Parameters - -
Return value Pointer to Performance object
Description This function returns a pointer to the DirectMusic performance

object.

IDirectMusicLoader8* GetLoader (void)
Parameters - -
Return value Pointer to Loader object
Description This function returns a pointer to the DirectMusic loader

object.

static CSoundPlayer * GetSingleton (void)
Parameters - -
Return value Access point to CSoundPlayer
Description This function returns a pointer to the CSoundPlayer object.

 49

CSound

Description: Represents a sound buffer that can be manipulated and used for
playback.

Basic Usage: Load a sound file in the WAV format using the LoadFromFile()

function. Call Play() to start the playback and Stop() to stop it.

Note: Not all WAV files are supported, always check the return value of

LoadFromFile().

err32 LoadFromFile (LPSTR lpszFileName)
Parameters lpszFilename Name of sound file (.wav)
Return value Error value See CError.h for error descriptions
Description This function loads a sound from file into a buffer

err32 SetVolume (u_int32 iVolume)
Parameters iVolume Volume of sound (0-100)
Return value Error value See CError.h for error descriptions
Description This sets the volume of the sound.

err32 SetFrequency (u_int32 iFrequency)
Parameters iFrequency Frequency of sound (5000-100000)
Return value Error value See CError.h for error descriptions
Description This sets the frequency of the sound.

err32 SetPan (int32 iPan)
Parameters iPan Pan of sound: -100 (left speaker) –

100 (right speaker)
Return value Error value See CError.h for error descriptions
Description This sets the pan of the sound.

err32 Play (u_int32 iLoop)
Parameters iLoop 0 = Play only once

1 = Loop playback
Return value Error value See CError.h for error descriptions
Description This function starts the playback of the sound buffer

err32 Stop (void)
Parameters - -
Return value Error value See CError.h for error descriptions
Description This function stops the sound playback.

 50

CCDPlayer

Description: Provides functionality to play audio CD's.

Basic Usage: Call Update() to refresh CD information, check the status of the CD

player with IsReady() and use Play() and Stop() to control playback.

void Eject (void)
Parameters - -
Return value - -
Description Ejects the CD.

void Play (u_int32 iTrack)
Parameters iTrack Track of audio CD
Return value - -
Description Playback the specified audio track.

void Stop (void)
Parameters - -
Return value - -
Description Stop CD playback.

void Update (void)
Parameters - -
Return value - -
Description Updates the CD information (length + nr of tracks)

u_int32 GetNumberOfTracks (void)
Parameters - -
Return value Number of tracks on CD -
Description Get the number of tracks that are on the CD.

int8 * GetLength (void)
Parameters - -
Return value String containing length of current CD -
Description Get the total length of the current CD..

u_int32 GetCurrentTrack (void)
Parameters - -
Return value Track number -
Description Get the number of the track that is currently being played.

bool32 IsReady (void)
Parameters - -
Return value b_false

b_true
CD player not ready
CD player ready to be used

Description Returns the current status of the CD player.

 51

CCamera

Description: Represents the camera in a 3D scene.

Basic Usage: Position and point the camera in the preferred direction using SetEye(),

SetLookAt() and SetUp(). Use the other functions to move the camera
through the scene.

void SetCamera (void)
Parameters - -
Return value - -
Description Set camera in scene according to current values.

void SetEye (real32 eyeX, real32 eyeY, real32 eyeZ)
Parameters eyeX, eyeY, eyeZ Position of the camera
Return value - -
Description Set the position of the camera in a 3D scene.

void SetLookAt (real32 lookX, real32 lookY, real32 lookZ)
Parameters lookX, lookY, lookZ Point the camera is focused on
Return value - -
Description Set the point the camera in a 3D scene is looking at.

void SetUp (real32 upX, real32 upY, real32 upZ)
Parameters upX, upY, upZ Up vector of the camera
Return value - -
Description Set the axis that is up relative to the camera in a 3D scene

D3DXMATRIXA16* GetMatrix (void)
Parameters - -
Return value Pointer to the view matrix -
Description Get a pointer to the current view matrix

void Zoom (real32 fFactor)
Parameters fFactor Zoom factor (0.0-1.0: zoom out,

 > 1.0: zoom in)
Return value - -
Description Effectively moves the camera to or from the focus point.

void Move (real32 fSpeed)
Parameters fSpeed Movement speed
Return value - -
Description Moves the camera forward / backward in the x,z plane.

void Strafe (real32 fSpeed)
Parameters fSpeed Movement speed
Return value - -
Description Moves the camera left / right in the x,z plane.

 52

void Rotate (real32 fAngle, real32 fX, real32 fY, real32 fZ)
Parameters fAngle

fX, fY, fZ
Angle of rotation
Rotation axis

Return value - -
Description Rotates the camera at its position around the specified axis.

void Rotate (D3DVECTOR3 vPoint, real32 fAngle, real32 fX, real32 fY, real32 fZ)
Parameters vPoint

fAngle
fX, fY, fZ

Center of rotation
Angle of rotation
Rotation axis

Return value - -
Description Rotates the camera around the specified point / axis

combination.

 53

CFont

Description: Font object that can be used to display text in a specific font or color.

Basic Usage: Call Init() with the preferred font properties as parameters. Set the

position with SetTextArea() or SetPosition(). Use DrawText() to
display a string.

err32 Init (int32 iHeight, int32 iWidth, LPCTSTR lpszFace)
Parameters iHeight

iWidth
lpszFace

Font size
Average font width (0 = automatic)
Name of face (e.g.: “Arial”)

Return value Error value See Cerror.h
Description Initializes the font.

void DrawText (LPCTSTR lpszText, DWORD dwFormat, u_int32 iColor)
Parameters lpszText

dwFormat
iColor

Text string
Format options (see DirectX documentation)
Color of the text

Return value - -
Description Draws a string to the screen in the specified color. Format

options like DT_CENTER, DT_RIGHT etc. can be used to align
the text. See for more information DirectX documentation
about ID3DFont::DrawText().

void SetTextArea (u_int32 iMinX, u_int32 iMinY, u_int32 iMaxX,

u_int32 iMaxY)
Parameters iMinX, iMinY

iMaxX, iMaxY
Top left position of text area
Bottom right position of text area

Return value - -
Description Set up an area in which the text is to be displayed (text outside

area won’t be visible.

void SetPosition (u_int32 iX, u_int32 iY)
Parameters iX, iY Position to start text (use DT_LEFT as

format parameter to make sure text starts
at this location)

Return value - -
Description Set the position where the text should start.

void Invalidate (void) / void Restore (void)
Parameters - -
Return value - -
Description Invalidate() releases all resources used that are related to the

device. This function must be called before resetting the
device.
Restore() restores it. Must be called after resetting the device.

 54

CWorld

Description: Represents the world matrix and allows transformations it to rotate,
scale and translate objects in 3D space.

Basic Usage: Call Reset() to move back to the center of coordinate space (0,0,0).

Make calls to Rotate(), Translate() to determine position and
orientation. Call Scale() to adjust the size. Now the Render() function
of the object that needs to be drawn can be called.

void SetWorld (void)
Parameters - -
Return value - -
Description Set world matrix to current matrix.

void Reset (void)
Parameters - -
Return value - -
Description Reset the world matrix by loading the identity matrix.

D3DXMATRIXA16* GetMatrix (void)
Parameters - -
Return value Pointer to world matrix -
Description Returns a pointer to the current world matrix

void LoadMatrix (D3DXMATRIX* matWorld)
Parameters matWorld Pointer to a transformation matrix
Return value - -
Description Loads the matrix pointed to by matWorld and sets it as the

current world matrix.

void RotateX (real32 fAngle)
Parameters fAngle Angle of rotation (in degrees)
Return value - -
Description Applies a rotation around the x-axis.

void RotateY (real32 fAngle)
Parameters fAngle Angle of rotation (in degrees)
Return value - -
Description Applies a rotation around the y-axis.

void RotateZ (real32 fAngle)
Parameters fAngle Angle of rotation (in degrees)
Return value - -
Description Applies a rotation around the z-axis.

 55

void Rotate (real32 fAngle, real32 fX, real32 fY, real32 fZ)
Parameters fAngle

fX
fY
fZ

Angle of rotation (in degrees)
X component of arbitrary axis
Y component of arbitrary axis
Z component of arbitrary axis

Return value - -
Description Applies a rotation around an arbitrary axis.

void Translate (real32 fX, real32 fY, real32 fZ)
Parameters fX

fY
fZ

Movement along x-axis
Movement along y-axis
Movement along z-axis

Return value - -
Description Applies a translation in the specified direction.

void Scale (real32 fX, real32 fY, real32 fZ)
Parameters fX

fY
fZ

Scale factor along x-axis
Scale factor along y-axis
Scale factor along z-axis

Return value - -
Description Applies a scaling using the specified factors.

void Push (void)
Parameters - -
Return value - -
Description Pushes the current world matrix onto the matrix stack.

void Pop (void)
Parameters - -
Return value - -
Description Pops the top matrix from the matrix stack and uses it as the

current world matrix.

void MultLocal (D3DXMATRIX* matLocal)
Parameters matLocal Pointer to a transformation matrix
Return value - -
Description Applies a local matrix multiplication with the top element of

the matrix attack.

 56

CMaterial

Description: Represents a material that describes the properties of a specific object.
Used for lighting calculations.

Basic Usage: Use Create() to quickly create a material of the specified color. Use

SetSpecular() and SetEmission() to set additional properties. Call
SetActive() to activate this material.

void Create (u_int32 iRed, u_int32 iGreen, u_int32 iBlue)
Parameters iRed, iGreen, iBlue Color of the material
Return value - -
Description Creates a new material, using the specified parameters for the

diffuse and ambient components of the material.

void SetActive (void)
Parameters - -
Return value - -
Description This material will be set as the active material, meaning that

everything drawn from this call until another material is set
active will be using this material’s properties.

void SetDiffuse (u_int32 iRed, u_int32 iGreen, u_int32 iBlue, u_int32 iAlpha)
Parameters iRed, iGreen, iBlue, iAlpha Color components
Return value - -
Description The way diffuse lighting is affecting this material is changed.

The color components indicate the amount of light of each
component is reflected.

void SetAmbient (u_int32 iRed, u_int32 iGreen, u_int32 iBlue, u_int32 iAlpha)
Parameters iRed, iGreen, iBlue, iAlpha Color components
Return value - -
Description The way ambient lighting is affecting this material is changed.

void SetSpecular (u_int32 iRed, u_int32 iGreen, u_int32 iBlue, u_int32 iAlpha,

real32 fPower)
Parameters iRed, iGreen, iBlue, iAlpha

fPower
Color components
Sharpness of highlight

Return value - -
Description The way specular lighting is affecting this material is changed.

Specular light will cause a highlight on the object the
sharpness of this highlight is indicated by fPower.

void SetEmission (u_int32 iRed, u_int32 iGreen, u_int32 iBlue, u_int32 iAlpha);
Parameters iRed, iGreen, iBlue, iAlpha Color components
Return value - -
Description This will cause the material to appear to emit light itself.

 57

CLight

Description: Light object that is used to control the lighting in a scene. It represents
a single light source.

Basic Usage: Enable lighting by calling the static function EnableLighting(b_true).

Add ambient light to a scene using the static function
SetAmbientLight(). To create a light source use Create(), call the
appropriate functions to set its parameters and activate it using
Switch().

Note: This class assumes the support for a maximum of 8 lights, which can

be a problem. Change the value of MAX_LIGHTS and recompile if
needed.

void Create (D3DLIGHTTYPE iType)
Parameters iType Type of light to be created. Use

L_POINT, L_DIRECTIONAL or L_SPOT
Return value - -
Description Creates a new light using standard properties (bright white)

err32 Switch (void)
Parameters - -
Return value Error value See CError.h
Description Light switch, if light is on it will be turned off, otherwise it

will be turned on, unless the maximum active lights is reached.

void SetPosition (real32 fX, real32 fY, real32 fZ)
Parameters fX, fY, fZ Position of the light
Return value - -
Description Sets the position of this light. Only useful for point / spotlights.

void SetDirection (real32 fX, real32 fY, real32 fZ)
Parameters fX, fY, fZ Direction of the light
Return value - -
Description Sets the direction of this light. Only useful for directional /

spotlights.

void SetDiffuse (u_int32 iRed, u_int32 iGreen, u_int32 iBlue, u_int32 iAlpha)
Parameters iRed, iGreen, iBlue, iAlpha Color components
Return value - -
Description Sets the diffuse component of this light.

void SetAmbient (u_int32 iRed, u_int32 iGreen, u_int32 iBlue, u_int32 iAlpha)
Parameters iRed, iGreen, iBlue, iAlpha Color components
Return value - -
Description Sets the ambient component of this light.

 58

void SetSpecular (u_int32 iRed, u_int32 iGreen, u_int32 iBlue, u_int32 iAlpha)
Parameters iRed, iGreen, iBlue, iAlpha Color components
Return value - -
Description Sets the specular component of this light.

void SetRange (real32 fRange)
Parameters fRange Range of the light
Return value - -
Description Sets the range of the light (distance traveled before it is faded

away). Not for directional lights.

void SetAttenuation (real32 fA0, real32 fA1, real32 fA2)
Parameters fA0, fA1, fA2 Attenuation constants
Return value - -
Description Sets the way how light fades over distance. See DirectX

documentation for details.

void SetTheta (u_int32 iTheta)
Parameters iTheta Angle of inner cone (in degrees)
Return value - -
Description Sets the angle of the inner cone of the spotlight. This cone will

be fully lighted. See also DirectX documentation.

void SetPhi (u_int32 iPhi)
Parameters iPhi Angle of outer cone (in degrees)
Return value - -
Description Sets the angle of the outer cone of the spotlight. The light

intensity decreases between the outside of the inner cone and
the outside of the outer cone. See also DirectX documentation.

void SetFalloff (real32 fFalloff)
Parameters fFalloff Falloff constant
Return value - -
Description Determines the way light fades between inner and outer cone.

Default is 1.0f. See also DirectX documentation.

static void SetAmbientLight (u_int32 iRed, u_int32 iGreen, u_int32 iBlue)
Parameters iRed, iGreen, iBlue Color components
Return value - -
Description Sets the amount of ambient light of the scene.

static void EnableLighting (bool32 bEnable)
Parameters bEnable b_true = enable lighting

b_false = disable lighting
Return value - -
Description Switches the use of lighting in a scene on or off.

 59

CMesh

Description: This class holds a 3D model that can be loaded from a .x file and
rendered to the screen. It also provides functions to create basic shapes
and supports collision detection between meshes.

Basic Usage: Either use LoadFromX() or Create…() to load / create a model. Use

Render() to display it.
For collision detection call InitBoundingBox() after creation and call
UpdateBoundingBox() with the transformation matrix used to position
the model (the world matrix that is valid just before Render() is called).
Finally use CheckCollisionWith() to do the collision detection.

err32 LoadFromX (LPSTR lpszFileName)
Parameters lpszFileName Filename of a .x model
Return value Error value See CError.h
Description Loads a 3D model from a .x file

err32 CreateBox (real32 fWidth, real32 fHeight, real32 fDepth,

u_int32 iRed, u_int32 iGreen, u_int32 iBlue, u_int32 iAlpha)
Parameters fWidth, fHeight, fDepth

iRed…iAlpha
Dimensions of the box
Components of box color

Return value Error value See CError.h
Description Creates a box shape with the specified dimensions and color.

err32 CreateSphere (real32 fRadius, u_int32 iSlices, u_int32 iStacks,

u_int32 iRed, u_int32 iGreen, u_int32 iBlue, u_int32 iAlpha)
Parameters fRadius

iSlices, iStacks
iRed…iAlpha

Radius of the sphere
Level of detail
Components of sphere color

Return value Error value See CError.h
Description Creates a sphere shape with the specified dimensions and

color. Increase number of slices and stacks to increase the
number of polygons used to build the sphere.

err32 CreateCylinder (real32 fRadiusTop, real32 fRadiusBottom,

real32 fLength, u_int32 iSlices, u_int32 iStacks,
u_int32 iRed, u_int32 iGreen, u_int32 iBlue, u_int32 iAlpha)

Parameters fRadiusTop
fRadiusBottom
fLength
iSlices, iStacks
iRed…iAlpha

Radius of top (0 to create cone)
Radius of bottom
Length of cylinder
Level of detail
Components of cylinder color

Return value Error value See CError.h
Description Creates a cylinder shape with the specified dimensions and

color. Increase number of slices and stacks to increase the
number of polygons used to build the shape.

 60

void Render (void)
Parameters - -
Return value - -
Description Renders a 3D model to the screen.

void Render (bool32 bMaterial, bool32 bTextures)
Parameters bMaterial

bTextures
Use materials of mesh
Use textures of mesh

Return value - -
Description Renders a 3D model to the screen, specifies wheter the current

active material/texture should be used or the ones provided by
the mesh.

void Invalidate (void)
Parameters - -
Return value - -
Description Releases all resources used that are related to the device. This

function must be called before resetting the device.

err32 InitBoundingBox (void)
Parameters - -
Return value Error value See CError.h
Description Calculates the bounding box for the mesh in model space.

void UpdateBoundingBox (D3DXMATRIX* matWorld)
Parameters matWorld Pointer to the current world matrix
Return value - -
Description Calculates the current bounding box of the mesh in world

space.

bool32 CheckCollisionWith (CMesh* pMesh)
Parameters pMesh Pointer to mesh that needs to be checked

against this mesh for collisions.
Return value b_false

b_true
No collision between meshes
Collision occurred between meshes

Description Checks whether a collision has occurred between this mesh
and the one passed as parameter to the function.

D3DXVECTOR3 GetMinBounds (void)
Parameters -
Return value Vector representing the minimum bounds of the bounding box
Description Returns the lower / left / front corner of the current bounding

box.

D3DXVECTOR3 GetMaxBounds (void)
Parameters -
Return value Vector representing the maximum bounds of the bounding box
Description Returns the upper / right / back corner of the current bounding box.

 61

LPD3DXMESH GetMesh (void)
Parameters - -
Return value Pointer to the mesh object. -
Description Gives a pointer to the actual ID3DMESH object.

 62

CFog

Description: This class can be used to add fog to a 3D scene (objects that are further
away are blended with a specific color).

Basic Usage: Call Create() to initialize the CFog object. Call SetVisible() to show or

hide the fog.

err32 Create (u_int32 iColor, DWORD dwMode)
Parameters iColor

dwMode
Fog color
Fog mode (D3DFOG_LINEAR,
D3DFOG_EXP, D3DFOG_EXP2)

Return value Error value See CError.h
Description Creates a new fog object using default parameters and the

specified mode and color. See DirectX documentation for
detailed information about the different modes.

err32 SetVisible (bool32 bVisible)
Parameters bVisible b_true = Enable fog

b_false = Disable fog
Return value Error value See CError.h
Description Enables or disables the fog.

err32 SetLinearFog (real32 fStart, real32 fEnd)
Parameters fStart

fEnd
Starting position of fog
End position of fog (fully fogged)

Return value Error value See CError.h
Description Sets the parameters for linear fog. The amount of fog is

linearly distributed between the start and end position.

err32 SetExponentialFog (real32 fDensity)
Parameters fDensity Fog density
Return value Error value See CError.h
Description Sets the density factor for exponential fog. See DirectX

documentation for details about this factor.

 63

CEffect

Description: This class is used to load and use shader effects, that are written in the
High Level Shader Language (HLSL).

Basic Usage: Call Create() to load an effect from a .fx file. To enable a technique

defined in the shader file, use SetTechnique(). To draw a mesh using
the enabled technique, call RenderMesh().

err32 Create (LPSTR lpszFileName)
Parameters lpszFileName File name of effect to load
Return value Error value See CError.h
Description Creates a new effect from a .fx source file

err32 SetVector (D3DXHANDLE hParameter, CONST D3DXVECTOR4* pVector)
Parameters hParameter

pVector
Name of a vector variable
Pointer to the vector to use

Return value Error value See CError.h
Description Supplies a vector variable value to a shader effect

err32 SetMatrix (D3DXHANDLE hParameter, CONST D3DXMATRIX* pMatrix)
Parameters hParameter

pMatrix
Name of a matrix variable
Pointer to the matrix to use

Return value Error value See CError.h
Description Supplies a matrix variable value to a shader effect

err32 SetTechnique (LPCSTR pName)
Parameters pName Name of the technique to use
Return value Error value See CError.h
Description Enables a specific technique defined in the shader

err32 RenderMesh (CMesh* pMesh)
Parameters pMesh Pointer to a mesh
Return value Error value See CError.h
Description Renders a mesh object using the technique currently set

void Invalidate (void)
Parameters - -
Return value - -
Description Releases all resources used that are related to the device. This

function must be called before resetting the device.

LPD3DXEFFECT GetEffect (void)
Parameters - -
Return value Pointer to the effect object -
Description Provides access to the effect object for more advanced control.

 64

CParticleSystem

Description: This class is used to create and control a particle system that can be
used to achieve a wide variety of special effects, such as explosions,
fire, smoke, snow, sparks etc.

Basic usage: Call Create() to create a new particle system. Create a ParticleInfo

structure, fill it with zeros and fill in the fields that are necessary for
this particle system. Call Init() to initialize the particle system. Call
Update() every frame and Render() to show the particle system.

Note: A drawback of this class is that it enables alpha blending and disables

the z-buffer to achieve the effects and therefore the particles are not
tested against the z-buffer. This means that the particles are visible
through other objects, even when they are actually behind those
objects. Also sizes of point sprites seem to show differently on
different computers.

err32 Create (u_int32 iMaxParticles, D3DXVECTOR3 vOrigin,

D3DXVECTOR3 vForce, LPCSTR lpszTextureName)
Parameters iMaxParticles

vOrigin
vForce
lpszTextureName

Max. amount of particles to use
Point of emission
External force (gravity, wind, etc.)
Filename of texture to use

Return value Error value See CError.h
Description Creates a new particle system that must be initialized first by

calling Init(..).

void Init (ParticleInfo * pParticleInfo)
Parameters pParticleInfo Pointer to a ParticleInfo structure

describing the properties of the
particle system.

Return value - -
Description Initializes the particle system. The ParticleInfo structure

contains all needed info to set the properties of the particle
system. It must be maintained by the application and stay
available as long as the particle system is needed. The
properties can be changed dynamically while the system is
running.

void Invalidate (void)
Parameters - -
Return value - -
Description Releases all resources used that are related to the device. This

function must be called before resetting the device.

 65

void Update (real32 fTimePassed)
Parameters fTimePassed Fraction of time that has passed

since last call (in seconds)
Return value - -
Description Updates calculation for all particles, creating and destroying

them when needed.

err32 Render (void)
Parameters - -
Return value Error value See CError.h
Description Renders all particles of the system as point sprites (always

facing towards viewer).

int Emit (u_int32 iNrOfParticles)
Parameters iNrOfParticles Number of particles to create
Return value Number of particles that could not be created
Description Creates a number of new particles.

void Reset (void)
Parameters - -
Return value - -
Description Sets the number of particles to 0, destroying all current

particles. To prevent new particles from being created the
iParticlesPerSecond field of the ParticleInfo structure should
be set to zero.

void Move (D3DXVECTOR3 vDirection)
Parameters vDirection Vector describing the movement to

make in x, y and z direction
Return value - -
Description Moves the entire particle system (emission point) towards the

specified direction.

void SetOrigin (D3DXVECTOR3 vOrigin)
Parameters vOrigin New origin position
Return value - -
Description Sets a new origin (emission point) for the particle system.

void SetForce (D3DXVECTOR3 vForce)
Parameters vForce Vector describing the external force

affecting the particles.
Return value - -
Description Sets a new external force to influence the particles.

 66

D3DXVECTOR3 GetOrigin (void)
Parameters - -
Return value Current origin -
Description Returns the current origin (emission point) of the system.

D3DXVECTOR3 GetForce (void)
Parameters - -
Return value Current force -
Description Returns the current external force affecting the system.

u_int32 GetNrOfParticles (void)
Parameters - -
Return value Current number of particles -
Description Returns the amount of particles the system currently uses.

 67

CViewPort

Description: This class represents a viewport, a part of the screen that can be
rendered to. By using multiple viewports, split-screen multiplayer
games can be constructed.

Basic Usage: When using viewports, the StartFrame() and EndFrame() functions of

CScreen should not be called. Instead call Begin() and End() for each
viewport, but the last. Use Begin() and EndLastViewPort() for the last.

void Create (u_int32 iX, u_int32 iY, u_int32 iWidth, u_int32 iHeight)
Parameters iX, iY

iWidth, iHeight
Starting position of viewport
Dimensions of the viewport

Return value - -
Description Creates a new viewport starting at (iX,iY) with the specified

width and height.

err32 Begin (u_int8 iRed, u_int8 iGreen, u_int8 iBlue, u_int8 iAlpha)
Parameters iRed…iAlpha Clear color components
Return value Error value See CError.h
Description Activates this viewport and clears it with the specified color.

void End (void)
Parameters - -
Return value - -
Description Must be called after rendering to this viewport, unless this is

the last viewport that has been rendered to (frame ready).

err32 EndLastViewPort (void)
Parameters - -
Return value Error value See CError.h
Description Must be called after rendering to the last viewport in a frame.

void SetViewArea (RECT kViewArea)
Parameters kViewArea RECT describing the wanted

viewport dimensions
Return value - -
Description Sets the viewport area to start at the (top, left) values from the

RECT and uses the (bottom, right) values as height and with.

 68

void SetDepth (real32 fMinZ, real32 fMaxZ)
Parameters fMinZ

fMaxZ
Minimum depth
Maximum depth

Return value - -
Description Sets the depth values for this viewport. Values must be

between 0.0 and 1.0. See DirectX documentation for more
information.

void GetViewArea (RECT* kViewArea)
Parameters kViewArea Pointer to a RECT structure.
Return value - -
Description Fills the RECT with the current view area parameters.

real32 GetMinZ (void)
Parameters - -
Return value Current minimum depth value -
Description Returns the current minimum depth value.

real32 GetMaxZ (void)
Parameters - -
Return value Current maximum depth value -
Description Returns the current maximum depth value.

 69

CMusic

Description: This class represents a background music track, loaded from a mp3 or
midi file.

Basic Usage: Use LoadMP3() or LoadMidi() to load the media. Use Play() and
Stop() to control playback.

err32 LoadMP3 (LPCSTR lpszFileName)
Parameters lpszFileName Name of mp3 file
Return value Error value See CError.h
Description Loads the specified mp3 file.

err32 LoadMidi (LPCSTR lpszFileName)
Parameters lpszFileName Name of midi file
Return value Error value See CError.h
Description Loads the specified midi file.

err32 Play(u_int32 iNrOfRepeats)
Parameters iNrOfRepeats Number of times to repeat the track
Return value Error value See CError.h
Description Plays the loaded mp3/midi track, repeating it the specified

amount of times (only for midi).

err32 Stop(void)
Parameters - -
Return value Error value See CError.h
Description Stops the playback of the loaded mp3/midi track.

bool32 IsPlaying(void)
Parameters - -
Return value b_false

b_true
Track is currently not playing
Track is playing

Description Returns the current playing status of the mp3/midi track.

 70

CBSPMap

Description: This class provides functionality for loading and rendering maps in the
Quake 3 BSP format.

Basic Usage: Load the map with LoadFromFile() and display it using Render().

Note: This class only handles geometry, texture maps and light maps, it

doesn’t support collision detection, model loading and JPG textures. To
be really useful in practice it should be extended to support these
features.

.

err32 LoadFromFile (LPCSTR lpszFileName)
Parameters lpszFileName Filename of .bsp map
Return value Error value See CError.h
Description Loads a Quake 3 BSP map / level from file.

void Render (void)
Parameters - -
Return value - -
Description Renders the map to the screen.

void Invalidate (void)
Parameters - -
Return value - -
Description Releases all resources used that are related to the device. This

function must be called before resetting the device.

