
 1

Game Development with DirectX 9

Contents
Contents.. 1
Introduction .. 5
Prerequisites ... 5
Required tools/downloads .. 5
Conventions.. 5
D3DX Library .. 5
Introduction to DirectX 9 ... 6
Direct3D... 6

1. Direct3D Initialization.. 6
1.1 Overview .. 6

1.1.1 REF Device ... 7
1.1.2 D3DDEVTYPE... 7
1.1.3 COM.. 7

1.2 Preliminaries... 7
1.2.1 Surfaces ... 7
1.2.2 Multisampling ... 8
1.2.3 Pixel Formats... 9
1.2.4 Memory Pools ... 9
1.2.5 Swap Chain ... 10
1.2.6 Depth Buffers .. 10
1.2.7 Vertex Processing.. 10
1.2.8 Device Capabilities ... 10

1.3 Initializing Direct3D .. 11
1.3.1 Acquire an IDirect3D9 interface ... 11
1.3.2 Check the device capabilities .. 11
1.3.3 Initialize an instance of the D3DPRESENT_PARAMETERS structure 11
1.3.4 Create the IDirect3DDevice9 object ... 12

1.4 Example Program, D3D Init... 12
1.4.1 Framework .. 12
1.4.2 d3dUtility.h/cpp... 13
1.4.3 D3D Init Implementation .. 14

Display ... 14
IDirect3DDevice9:Clear... 15
WndProc... 15
WinMain... 15

1.4.4 Compiling with Visual C++ 6.0 .. 16
Settings ... 16
New Project .. 16
Project Settings... 17
Adding the source files... 17
Compiling... 17

1.5 The CreateDevice example .. 18
1.5.1 Differences .. 18

1.6 Summary .. 18
2. The Rendering Pipeline.. 19

 2

2.1 Model Representation .. 19
2.1.1 Vertex Formats .. 19
2.1.2 Triangles.. 20
2.1.3 Indices ... 20

2.2 The Virtual Camera.. 21
2.3 The Rendering pipeline .. 21

2.3.1 Local Space ... 22
2.3.2 World Space .. 22
2.3.3 View Space.. 22
2.3.4 Backface Culling ... 23
2.3.5 Clipping... 24
2.3.6 Projection .. 25
2.3.7 Viewport Transform.. 25
2.3.8 Rasterization.. 26

2.4 Summary .. 26
3. Drawing.. 27

3.1 Vertex/Index Buffers.. 27
3.1.1 Creating a Vertex and Index Buffer .. 27
3.1.2 Accessing a buffer’s memory.. 28

3.2 Render States.. 29
3.3 Drawing preparations ... 29
3.4 Drawing with Vertex/Index Buffers... 30

3.4.1 IDirect3DDevice9::DrawPrimitive ... 30
3.4.2 IDirect3DDevice9::DrawIndexedPrimitive .. 30
3.4.3 Begin/End Scene ... 31

3.5 D3DX Geometry Objects ... 31
3.6 Examples .. 32

3.6.1 Triangle ... 32
3.6.2 Cube .. 32
3.6.3 Teapot and D3DXCreate... 33

3.7 Summary .. 33
4. Color... 34
4.1 Color Representation.. 34

4.1.1 D3DCOLOR.. 34
4.1.2 D3DCOLORVALUE .. 34
4.1.3 D3DXCOLOR... 34

4.2 Vertex Colors ... 35
4.3 Shading... 35
4.4 Sample: Colored Triangle .. 36
4.5 Summary .. 37

5. Lighting .. 37
5.1 Light Components .. 37
5.2 Materials... 38
5.3 Vertex Normals .. 39
5.4 Light Sources.. 41
5.5 Sample: litPyramid... 42
5.6 Summary .. 43

6. Texturing .. 43
6.1 Texture Coordinates ... 43
6.2 Using textures in code .. 44

 3

6.3 Filters.. 45
6.4 Mipmaps... 46

6.4.1 Mipmap filter... 46
6.5 Address Modes... 46
6.6 Sample: Textured Quad.. 47
6.7 Summary .. 48

7. Blending ... 48
7.2 Transparency .. 50

7.2.1 Alpha Channels ... 50
7.2.2 Creating an Alpha Channel using the DirectX Texture Tool.............................. 51

7.3 Sample: Transparency .. 51
7.4 Summary .. 53

8. Fonts ... 53
8.1 ID3DXFont... 53

8.1.1 Drawing with ID3DXFont .. 54
8.2 CD3DFont .. 54

8.2.1 Drawing with CD3DFont .. 55
8.2.2 Cleanup.. 55

8.3 D3DXCreateText ... 55
8.4 Font Samples .. 57
8.5 Summary .. 57

9. Stenciling.. 57
9.1 Using the stencil buffer .. 58

9.1.1 Requesting a Stencil Buffer... 58
9.1.2 Stencil Test .. 58
9.1.3 Controlling the Stencil Test... 59

Stencil Reference Value (ref) ... 59
Stencil Mask (mask)... 59
Stencil Value (value) .. 59
Comparison Operation ... 59

9.1.3 Updating the Stencil Buffer... 60
9.1.4 Stencil Write Mask.. 61

9.2 Sample: Mirror ... 61
9.2.1 Reflecting about an arbitrary plane ... 61
9.2.2 Mirror Implementation.. 62
9.2.3 Sample Application’s code.. 63

Enabling the stencil buffer ... 63
Render the mirror to the stencil buffer ... 63
Compute the reflection matrix.. 64
Render the reflected teapot... 65
Cleanup... 65

9.3 Sample: Planar Shadows .. 66
9.3.1 Shadow Matrix .. 66
9.3.2 Double Blending problem ... 66
9.3.3 Stencil Shadow example code... 67

9.4 Other usages for stenciling... 68
9.4 Summary .. 69

10. A Flexible Camera Class.. 69
10.1 Camera Design ... 69
10.2 Implementation... 70

 4

10.2.1 The View Matrix ... 70
10.2.2 Rotation about an arbitrary axis .. 71
10.2.3 Pitch, Yaw and Roll .. 71
10.2.4 Walking, Strafing and Flying .. 72

10.3 Sample: Camera ... 72
10.4 Summary .. 73

11. Sample Project.. 74
11.1 Implementation... 74

Bibliography... 75

 5

Introduction
The goal of this document gives an introduction to game programming with DirectX 9. This
will be done by explaining the basics of each topic/technique and giving example code. At the
end, I will show a sample application called Project with source code that uses the explained
techniques. This main sample will be discussed in the final chapter. It can be downloaded
from: http://www.cs.vu.nl/~tljchung/directx/samples/Project.zip.
Most topics discussed are based on Frank D. Luna’s book, “Introduction to 3D GAME
Programming with DirectX 9.0”. The book itself is not necessary when reading this document.

Prerequisites
This document designed to be an introduction to DirectX. No knowledge of DirectX is
required. However, some prerequisites are.
The first one is mathematical knowledge. The reader is assumed to be familiar with terms like
vectors, normals, matrices and transformation.
Second, knowledge of C/C++ and data structures like arrays and lists is also required. Having
knowledge of Windows programming is helpful, but not a must.

Required tools/downloads
The required development tools are Visual C++ 6.0 or 7.0 (.NET), DirectX 9.0c End-User
Runtime and the DirectX 9.0c SDK. Section 1.4.4 explains how to compile DirectX programs
with Visual C++ 6. View the following PDF document for Visual Studio .NET 2002:
http://www.moon-labs.com/resources/sample_setup.pdf .
The SDK version used in this document is DirectX 9.0 SDK Update - (June 2005). It can be
downloaded from: http://msdn.microsoft.com/directx/.
The runtime will be installed when you install the SDK. To view information regarding your
DirectX installation, select Run from the Start menu in Windows. Enter dxdiag and click OK.
The official DirectX documentation can be found at the windows start menu. By default at:
“Microsoft DirectX 9.0 SDK Update (June 2005)”. The documentation works very well as a
reference. All DirectX functions, objects etc. can be found there. It also contains some
tutorials.
This document uses the examples given in Luna’s book. As said before, the book itself is not
necessary, but I do recommend downloading the example programs from this book. Visit
http://www.moon-labs.com/ml_book_samples.htm or http://www.wordware.com/files/dx9/
for downloading the examples.
For more help, you could also visit the handy forum found at the moon-labs link.

Conventions
Pieces of code will be written in Courier font. Comments in code have a green color.
Large blocks of code will have a grey background.

// comments
int x = 1;
int y = 25;

D3DX Library
The D3DX library is shipped with the DirectX SDK and contains features that would be a
chore for the programmer to implement. Like math, texture and image operations.
The library is used in this document, because D3DX:

 6

• contains handy functions, for example loading an image file. This way, we can avoid
spending pages explaining how to load images.

• is also used other developers
• is fast.
• has been thoroughly tested.

Introduction to DirectX 9
The DirectX SDK is an API developed by Microsoft that allows programmers to access the
hardware directly in Windows. DirectX consists of several components, namely:

• DirectX Graphics: combines the DirectDraw and Direct3D components of previous
DirectX versions into a single application programming interface (API) that you can
use for all graphics programming. The component includes the Direct3D extensions
(D3DX) utility library, which simplifies many graphics programming tasks.

• DirectSound: can be used in the development of high-performance audio applications
that play and capture waveform audio.

• DirectMusic: provides a complete solution for both musical and non-musical
soundtracks based on waveforms, MIDI sounds, or dynamic content authored in
DirectMusic Producer.

• DirectInput: provides support for a variety of input devices, including full support for
force-feedback technology.

• DirectPlay: provides support for multiplayer networked games.

This document will only discuss Direct3D.

Direct3D

1. Direct3D Initialization
The Direct3D initialization process assumes that the programmer is familiar with basic
graphics concepts and some fundamental Direct3D types. These requirements will be
addressed in this chapter.
Keywords: HAL, REF Device, D3DDEVTYPE, COM, surface, multisampling, memory pools,
swap chain, depth buffer, device capabilities, D3DCAPS9, IDirect3D9,
IDirect3DDevice9, D3DPRESENT_PARAMETERS

1.1 Overview
Direct3D is a low-level graphics API that enables us to render 3D worlds using 3D hardware
acceleration. It can be thought of as a mediator between the application and the graphics
device (3D hardware).

Figure 1.1: The relationship between the application, Direct3D, and the hardware

The Direct3D part of figure 1.1 represents the set of features which are provided by Direct3D.
However, it doesn’t automatically mean that the hardware supports it.
HAL (Hardware Abstraction Layer) is the set of device-specific code that instructs the device
to perform an operation and is implemented by the manufacturer. Direct3D uses HAL to

 7

interact with the graphics device. This way it doesn’t need to know about the specific details
of a device. When Direct3D calls a function that is not implemented by the HAL, it results in
failure.

1.1.1 REF Device
To test a function that is not implemented by your device, you can use the REF device
(reference rasterizer). For example, you could test vertex and pixel shaders with the REF
device, even if your device does not support it. However, the REF device is slow. It should
only be used for development and not to be distributed to end users. That is why it is only
shipped with the SDK.

1.1.2 D3DDEVTYPE
In code, a HAL device is specified by D3DDEVTYPE_HAL, which is a member of the
D3DDEVTYPE enumerated type. Similarly, a REF device is specified by D3DDEVTYPE_REF,
which is also a member of the D3DDEVTYPE enumerated type. We will be asked to specify
which type to use when creating our device.

1.1.3 COM
Component Object Model (COM) is the technology that allows DirectX to be language
independent and have backward compatibility. We usually refer to a COM object as an
interface, which for our purposes can be thought of and used as a C++ class. Most of the
details of COM are transparent to us when programming DirectX with C++. The only thing
that we must know is that we obtain pointers to COM interfaces through special functions or
the methods of another COM interface; we do not create a COM interface with the C++ new
keyword. In addition, when we are done with an interface, we call its Release method rather
than delete it. COM objects perform their own memory management.
Knowing more details on COM is not necessary for using DirectX effectively.

1.2 Preliminaries
The following sections introduce the basic graphics concepts and Direct3D types.

1.2.1 Surfaces
A surface is a matrix of pixels that Direct3D uses primarily to store 2D image data. See figure
1.2 for some components of a surface.

Figure 1.2: A surface

 8

Pixel data is stored in a linear array. The width and height are measured in pixels, while the
pitch is measured in bytes. Depending on the hardware, the pitch can be wider than the width.
So you cannot assume that pitch = width * sizeof(pixelFormat).
The IDirect3DSurface9 interface provides methods for reading, writing to a surface as
well as retrieving information about the surface.
The most important methods are:

• LockRect: This method allows us to obtain a pointer to the surface memory. Then,
with some pointer arithmetic, we can read and write to each pixel in the surface.

• UnlockRect: After you have called LockRect and are done accessing the surface’s
memory, you must unlock the surface by calling this method.

• GetDesc: This method retrieves a description of the surface by filling out a
D3DSURFACE_DESC structure.

The following code shows how to lock a surface and color each pixel red.

// Assume _surface is a pointer to an IDirect3DSurface9 interface.
// Assumes a 32-bit pixel format for each pixel.

// Get the surface description.
D3DSURFACE_DESC surfaceDesc;
_surface->GetDesc(&surfaceDesc);

// Get a pointer to the surface pixel data
D3DLOCKED_RECT lockedRect;
_surface->LockRect(

&lockedRect, // pointer to receive locked data
0, // lock entire surface
0); // no lock flags specified

// Iterate through each pixel in the surface and set it to red.
DWORD* imageData = (DWORD*)lockedRect.pBits;
for(int i = 0; i < surfaceDesc.Height; i++) {

for(int j = 0; j < surfaceDesc.Width; j++) {
// index into texture, note we use the pitch and divide
// by four since the pitch is given in bytes and there
// are 4 bytes per DWORD.

int index = i * lockedRect.Pitch / 4 + j;
imageData[index] = 0xffff0000; // red

}
}

_surface->UnlockRect();

1.2.2 Multisampling
Multisampling is a technique used to make blocky-looking images that can result when
representing images as a matrix of pixels look smoother
The D3DMULTISAMPLE_TYPE enumerated type consists of values that allow us to specify the
level of multisampling of a surface. They are:

• D3DMULTISAMPLE_NONE: Specifies no multisampling
• D3DMULTISAMPLE_1_SAMPLE ... D3DMULTISAMPLE_16_SAMPLE: Specifies

multisampling levels from 1 to 16

Multisampling is not used here, because it slows down the application to much. If you wish to
include it, use the IDirect3D9::CheckDeviceMultiSampleType method to verify that

 9

the graphics device supports the multisampling type that you wish to use and check for valid
quality levels.

1.2.3 Pixel Formats
We often need to specify the pixel format of Direct3D resources when we create a surface or
texture. The format of a pixel is defined by specifying a member of the D3DFORMAT
enumerated type. Some formats are:

• D3DFMT_R8G8B8: Specifies a 24-bit pixel format where, starting from the leftmost bit,
8 bits are allocated for red, 8 bits are allocated for green, and 8 bits are allocated for
blue. In other words:

o 8 bits red
o 8 bits green
o 8 bit blue

• D3DFMT_X8R8G8B8: 32-bit pixel format
o 8 bits not used
o 8 bits red
o 8 bits green
o 8 bits blue

• D3DFMT_A8R8G8B8: 32-bit pixel format
o 8 bits alpha
o 8 bits red
o 8 bits green
o 8 bits blue

• D3DFMT_A16B16G16R16F: 64-bit, floating-point pixel format
o 16 bits alpha
o 16 bits blue
o 16 bits green
o 16 bits red

• D3DFMT_A32B32G32R32F: 128-bit, floating-point pixel format.
o 32 bits alpha
o 32 bits blue
o 32 bits green
o 32 bits red

Look up D3DFORMAT in the SDK documentation for a complete list of all the supported pixel
formats.

1.2.4 Memory Pools
Surfaces and other Direct3D resources can be placed in a variety of memory pools. The
memory pools available are specified in the D3DPOOL enumerated type:

• D3DPOOL_DEFAULT: The default memory pool instructs Direct3D to place the
resource in the memory that is best suited for the resource type and its usage. This may
be video memory, AGP memory, or system memory. Note that resources in the default
pool must be destroyed (released) prior to an IDirect3DDevice9::Reset call, and
must be reinitialized after the reset call.

• D3DPOOL_MANAGED: Resources placed in the manage pool are managed by Direct3D
(that is, they are moved to video or AGP memory as needed by the device
automatically). In addition, a back-up copy of the resource is maintained in system
memory. When resources are accessed and changed by the application, they work with

 10

the system copy. Then, Direct3D automatically updates them to video memory as
needed.

• D3DPOOL_SYSTEMMEM: Specifies that the resource be placed in system memory
• D3DPOOL_SCRATCH: Specifies that the resource be placed in system memory. The

difference between this pool and D3DPOOL_ SYSTEMMEM is that these resources must
not follow the graphics device’s restrictions. Consequently, the device cannot access
resources in this pool. But the resources can be copied to and from each other.

1.2.5 Swap Chain
Direct3D maintains usually two or three surfaces, called a swap chain that is represented by
the IDirect3DSwapChain9 interface. Direct3D manages it and we rarely need to manipulate it.
Instead, the purpose of it will be outlined.
Basically, there is a front buffer that corresponds to the image displayed by the monitor. If the
application renders frames faster than the monitor’s refresh rate, the application will render to
an off-screen surface called back buffer first. The back buffer will be promoted to be the front
buffer when the monitor has finished displaying the original front buffer. This process is
called presenting.

1.2.6 Depth Buffers
In order for Direct3D to determine which pixels of an object are in front of another, it uses a
technique called depth buffering or z-buffering. This technique compares the depth each pixel
competing for a particular pixel location. The pixel closest to the camera is written.
The higher the depth buffer format, the more accurate it is. Most applications work fine with a
24-bit depth buffer.

• D3DFMT_D32: Specifies a 32-bit depth buffer
• D3DFMT_D24S8: Specifies a 24-bit depth buffer with 8 bits reserved as the stencil

bufferi
• D3DFMT_D24X8: Specifies a 24-bit depth buffer only
• D3DFMT_D24X4S4: Specifies a 24-bit buffer with 4 bits reserved for the stencil buffer
• D3DFMT_D16: Specifies a 16-bit depth buffer only.

1.2.7 Vertex Processing
Vertices are the building blocks for 3D geometry, and they can be processed either in
software (software vertex processing) or in hardware (hardware vertex processing). Software
vertex processing is always supported and can always be used. Hardware vertex processing
can only be used if the graphics card supports vertex processing in hardware.
Hardware vertex processing is always preferred since dedicated hardware is faster than
software. Furthermore, performing vertex processing in hardware unloads calculations from
the CPU.

1.2.8 Device Capabilities
We can check if a device supports a feature by checking the corresponding data member or bit
in the D3DCAPS9 structure.
Suppose we wish to check if a hardware device is capable of doing vertex processing in
hardware (or in other words, whether the device supports transformation and lighting
calculations in hardware). By looking up the D3DCAPS9 structure in the SDK documentation,
we find that the bit D3DDEVCAPS_HWTRANSFORMANDLIGHT in the data member

i The stencil buffer is a more advanced topic and is explained in chapter 9

 11

D3DCAPS9::DevCaps (device capabilities) indicates whether the device supports
transformation and lighting calculations in hardware. Our test then, assuming caps is a
D3DCAPS9 instance and has already been initialized, is:

bool supportsHardwareVertexProcessing;
// If the bit is “on” then that implies the hardware device
// supports it.
if(caps.DevCaps & D3DDEVCAPS_HWTRANSFORMANDLIGHT) {

// Yes, the bit is on, so it is supported.
supportsHardwareVertexProcessing = true;

} else {
// No, the bit is off, so it is not supported.
hardwareSupportsVertexProcessing = false;

}

1.3 Initializing Direct3D
To initialize Direct3D, these 4 steps should be taken.

1.3.1 Acquire an IDirect3D9 interface
The IDirect3D9 interface is used for finding out information about the physical hardware
devices on a system and creating the IDirect3DDevice9 interface, which is our C++ object
that represents the physical hardware device we use for displaying 3D graphics.

IDirect3D9* _d3d9;
_d3d9 = Direct3DCreate9(D3D_SDK_VERSION);

To guarantee the application is built with the correct header files, the parameter
D3D_SDK_VERSION should be used.

1.3.2 Check the device capabilities
With the D3DCAPS9 structure, we can see if the primary display adapter (primary graphics
card) supports hardware vertex processing or not. We need to know if it can in order to create
the IDirect3DDevice9 interface.

HRESULT GetDeviceCaps(

// the physical display adapter that we are
// going to get the capabilities of
UINT Adapter,
//hardware or software device
D3DDEVTYPE DeviceType,
//results are stored in this structure
D3DCAPS *pCaps);

We can find if the hardware supports hardware vertex processing with the following if-
statement (as seen in 1.2.8).

if (pCaps.DevCaps & D3DDEVCAPS_HWTRANSFORMANDLIGHT)

1.3.3 Initialize an instance of the D3DPRESENT_PARAMETERS structure
This structure consists of a number of data members that allow us to specify the
characteristics of the IDirect3DDevice9 interface that we are going to create.
It is defined as:

 12

typedef struct _D3DPRESENT_PARAMETERS_ {
 UINT BackBufferWidth, BackBufferHeight;
 D3DFORMAT BackBufferFormat;
 UINT BackBufferCount;
 D3DMULTISAMPLE_TYPE MultiSampleType;
 DWORD MultiSampleQuality;
 D3DSWAPEFFECT SwapEffect;
 HWND hDeviceWindow;
 BOOL Windowed;
 BOOL EnableAutoDepthStencil;
 D3DFORMAT AutoDepthStencilFormat;
 DWORD Flags;
 UINT FullScreen_RefreshRateInHz;
 UINT PresentationInterval;
} D3DPRESENT_PARAMETERS;

See the SDK documentation for a description of this structure.

1.3.4 Create the IDirect3DDevice9 object
This can be done with the CreateDevice() method. The D3DPRESENT_PARAMETERS
structure from the previous step is needed.

HRESULT CreateDevice(

// The physical display adapter
UINT Adapter,
// Hardware or software device
D3DDEVTYPE DeviceType,
// Handle the window that the device will be associated with
// usually the window the device will draw onto
HWND hFocusWindow,
// Combination of one or more options that control device
// creation. See D3DCREATE.
DWORD BehaviorFlags,
// Defines some of the characteristics of the device
D3DPRESENT_PARAMETERS *pPresentationParameters,
// Returns the created device
IDirect3DDevice9 **ppReturnedDeviceInterface

);

1.4 Example Program, D3D Init
The first example, called D3D Init, creates and initializes a Direct3D application and clears
the screen to black. As mentioned, the example programs can be downloaded from
http://www.moon-labs.com/ml_book_samples.htm.

1.4.1 Framework
The first example program from Luna’s book was chosen, because it provides us with a nice
framework.
The framework contains the files d3dUtility.cpp, d3dUtility.h and a main program file.
Functions for handling the window and Direct3D initialization are implemented in
d3dUtility.cpp. The main file will contain three specific functions:

• bool Setup(): Set up anything needed for the example, such as allocating resources
and checking device capabilities.

• void Cleanup(): Frees anything allocated in the Setup() function.

 13

• bool Display(float timeDelta): Contains all of the drawing code and code
which occur on a frame-by-frame basis, such as updating object positions. The
timeDelta parameter is the time elapsed between each frame.

All examples given in this document will fill out these three functions.

1.4.2 d3dUtility.h/cpp
Let’s take a look at the functions provided by d3dUtility.h/cpp.

// Include the main Direct3DX header file. This will include the
// other Direct3D header files we need.
#include <d3dx9.h>

namespace d3d {

bool InitD3D(
HINSTANCE hInstance, // [in] Application instance.
int width, int height, // [in] Back buffer dimensions.
bool windowed, // [in] Windowed (true)or

//full screen (false).
D3DDEVTYPE deviceType, // [in] HAL or REF
IDirect3DDevice9** device); // [out] The created device.

int EnterMsgLoop(

bool (*ptr_display)(float timeDelta));

LRESULT CALLBACK WndProc(
HWND hwnd,
UINT msg,
WPARAM wParam,
LPARAM lParam);

template<class T> void Release(T t) {

if(t) {
t->Release();
t = 0;

}
}

template<class T> void Delete(T t) {

if(t) {
delete t;
t = 0;

}
}

}

• InitD3D: Initializes a main application window and implements the Direct3D
initialization code discussed in chapter 1.3. It outputs a pointer to a created
IDirect3DDevice9 interface if the function returns successfully. The parameters
allow us to specify the window’s dimensions and whether it should run in windowed
mode or full-screen mode.

• EnterMsgLoop: This function wraps the application message loop. The parameter
*ptr_display is a pointer to the display function, which implements the sample’s
drawing code. The message loop function needs to know the display function so that it
can call it and display the scene during idle processing. It also calculates the time
between frames.

 14

int d3d::EnterMsgLoop(bool (*ptr_display)(float timeDelta)) {
MSG msg;

 ::ZeroMemory(&msg, sizeof(MSG));

 static float lastTime = (float)timeGetTime();

 while(msg.message != WM_QUIT) {
 if(::PeekMessage(&msg, 0, 0, 0, PM_REMOVE)) {
 ::TranslateMessage(&msg);
 ::DispatchMessage(&msg);
 } else {
 float currTime = (float)timeGetTime();
 float timeDelta = (currTime - lastTime)*0.001f;

 ptr_display(timeDelta);

 lastTime = currTime;

}
}
return msg.wParam;

}

• Release: This template function is designed as a convenience function to release
COM interfaces and set them to null.

• Delete: This template function is designed as a convenience function to delete an
object on the free store and set the pointer to null.

• WndProc: The window procedure declaration for the main application window

1.4.3 D3D Init Implementation
We can finally describe the main file of this sample program, d3dInit.cpp. It starts with
including d3dUtility.h and instantiating a global variable for the device:

#include "d3dUtility.h”

IDirect3DDevice9* Device = 0;

The framework functions Setup() and Cleanup() are empty, because we have nothing to
setup in this sample.

Display
The Display() method calls IDirect3DDevice9::Clear to clear the back buffer to
black and the depth buffer to 1.0.

bool Display(float timeDelta) {
 if(Device) {

Device->Clear(0, 0, D3DCLEAR_TARGET | D3DCLEAR_ZBUFFER,
0x00000000, 1.0f, 0);

 // Swap the back and front buffers.
 Device->Present(0, 0, 0, 0);
 }
 return true;
}

 15

IDirect3DDevice9:Clear
The IDirect3DDevice9::Clear method is shown below. For more information, see the
SDK documentation.

HRESULT Clear(
 //Number of rectangles in the array at pRects

DWORD Count,
//Array of screen rectangles to clear
//allows clearing part of the surface
const D3DRECT *pRects,
//Which surface to clear
DWORD Flags,
//Clear a render target to this color
D3DCOLOR Color,
//Clear the depth buffer to this value, ranges from 0 to 1.
float Z,
//The value we wish to set the stencil buffer to
DWORD Stencil

);

The value 0x00000000 is used for representing the color black. We could use the macro
D3DCOLOR_XRGB(r,g,b) to get this value. All values are to be in the range 0 to 255. For
black, use D3DCOLOR_XRGB(0,0,0). See chapter 4, Color.

WndProc
The window procedure method allows us to exit the application with the Escape key.

LRESULT CALLBACK d3d::WndProc(HWND hwnd, UINT msg, WPARAM wParam,
LPARAM lParam) {
 switch(msg) {
 case WM_DESTROY:
 ::PostQuitMessage(0);
 break;

 case WM_KEYDOWN:
 if(wParam == VK_ESCAPE)
 ::DestroyWindow(hwnd);
 break;
 }
 return ::DefWindowProc(hwnd, msg, wParam, lParam);
}

 WinMain
The execution begins at the WinMain function. It performs the following steps:

1. Initializes the main display window and Direct3D
2. Calls the Setup routine to set up the application
3. Enters the message loop using Display as the display function
4. Cleans up the application and finally releases the IDirect3DDevice9 object

int WINAPI WinMain(HINSTANCE hinstance,
 HINSTANCE prevInstance,
 PSTR cmdLine,
 int showCmd)
{
 if(!d3d::InitD3D(hinstance,
 640, 480, true, D3DDEVTYPE_HAL, &Device))
 {

 16

 ::MessageBox(0, "InitD3D() - FAILED", 0, 0);
 return 0;
 }

 if(!Setup()) {
 ::MessageBox(0, "Setup() - FAILED", 0, 0);
 return 0;
 }

 d3d::EnterMsgLoop(Display);
 Cleanup();
 Device->Release();

 return 0;
}

1.4.4 Compiling with Visual C++ 6.0
To compile the example program with Microsoft Visual C++ 6.0 (VC++6), certain steps need
to be taken. The D3D Init example contains the three files d3dUtility.cpp, d3dUtility.h and the
main file d3dInit.cpp. There is no VC++6 project file provided, we will have to make it
ourselves.

Settings
Before starting a new DirectX9 project with VC++6, make sure your Include and Library
paths are set correctly. In the menu: Tools->Options, Directories tab. If your DirectX9
Include path is not there yet, make sure “Include files” is selected from the dropdown menu
and click the “new” button. Select the right directory located at: “<DirectX9 path>/Include”.
Next, select “Library files” from the dropdown menu, click “new” again and add: “<DirectX9
path>/Lib/x64” or “<DirectX9 path>/Lib/x86”, depending on your PC.

New Project
In VC++6 select File->New. Select the “Projects” tab and choose “Win32 Application”. Enter
a project name, for example “InitD3D” and click “OK”. In the next screen just leave it to “An
empty project” and click “Finish”. You will see a confirmation window; just click “OK”.

 17

Project Settings
VC++6 needs to know about the DirectX9 libraries. Select Project->Settings and click on the
project name (InitD3D). Select the “Link” tab, in the field “Project Options” type in “d3d9.lib
d3dx9.lib winmm.lib” without the quotes. This is highlighted in the screenshot below. Click
“OK” to save.

Adding the source files
Select “FileView” on the left bottom of the screen, right click on the “Source Files” map and
select “Add Files to Folder…”. Select the two cpp files. You can also add the header files to
the “Header Files” folder if you want to.

Compiling
We can finally compile the project. Select Build (F7) and after that select Execute Program
(Ctrl+F5). You should now see the black application screen.

 18

You just compiled your first DirectX9 program with VC++6! Congratulations!

1.5 The CreateDevice example
The CreateDevice example program comes from the DirectX SDK documentation. It roughly
follows the same ideas as D3D Init. It’s recommended to take a look at this sample to gain a
different perspective.
The sample can easily be obtained via the DirectX Sample Browser. Select the Direct3D
option and make sure the boxes C++ and Tutorials are selected. Look for “Tutorial1:
CreateDevice” and choose “Install Project” to save it. CreateDevice consists of one source file
CreateDevice.cpp and comes with several different versions of Visual Studio .Net projects. If
you don’t have Visual Studio .Net, the procedure explained in 1.4.4 can be followed to
compile CreateDevice with VC++6.

1.5.1 Differences
Some differences between CreateDevice and D3D Init:

• CreateDevice consists of one file; D3D Init puts the window and Direct3D
initialization in different files.

• CreateDevice does not check the device capabilities. It simply sets the vertex
processing to D3DCREATE_SOFTWARE_VERTEXPROCESSING.

• CreateDevice uses WS_OVERLAPPEDWINDOW to create the window. D3D Init uses
WS_EX_TOPMOST.
An application window with WS_OVERLAPPEDWINDOW contains the three window
buttons at the top right (minimize, maximize and close).

1.6 Summary
• Direct3D is a mediator between the programmer and the graphics hardware. The

programmer calls a Direct3D function, which in turn has the physical hardware
perform the operation by interfacing with the device’s HAL (Hardware Abstraction
Layer).

• The REF device allows developers to test features that Direct3D exposes but are not
implemented by available hardware.

• Component Object Model (COM) allows DirectX to be language independent and
have backward compatibility. Programmers don’t need to know the details of COM
and how it works.

• The IDirect3D9 interface can be used to find out the capabilities of a device. It is
also used to create the IDirect3DDevice9 interface.

 19

• The IDirect3DDevice9 interface is our C++ object that represents the physical
hardware device we use for displaying 3D graphics.

• The examples in this document use the utility files d3dUtility.h/cpp and always fill the
methods Setup, Clean and Display.

• Visual C++ 6.0 can be used to compile DirectX applications with the latest DirectX
SDK, but needs to be configured manually.

2. The Rendering Pipeline
The rendering pipeline is responsible for creating a 2D image given a geometric description of
the 3D world and a virtual camera. The objectives of this chapter:

• Find out how we represent 3D objects in Direct3D.
• Learn how we model the virtual camera.
• Understanding the rendering pipeline.

Keywords: triangle mesh, vertex format, triangle, camera, frustum, clipping, rendering
pipeline, local space, world space, view space, backface culling, projection, viewport,
D3DVIEWPORT9, rasterization

2.1 Model Representation
A scene is a collection of objects or models. An object is represented as triangle meshes, a list
of triangles that approximates the shape and contours of the object. Illustrated in figure 2.1.

Figure 2.1: Terrain made of triangles Figure 2.2: Triangle defined by three vertices

Polygons, primitives and mesh geometry are terms used to refer to the triangles of a mesh.
The point where two edges on a polygon meet is a vertex. To describe a triangle we specify
the three point locations that correspond to the three vertices of the triangle (see Figure 2.2).
Then to describe an object, we specify the triangles that make it up.

2.1.1 Vertex Formats
A vertex in Direct3D can consist of additional properties besides special location. For
instance a color and normal property. Direct3D allows us to construct our own vertex formats.
To create a custom vertex format, we first create a structure. For instance, a custom color
vertex:

 20

struct ColorVertex
{
 FLOAT x, y, z; // position for the vertex.
 DWORD color; // The vertex color.
};

We need to describe the way the vertices are formatted by using a combination of flexible
vertex format (FVF) flags.

#define FVF_COLOR (D3DFVF_XYZ | D3DFVF_DIFFUSE)

The flags in the code above say that the vertex structure contains a position property and a
diffuse color property. These flags must be in the same order as the specified data in the
custom vertex structure.
Look up D3DFVF in the documentation for a complete list of the available vertex format flags.

2.1.2 Triangles
To construct an object, we create a triangle list that describes the shape and contours of the
object. A triangle list contains the data for each individual triangle that we wish to draw. For
example, to construct a rectangle, we break it into two triangles, as seen in Figure 2.3, and
specify the vertices of each triangle.

Figure 2.3: A rectangle constructed with two triangles

Vertex rect[6] = {v0, v1, v2, // triangle0
v0, v2, v3}; // triangle1

2.1.3 Indices
The triangles that form a 3D object often share many of the same vertices. Like the cube
shown in figure 2.4. It has eight unique vertices. Many of these vertices would be duplicated
to form the triangle list for the cube.

Figure 2.4: A cube made with triangles

The concept of indices is introduced to solve this. It works like this: There is a vertex and
index list. The vertex list consists of all the unique vertices; the index list contains values that
index into the vertex list to define how they are to be put together to form triangles.

 21

In the rectangle sample, the vertex list and index list would be constructed as follows:

Vertex vertexList[4] = {v0, v1, v2, v3};

WORD indexList[6] = {0, 1, 2, // triangle0

0, 2, 3}; // triangle1

In other words, indexList says that triangle0 is built from elements 0,1 and 2 of the vertex
list. Triangle1 is built from 0, 2 and 3.

2.2 The Virtual Camera
The camera specifies what part of the world the viewer can see and thus what part of the
world for which we need to generate a 2D image.
The volume of space the camera “sees” is called a frustum, defined by the field of view angles
and the near and far planes. Objects that are not inside this volume cannot be seen and should
be discarded from further processing. This is called clipping.

Figure 2.5

The projection window is the 2D area that the 3D geometry inside the frustum gets projected
onto to create the 2D image representation of the 3D scene. It is important to know that we
define the projection window with the dimensions min = (–1, –1) and max = (1, 1).
To simplify some of the drawings that are to follow in this tutorial, we make the near plane
and projection plane (plane the projection window lies on) coincide. Also, note that Direct3D
defines the projection plane to be the plane z = 1.

2.3 The Rendering pipeline
The series of operations to produce a 2D representation of a 3D scene, is called the rendering
pipeline. Figure 2.6 shows the stages of the pipeline.

Figure 2.6: The rendering pipeline stages

 22

Several of the stages in the pipeline transform geometry from one coordinate system to
another. The transformations are done using matrices. Direct3D is set up to do the
transformation calculations for us. All we must do is supply the desired transformation matrix
that describes the transformation needed to go from one system to the next. We supply a
matrix using the IDirect3DDevice->SetTransform method. This method takes a
parameter describing the transformation type and a matrix that represents the transformation.
To set the transformation needed to go from local space to world space, we would write:

Device->SetTransform(D3DTS_WORLD, &worldMatrix);

2.3.1 Local Space
We define an object’s triangle list in the coordinate system called the local space. This
simplifies the modeling process, because building a model around its own local coordinate
system is easier than building a model directly into the world. For instance, you could
construct a model without regard to its position or size.

2.3.2 World Space
The constructed models, each residing in their local space, are brought together to form the
scene in one global (world) coordinate system. Transforming objects from local space to
world space is called world transform. This usually consists of translations, rotations and
scaling. The world transformation sets up all the objects in the world in relationship to each
other in position, size, and orientation.
The world transformation is represented with a matrix and set with Direct3D using the
IDirect3DDevice9::SetTransform method with D3DTS_WORLD as the transform type.
For example, suppose we want to position a cube at the point (–3, 2, 6) in the world and a
sphere at the point (5, 0, –2). We would write:

// Build the cube world matrix that only consists of a translation.
D3DXMATRIX cubeWorldMatrix;
D3DXMatrixTranslation(&cubeWorldMatrix, -3.0f, 2.0f, 6.0f);

// Build the sphere world matrix that only consists of a
// translation.
D3DXMATRIX sphereWorldMatrix;
D3DXMatrixTranslation(&sphereWorldMatrix, 5.0f, 0.0f, -2.0f);

// Set the cube’s transformation
Device->SetTransform(D3DTS_WORLD, &cubeWorldMatrix);
drawCube(); // draw the cube

// Now since the sphere uses a different world transformation, we
// must change the world transformation to the sphere’s. If we
// don’t change this, the sphere would be drawn using the previously
// set world matrix – the cube’s.
Device->SetTransform(D3DTS_WORLD, &sphereWorldMatrix);
drawSphere(); // draw the sphere

2.3.3 View Space
The camera is transformed to the origin of the world system to make things easier. It is rotated
so that the camera is looking down the positive z-axis. All geometry in the world is
transformed along with the camera so that the view of the world remains the same. This
transformation is called the view space transformation.

 23

Figure 2.7: Transformation from world space to view space

The view space transformation matrix can be computed using the following D3DX function:

D3DXMATRIX *D3DXMatrixLookAtLH(

D3DXMATRIX* pOut, // pointer to receive resulting view matrix
CONST D3DXVECTOR3* pEye, // position of camera in world
CONST D3DXVECTOR3* pAt, // point camera is looking at in world
CONST D3DXVECTOR3* pUp // the world’s up vector – (0, 1, 0)

};

Suppose we want to position the camera at the point (5, 3, –10) and have the camera look at
the center of the world (0, 0, 0). We can then build the view transformation matrix by writing:

D3DXVECTOR3 position(5.0f, 3.0f, –10.0f);
D3DXVECTOR3 targetPoint(0.0f, 0.0f, 0.0f);
D3DXVECTOR3 worldUp(0.0f, 1.0f, 0.0f);

D3DXMATRIX V;
D3DXMatrixLookAtLH(&V, &position, &targetPoint, &worldUp);

The view space transformation is set with the IDirect3DDevice9::SetTransform
method with D3DTS_VIEW as the transform type:

Device->SetTransform(D3DTS_VIEW, &V);

2.3.4 Backface Culling
A polygon has a front and a back side. In general, the back sides are never seen because of
enclosed volumes like boxes, cylinders, tanks etc. The camera should not be allowed to enter
the space inside the object.
In figure 2.8a we can see an object where the front sides have an arrow sticking out. A
polygon whose front side faces the camera is called a front facing polygon, and a polygon
whose front side faces away from the camera is called a back facing polygon.

 24

Figure 2.8a Figure 2.8b: After back face culling

Figure 2.8b shows the same object after backface culling. An operation that discards the back
facing polygons from further processing. From the camera’s viewpoint, the same scene will
be drawn because the back faces were obscured anyway and would never have been seen.
By default, Direct3D treats triangles with vertices specified in a clockwise winding order (in
view space) as front facing. Triangles with vertices specified in counterclockwise winding
orders (in view space) are considered back facing.
The culling behavior can be changed with:

Device->SetRenderState(D3DRS_CULLMODE, Value);

Where Value can be one of the following:

• D3DCULL_NONE: Disables back face culling entirely
• D3DCULL_CW: Triangles with a clockwise wind are culled.
• D3DCULL_CCW: Triangles with a counterclockwise wind are culled. This is the default

state.

2.3.5 Clipping
A triangle can be at one of these three locations with regards to the frustum:

1. Completely inside
2. Completely outside
3. Partially inside

Figure 2.9: Clipping

The part inside the frustum is kept and the part outside is culled. This is called clipping.

 25

2.3.6 Projection
The process of going from an n dimension to an n–1 dimension (e.g. from 3D to 2D) is called
projection. A particular way called perspective projection projects geometry in such a way
that objects farther away from the camera appear smaller than those near the camera. This
type of projection allows us to represent a 3D scene on a 2D image. Figure 2.10 shows a 3D
point being projected onto the projection window with a perspective projection.

Figure 2.10: Projection

The projection transformation defines our viewing volume (frustum) and is responsible for
projecting the geometry in the frustum onto the projection window.
We use the following D3DX function to create a projection matrix based on a frustum
description:

D3DXMATRIX *D3DXMatrixPerspectiveFovLH(

D3DXMATRIX* pOut, // returns projection matrix
FLOAT fovY, // vertical field of view angle in radians
FLOAT Aspect, // aspect ratio = width / height
FLOAT zn, // distance to near plane
FLOAT zf // distance to far plane

);

The aspect ratio is for correcting the stretching distortion caused when the projection window
(a square) is transformed to the screen (a rectangle).
The projection matrix is set with the IDirect3DDevice9::SetTransform method,
passing D3DTS_PROJECTION as the transform type. The following example creates a
projection matrix based on a frustum with a 90-degree field of view, a near plane with a
distance of 1, and a far plane with a distance of 1000.

D3DXMATRIX proj;
D3DXMatrixPerspectiveFovLH(

&proj, PI * 0.5f, (float)width / (float)height, 1.0, 1000.0f);
Device->SetTransform(D3DTS_PROJECTION, &proj);

2.3.7 Viewport Transform
The viewport transform is responsible for transforming coordinates on the projection window
to a rectangle on the screen, which we call the viewport. For games, the viewport is usually
the entire screen rectangle. In windowed mode it can be a subset of the screen or client area if
we are running. The viewport rectangle is described relative to the window it resided in and is
specified in window coordinates.

 26

A viewport is represented by the D3DVIEWPORT9 structure:

typedef struct _D3DVIEWPORT9 {

DWORD X; // pixel coordinate of the upper-left corner of
 // the viewport on the render-target surface

 DWORD Y; //pixel coordinate
 DWORD Width;
 DWORD Height;

float MinZ; // minimum depth buffer value
 float MaxZ; // maximum depth buffer value
} D3DVIEWPORT9;

The first four data members define the viewport rectangle relative to the window in which it
resides. Direct3D uses a depth buffer range of zero to one, so MinZ and MaxZ should be set
to those values respectively unless a special effect is desired.
The viewport can be set this way:

D3DVIEWPORT9 vp = { 0, 0, 640, 480, 0, 1 };
Device->SetViewport(&vp);

2.3.8 Rasterization
After the vertices are transformed to screen coordinates, we have a list of 2D triangles. The
rasterization stage is responsible for computing the individual pixel color values needed to
draw each triangle (see Figure 2.11).

Figure 2.11: A triangle rasterized

The rasterization process is very intensive computationally and should always be done by
dedicated graphics hardware. The end result of the rasterization stage is the 2D image that is
displayed by the monitor.

2.4 Summary
• 3D objects are represented as triangle meshes, a list of triangles that approximates the

shape and contours of the object.
• The virtual camera is modeled as a frustum. The volume of space inside the frustum is

what the camera “sees”.
• 3D objects are defined in local space and are then all brought into one world space

system. To facilitate projection, culling, and other operations, the objects are then
transformed to view space, where the camera is positioned at the origin and looking
down the positive z-axis. Once in view space, the objects are projected to the
projection window. The viewport transformation transforms the geometry on the
projection window to the viewport. Finally, the rasterization stage computes the
individual pixel colors of the final 2D image.

 27

3. Drawing
In this chapter, we will learn how to draw some geometric objects in Direct3D. The subjects
from chapter 2 will be put into practice.
Keywords: vertex buffer, index buffer, Lock, Unlock, render states, drawing preparations,
DrawPrimitive, DrawIndexedPrimitive, BeginScene, EndScene, D3DX geometry
objects, DrawSubset.

3.1 Vertex/Index Buffers
A vertex buffer is a chunk of contiguous memory that contains vertex data. Similarly, an
index buffer is a chunk of contiguous memory that contains index data. These buffers can be
put in video memory for faster rendering. A vertex buffer is represented by the
IDirect3DVertexBuffer9 interface, the index buffer by IDirect3DIndexBuffer9.

3.1.1 Creating a Vertex and Index Buffer
We can create a vertex and index buffer with the following two methods:

HRESULT IDirect3DDevice9::CreateVertexBuffer(

UINT Length,
DWORD Usage,
DWORD FVF,
D3DPOOL Pool
IDirect3DVertexBuffer9** ppVertexBuffer,
HANDLE* pSharedHandle

);
HRESULT IDirect3DDevice9::CreateIndexBuffer(

UINT Length,
DWORD Usage,
D3DFORMAT Format,
D3DPOOL Pool,
IDirect3DIndexBuffer9** ppIndexBuffer,
HANDLE* pSharedHandle

);

The majority of the parameters are identical for both methods, so the parameters of both
methods are described together.

• Length: The number of bytes to allocate for the buffer. If we wanted a vertex buffer
to have enough memory to store eight vertices, we would set this parameter to 8 *
sizeof(Vertex), where Vertex is our vertex structure.

• Usage: Specifies some additional properties about how the buffer is used. This value
can be zero, indicating no additional properties, or a combination of one or more of the
following flags:

o D3DUSAGE_DYNAMIC: Setting this flag makes the buffer dynamic. See the
notes on static and dynamic buffers on the following page.

o D3DUSAGE_POINTS: This flag specifies that the buffer will hold point
primitives. Point primitives are covered in “Particle Systems” in Chapter 14.
This flag is used only for vertex buffers.

o D3DUSAGE_SOFTWAREPROCESSING: Vertex processing is done in software.
o D3DUSAGE_WRITEONLY: The application will only write to the buffer. This

allows the driver to place the buffer in the best memory location for write
operations. Reading from a buffer created with this flag will result in an error.

• FVF: The flexible vertex format of the vertices that is stored in the vertex buffer
• Pool: The memory pool in which the buffer is placed

 28

• ppVertexBuffer: Pointer to receive the created vertex buffer
• pSharedHandle: Not used; set to zero
• Format: Specifies the size of the indices; use D3DFMT_INDEX16 for 16-bit indices or

use D3DFMT_INDEX32 for 32-bit indices. Note that not all devices support 32-bit
indices; check the device capabilities.

• ppIndexBuffer: Pointer to receive the created index buffer

A buffer created without the D3DUSAGE_DYNAMIC flag is called a static buffer. Static
buffers are generally placed in video memory where its contents can be processed most
efficiently. However, reading from the memory of a static buffer is slow because accessing
video memory is slow. We use static buffers to hold data that will not need to be changed very
frequently. Examples are terrains and city buildings. Static buffers should be filled with
geometry at application initialization time and never at run time.
A buffer created with the D3DUSAGE_DYNAMIC flag is called a dynamic buffer. Dynamic
buffers are generally placed in AGP memory where its memory can be updated quickly.
Dynamic buffers are not processed as quickly as static buffers because the data must be
transferred to video memory before rendering, but they can be updated reasonably fast.
Therefore, if you need to update the contents of a buffer frequently, it should be made
dynamic. Particle systems are good candidates for dynamic buffers because they are animated,
and thus their geometry is usually updated every frame.

The following example creates a static vertex buffer with enough memory for eight vertices of
type Vertex.

IDirect3DVertexBuffer9* vb;

_device->CreateVertexBuffer(8 * sizeof(Vertex), 0,
D3DFVF_XYZ,D3DPOOL_MANAGED, &vb, 0);

3.1.2 Accessing a buffer’s memory
To access the memory of a vertex/index buffer, we need to obtain a pointer to it with the
Lock method. It is important to use Unlock when done accessing the memory. The
parameters for both Lock methods are the same.

HRESULT IDirect3DVertexBuffer9::Lock(

UINT OffsetToLock, //Offset, in bytes, from the start of the
//buffer to the location to begin the lock.

UINT SizeToLock, //Number of bytes to lock
BYTE** ppbData, //A pointer to the start of the locked memory
DWORD Flags //Flags describing how the lock is done. See below

);

HRESULT IDirect3DIndexBuffer9::Lock(

UINT OffsetToLock,
UINT SizeToLock,
BYTE** ppbData,
DWORD Flags);

Setting both OffsetToLock and SizeToLock to zero means locking the entire buffer.
The Flags can be zero or one of the following:

• D3DLOCK_DISCARD: This flag is used only for dynamic buffers. It instructs the
hardware to discard the buffer and return a pointer to a newly allocated buffer. This is

 29

useful because it allows the hardware to continue rendering from the discarded buffer
while we access the newly allocated buffer. This prevents the hardware from stalling.

• D3DLOCK_NOOVERWRITE: This flag is used only for dynamic buffers. It states that
you are only going to append data to a buffer. That is, you will not overwrite any
memory that is currently being rendered. This is beneficial because it allows the
hardware to continue rendering at the same time you add new data to the buffer.

• D3DLOCK_READONLY: This flag states that you are locking the buffer only to read data
and that you won’t be writing to it. This allows for some internal optimizations.

The following example shows the Lock method being used:

Vertex* vertices;
_vb->Lock(0, 0, (void**)&vertices, 0); // lock the entire buffer

vertices[0] = Vertex(-1.0f, 0.0f, 2.0f); // write vertices to
vertices[1] = Vertex(0.0f, 1.0f, 2.0f); // the buffer
vertices[2] = Vertex(1.0f, 0.0f, 2.0f);

_vb->Unlock(); // unlock when you’re done accessing the buffer

3.2 Render States
Direct3D encapsulates a variety of rendering states that affect how geometry is rendered. To
set the render state to something other than the default, use:

HRESULT IDirect3DDevice9::SetRenderState(

D3DRENDERSTATETYPE State, // the state to change
DWORD Value // value of the new state

);

Example of setting the render state to wireframe mode:

_device->SetRenderState(D3DRS_FILLMODE, D3DFILL_WIREFRAME);

3.3 Drawing preparations
Once we have created a vertex buffer and, optionally, an index buffer, we are almost ready to
render its contents, but there are three steps that must be taken first.

Step 1. Set the stream source. Setting the stream source hooks up a vertex buffer to a stream
that essentially feeds geometry into the rendering pipeline.
The following method is used to set a stream source:

HRESULT IDirect3DDevice9::SetStreamSource(

UINT StreamNumber,
IDirect3DVertexBuffer9* pStreamData,
UINT OffsetInBytes,
UINT Stride

);
• StreamNumber: Identifies the stream source to which we are hooking the vertex

buffer. In this tutorial we always use stream zero.
• pStreamData: A pointer to the vertex buffer that we want to hook up to the stream
• OffsetInBytes: An offset from the start of the stream, measured in bytes, that

specifies the start of the vertex data to be fed into the rendering pipeline. To set this

 30

parameter to something besides zero, check if your device supports it by checking the
D3DDEVCAPS2_STREAMOFFSET flag in the D3DCAPS9 structure.

• Stride: Size in bytes of each element in the vertex buffer that we are attaching to the
stream For example, suppose vb is a vertex buffer that has been filled with vertices of
type Vertex:

Step 2. Set the vertex format. This is where we specify the vertex format of the vertices that
we use in subsequent drawing calls.

_device->SetFVF(D3DFVF_XYZ | D3DFVF_DIFFUSE | D3DFVF_TEX1);

Step 3. Set the index buffer. If we are using an index buffer, we must set the index buffer that
is used in subsequent drawing operations. Only one index buffer can be used at a time;
therefore if you need to draw an object with a different index buffer, you must switch to the
other. The following code sets an index buffer:

_device->SetIndices(_ib); // pass copy of index buffer pointer

3.4 Drawing with Vertex/Index Buffers
We can draw our geometry using DrawPrimitive or DrawIndexedPrimitive. These
methods obtain the vertex info from the vertex streams and the index info from the currently
set index buffer. The difference between DrawPrimitive and DrawIndexedPrimitive is
that the first one does not use index info.

3.4.1 IDirect3DDevice9::DrawPrimitive
HRESULT DrawPrimitive(

D3DPRIMITIVETYPE PrimitiveType,
UINT StartVertex,
UINT PrimitiveCount);

• PrimitiveType: The type of primitive that we are drawing. instance, we can draw

points and lines in addition to triangles. Since we are using a triangle, use
D3DPT_TRIANGLELIST parameter.

• StartVertex: Index to an element in the vertex streams marks the starting point
from which to begin reading vertices. parameter gives us the flexibility to only draw
certain portions of a vertex buffer.

• PrimitiveCount: The number of primitives to draw

3.4.2 IDirect3DDevice9::DrawIndexedPrimitive
HRESULT DrawIndexedPrimitive(

D3DPRIMITIVETYPE Type,
INT BaseVertexIndex,
UINT MinIndex,
UINT NumVertices,
UINT StartIndex,
UINT PrimitiveCount

);

• Type: The type of primitive that we are drawing. For instance, we can draw points and
lines in addition to triangles. Since we are using a triangle, use
D3DPT_TRIANGLELIST for this parameter.

_device->SetStreamSource(0, vb, 0, sizeof(Vertex));

 31

• BaseVertexIndex: A base number to be added to the indices used in this call. See
below.

• MinIndex: The minimum index value that will be referenced
• NumVertices: The number of vertices that will be referenced in this call
• StartIndex: Index to an element in the index buffer that marks the starting point

from which to begin reading indices
• PrimitiveCount: The number of primitives to draw

More on the BaseVertexIndex: Suppose that we want to combine the vertices three object
into one global vertex buffer. For each object we would have to recompute the indices to
index correctly into the global vertex buffer. The new indices are computed by adding an
offset value that specifies the start of the object’s vertices in the global vertex buffer to each
index. Note that the offset is measured in vertices, not bytes.
Rather than having to compute the indices relative to where the object is in the global vertex
buffer by ourselves, Direct3D allows us to pass in a vertex-offset value through the
BaseVertexIndex parameter. Direct3D will then recompute the indices internally.

Vertex
offset to
Object 1

Vertex
offset to
Object 2

Vertex
offset to
Object 3

Object 1 Object 2 Object 3

3.4.3 Begin/End Scene
All drawing methods must be called inside an IDirect3DDevice9::BeginScene and
IDirect3DDevice9::EndScene pair. For example:

_device->BeginScene();

_device->DrawPrimitive(...);
_device->EndScene();

This is like the OpenGL’s glBegin() and glEnd() pair.

3.5 D3DX Geometry Objects
The D3DX library provides some methods to generate the mesh data of simple 3D objects.
These are: D3DXCreateBox, D3DXCreateSphere, D3DXCreateCylinder,
D3DXCreateTeapot, D3DXCreatePolygon and D3DXCreateTorus.
All six are used similarly and use the D3DX mesh data structure ID3DXMesh as well as the
ID3DXBuffer interface. For now, we ignore their details.
The D3DXCreateTeapot function:

HRESULT D3DXCreateTeapot(

LPDIRECT3DDEVICE9 pDevice, // device associated with the mesh
LPD3DXMESH* ppMesh, // pointer to receive mesh
LPD3DXBUFFER* ppAdjacency // set to zero for now

);

 32

Example of its usage:

ID3DXMesh* mesh = 0;
D3DXCreateTeapot(_device, &mesh, 0);

The generated mesh can be rendered with the ID3DXMesh::DrawSubset method. Make
sure to call Release when done with the mesh.

_device->BeginScene();

mesh->DrawSubset(0);
_device->EndScene();

_mesh->Release();
_mesh = 0;

3.6 Examples
There are some example applications for subjects from this chapter. They can be found at part
II chapter 3. These examples include Triangle, Cube, Teapot and D3DXCreate. The latter two
use the D3DX library to generate the teapot and other objects.
I will briefly explain how each example works. They can be studied on your own for more
information.
All files use d3dUtility.cpp and d3dUtility.h for handling Direct3D initialization. We will
only concentrate on the methods Setup, Display and Release for each of the examples.

3.6.1 Triangle
The Setup method for Triangle contains code for instantiating a Vertex buffer called
IDirect3DVertexBuffer9* Triangle.

The code for generating a simple triangle:

Vertex* vertices;
Triangle->Lock(0, 0, (void**)&vertices, 0);

vertices[0] = Vertex(-1.0f, 0.0f, 2.0f);
vertices[1] = Vertex(0.0f, 1.0f, 2.0f);
vertices[2] = Vertex(1.0f, 0.0f, 2.0f);

Triangle->Unlock();

This buffer is released in the Cleanup method.

d3d::Release<IDirect3DVertexBuffer9*>(Triangle);

The triangle is set and drawn in the Display method using:

Device->SetStreamSource(0, Triangle, 0, sizeof(Vertex)); // Step 1
Device->SetFVF(Vertex::FVF); // Step 2
Device->DrawPrimitive(D3DPT_TRIANGLELIST, 0, 1);

This is done between the BeginScene() and EndScene() methods.

3.6.2 Cube
The Cube example is very similar to Triangle. Except that Cube also uses an Index buffer.
Both buffers are defined as:

 33

IDirect3DVertexBuffer9* VB = 0;
IDirect3DIndexBuffer9* IB = 0;

They are of course instantiated in the Setup method. The Display method displays the cube
using these calls:

Device->BeginScene();

Device->SetStreamSource(0, VB, 0, sizeof(Vertex)); // Step 1
Device->SetIndices(IB); // Step 3
Device->SetFVF(Vertex::FVF); // Step 2

Device->DrawIndexedPrimitive(D3DPT_TRIANGLELIST, 0, 0, 8, 0, 12);

Device->EndScene();

It first sets the Vertex buffer VB and then the Index buffer IB. Finally the drawing is done
using DrawIndexedPrimitive. Step 2 and 3 were swapped, but that doesn’t matter.

3.6.3 Teapot and D3DXCreate
Both examples use the D3DX library to generate object(s). The methods to create D3DX
geometry objects were listed at chapter 3.5 (D3DXCreateTeapot for example). An object is
stored in an ID3DXMesh pointer and drawn with DrawSubset.
Example code for the Teapot example:

// Global variable
ID3DXMesh* Teapot = 0;

// Display() method
Device->BeginScene();

// Draw teapot using DrawSubset method with 0 as the argument.
Teapot->DrawSubset(0);

Device->EndScene();

The D3DXCreate sample has the same structure, but draws more geometry objects.

3.7 Summary
• Vertex data is stored in the IDirect3DVertexBuffer9 interface. Similarly, index

data is stored in the IDirect3DIndexBuffer9 interface. The reason for using
vertex/index buffers is that the data can be stored in video memory.

• Geometry that is static should be stored in a static vertex/index buffer. Geometry that
is dynamic should be stored in a dynamic vertex/index buffer.

• Render states are states that the device maintains that affect how geometry is rendered.
Render states remain in effect until changed, and the current values are applied to the
geometry of any subsequent drawing operations. All render states have initial default
values.

• To draw the contents of a vertex buffer and an index buffer you must:
o Call IDirect3DDevice9::SetStreamSource and hook the vertex buffer

that you wish to draw from to a stream.
o Call IDirect3DDevice9::SetFVF to set the vertex format of the vertices to

render.

 34

o If you are using an index buffer, call IDirect3DDevice9::SetIndices to
set the index buffer.

o Call either IDirect3DDevice9::DrawPrimitive or
IDirect3DDevice9::DrawIndexedPrimitive in between an
IDirect3DDevice9::BeginScene and IDirect3DDevice9::EndScene
pair.

• Using the D3DXCreate* functions, we can create complex 3D objects, such as
spheres, cylinders, and teapots.

4. Color

4.1 Color Representation
Colors in Direct3D are described with an RGB triplet (red, green and blue). We can use
D3DCOLOR or the struct D3DCOLORVALUE to hold RGB data.
Keywords: RGB, D3DCOLOR, D3DCOLORVALUE, vertex colors, shading.

4.1.1 D3DCOLOR
D3DCOLOR is actually a DWORD (typedefed unsigned long) and is 32 bits. The bits are
divided into four 8-bit sections, making each section range from 0-255. Near 0 means low
intensity and near 255 means strong intensity. The sections are divided for alpha, red, green
and blue. The alpha component is used for alpha blending and will be used in chapter 7,
ignore it for now.
Direct3D provides two macros to specify and insert each component into a D3DCOLOR type.
Namely D3DCOLOR_ARGB and D3DCOLOR_XRGB. There is a parameter for each color and one
for the alpha component. D3DCOLOR_XRGB is the same, but without the alpha component.
That component will be set to 0xff (255).

//D3DCOLOR_ARGB(a,r,g,b)
D3DCOLOR red = D3DCOLOR_ARGB(255, 255, 0, 0);
D3DCOLOR someColor = D3DCOLOR_ARGB(255, 144, 87, 201);

//#define D3DCOLOR_XRGB(r,g,b) D3DCOLOR_ARGB(0xff,r,g,b)
D3DCOLOR brightGreen = D3DCOLOR_XRGB(0, 255, 0);
D3DCOLOR someColor2 = D3DCOLOR_XRGB(144, 87, 201);

4.1.2 D3DCOLORVALUE
This is a structure with the same four components. But each is specified with a float, ranging
from 0 (no intensity) to 1 (full intensity).

typedef struct _D3DCOLORVALUE {

float r; // the red component, range 0.0-1.0
float g; // the green component, range 0.0-1.0
float b; // the blue component, range 0.0-1.0
float a; // the alpha component, range 0.0-1.0

} D3DCOLORVALUE;

4.1.3 D3DXCOLOR
Another way to store RGB data is using the D3DXCOLOR structure, which contains the same
data members as D3DCOLORVALUE but provides useful constructors and overloaded operators.
This makes color operations easy and makes casting between D3DCOLOR and
D3DCOLORVALUE possible.

 35

typedef struct D3DXCOLOR {
#ifdef __cplusplus
public:

D3DXCOLOR() {}
D3DXCOLOR(DWORD argb);
D3DXCOLOR(CONST FLOAT *);
D3DXCOLOR(CONST D3DXFLOAT16 *);
D3DXCOLOR(CONST D3DCOLORVALUE&);
D3DXCOLOR(FLOAT r, FLOAT g, FLOAT b, FLOAT a);
// casting
operator DWORD () const;
operator FLOAT* ();
operator CONST FLOAT* () const;
operator D3DCOLORVALUE* ();
operator CONST D3DCOLORVALUE* () const;
operator D3DCOLORVALUE& ();
operator CONST D3DCOLORVALUE& () const;
// assignment operators
D3DXCOLOR& operator += (CONST D3DXCOLOR&);
D3DXCOLOR& operator -= (CONST D3DXCOLOR&);
D3DXCOLOR& operator *= (FLOAT);
D3DXCOLOR& operator /= (FLOAT);
// unary operators
D3DXCOLOR operator + () const;
D3DXCOLOR operator - () const;
// binary operators
D3DXCOLOR operator + (CONST D3DXCOLOR&) const;
D3DXCOLOR operator - (CONST D3DXCOLOR&) const;
D3DXCOLOR operator * (FLOAT) const;
D3DXCOLOR operator / (FLOAT) const;
friend D3DXCOLOR operator * (FLOAT, CONST D3DXCOLOR&);
BOOL operator == (CONST D3DXCOLOR&) const;
BOOL operator != (CONST D3DXCOLOR&) const;

#endif //__cplusplus
FLOAT r, g, b, a;

} D3DXCOLOR, *LPD3DXCOLOR;

Please note that the examples now have some colors added to the d3dUtility.h file. Like:

const D3DXCOLOR WHITE(D3DCOLOR_XRGB(255, 255, 255));
const D3DXCOLOR BLACK(D3DCOLOR_XRGB(0, 0, 0));

4.2 Vertex Colors
The color of a primitive is determined by the color of the vertices that make it up. Therefore,
we must add a color member to our vertex data structure. Direct3D expects a 32-bit value to
describe the color of a vertex, so we must use D3DCOLOR and not D3DCOLORVALUE.

struct ColorVertex
{

float _x, _y, _z;
D3DCOLOR _color;
static const DWORD FVF;

}
const DWORD ColorVertex::FVF = D3DFVF_XYZ | D3DFVF_DIFFUSE;

4.3 Shading
Shading occurs during rasterization and specifies how the vertex colors are used to compute
the pixel colors that make up the primitive. We can use flat shading or Gouraud shading.
Take a look at this code:

 36

ColorVertex t[3];
t[0]._color = D3DCOLOR_XRGB(255, 0, 0);
t[1]._color = D3DCOLOR_XRGB(0, 255, 0);
t[2]._color = D3DCOLOR_XRGB(0, 0, 255);

With flat shading, the color specified in the first vertex is taken. The first color here is red, so
the triangle formed with these vertices will be red. Flat shading tends to make objects appear
blocky.
With Gouraud shading, the colors at each vertex are interpolated linearly across the face of
the primitive. This leads to a “smoother” object. A sample application called Colored Triangle
will be shown in section 4.4 to see the difference between the two shading modes. The
shading can be set with:

// set flat shading
Device->SetRenderState(D3DRS_SHADEMODE, D3DSHADE_FLAT);
// set Gouraud shading
Device->SetRenderState(D3DRS_SHADEMODE, D3DSHADE_GOURAUD);

4.4 Sample: Colored Triangle
This example shows a triangle colored using flat shading and a triangle colored using
Gouraud shading.
First, the triangle is created using a vertex buffer in the Setup method:

// create vertex buffer
Device->CreateVertexBuffer(

3 * sizeof(ColorVertex),
D3DUSAGE_WRITEONLY,
ColorVertex::FVF,
D3DPOOL_MANAGED,
&Triangle, // IDirect3DVertexBuffer9* Triangle
0);

// fill the buffers with the triangle data
ColorVertex* v; // ColorVertex struct was defined in 4.2
Triangle->Lock(0, 0, (void**)&v, 0);

v[0] = ColorVertex(-1.0f, 0.0f, 2.0f, D3DCOLOR_XRGB(255, 0, 0));
v[1] = ColorVertex(0.0f, 1.0f, 2.0f, D3DCOLOR_XRGB(0, 255, 0));
v[2] = ColorVertex(1.0f, 0.0f, 2.0f, D3DCOLOR_XRGB(0, 0, 255));

Triangle->Unlock();

The actual drawing in the Display method:

Device->BeginScene();

Device->SetFVF(ColorVertex::FVF); // Step 2, see chapter 3.3
Device->SetStreamSource(0,Triangle,0,sizeof(ColorVertex)); // Step 1

// draw the triangle to the left with flat shading
D3DXMatrixTranslation(&WorldMatrix, -1.25f, 0.0f, 0.0f);
Device->SetTransform(D3DTS_WORLD, &WorldMatrix);
Device->SetRenderState(D3DRS_SHADEMODE, D3DSHADE_FLAT);
Device->DrawPrimitive(D3DPT_TRIANGLELIST, 0, 1);

// draw the triangle to the right with Gouraud shading
D3DXMatrixTranslation(&WorldMatrix, 1.25f, 0.0f, 0.0f);

 37

Device->SetTransform(D3DTS_WORLD, &WorldMatrix);
Device->SetRenderState(D3DRS_SHADEMODE, D3DSHADE_GOURAUD);
Device->DrawPrimitive(D3DPT_TRIANGLELIST, 0, 1);

Device->EndScene();

Only one vertex buffer was needed for the triangle, because we can draw it multiple times at
different positions using the global variable D3DXMATRIX WorldMatrix.

4.5 Summary
• Colors are described by specifying an intensity of red, green, and blue (RGB). In

Direct3D, we can use the D3DCOLOR, the D3DCOLORVALUE, or the D3DXCOLOR type
to describe a color in code.

• We sometimes treat a color as a 4D vector (r, g, b, a). Color vectors are added,
subtracted, and scaled just like regular vectors. On the other hand, dot and cross
products do not make sense for color vectors, but component-wise multiplication does
make sense for colors: (c1, c2, c3, c4) * (k1, k2, k3, k4) = (c1k1, c2k2, c3k3, c4k4).

• With flat shading, the pixels of a primitive are uniformly colored by the color
specified in the first vertex of the primitive. With Gouraud shading, the colors at each
vertex are interpolated linearly across the face of the primitive.

5. Lighting
In this chapter we will discuss adding lighting to the scenes. When using lighting, we no
longer specify vertex colors ourselves. Direct3D computes a vertex color based on defined
light sources, materials, and the orientation of the surface with regard to the light sources.
Keywords: ambient, diffuse, specular, emissive, material, D3DMATERIAL9, face normal,
vertex normal, normal averaging, point, directional, spot.

5.1 Light Components
There are four kinds of light in the Direct3D lighting model.

• Ambient Light: This light is used to bright up the overall scene. It is constant in all
directions and it colors all pixels of an object the same. Parts of objects are often lit, to
a degree, even though they are not in direct sight of a light source. Without ambient
light, objects in shadow would be completely black.

Figure 5.1: Ambient lighted model

• Diffuse Light: This type of light travels in a particular direction. When it strikes a

surface, it reflects equally in all directions. Because diffuse light reflects equally in all
directions, the reflected light will reach the eye no matter the viewpoint.

 38

Figure 5.2a: Model with only diffuse light from the

left
Figure 5.2b: Same model with ambient and diffuse

light combined

• Specular Light: This type of light travels in a particular direction. When it strikes a

surface, it reflects harshly in one direction, causing a bright shine that can only be seen
from some angles. Specular light is used to model light that produces highlights on
objects, such as the bright shine created when light strikes a polished surface.

Figure 5.3a: Model with specular light Figure 5.3b: Ambient, diffuse and specular light

combined.

• Emissive Lighting: Is emitted by an object; for example, a glow.

Specular lighting requires the most computations. It is turned off by default. Set the
D3DRS_SPECULARENABLE render state to enable specular lighting.

Device->SetRenderState(D3DRS_SPECULARENABLE, true);

Each type of light is represented by a D3DCOLORVALUE structure or D3DXCOLOR, which
describes the color of the light. Here are some examples of several light colors:

D3DXCOLOR redAmbient(1.0f, 0.0f, 0.0f, 1.0f);
D3DXCOLOR blueDiffuse(0.0f, 0.0f, 1.0f, 1.0f);
D3DXCOLOR whiteSpecular(1.0f, 1.0f, 1.0f, 1.0f);

5.2 Materials
The color of an object we see in the real world is determined by the color of light that the
object reflects. For instance, a red ball is red because it absorbs all colors of light except red
light. Direct3D models this by defining a material for an object, which allows us to define the
percentage at which light is reflected from the surface. The D3DMATERIAL9 structure is used
for this.

typedef struct _D3DMATERIAL9 {

D3DCOLORVALUE Diffuse, Ambient, Specular, Emissive;
float Power;

} D3DMATERIAL9;

 39

With this struct you can specify the amount of each light the surface reflects. The Power
parameter specifies the sharpness of specular highlights; the higher this value, the sharper the
highlights.
As an example, for a red ball we would define the ball’s material to reflect only red light and
absorb all other colors of light:

D3DMATERIAL9 red;
::ZeroMemory(&red, sizeof(red));
red.Diffuse = D3DXCOLOR(1.0f, 0.0f, 0.0f, 1.0f); // red
red.Ambient = D3DXCOLOR(1.0f, 0.0f, 0.0f, 1.0f); // red
red.Specular = D3DXCOLOR(1.0f, 0.0f, 0.0f, 1.0f); // red
red.Emissive = D3DXCOLOR(0.0f, 0.0f, 0.0f, 1.0f); // no emission
red.Power = 5.0f;

With a light source that only emits blue light, this ball would appear black because it absorbs
all the light.
The following function is added to the d3dUtility.h/cpp files to help us fill out a material
structure:

D3DMATERIAL9 d3d::InitMtrl(D3DXCOLOR a, D3DXCOLOR d,

D3DXCOLOR s, D3DXCOLOR e, float p)
{

D3DMATERIAL9 mtrl;
mtrl.Ambient = a;
mtrl.Diffuse = d;
mtrl.Specular = s;
mtrl.Emissive = e;
mtrl.Power = p;
return mtrl;

}

To set the current material, we use the following method:

IDirect3DDevice9::SetMaterial(CONST D3DMATERIAL9*pMaterial)

To render several objects with different materials, call this method with a different material
before drawing each object:

D3DMATERIAL9 blueMaterial, redMaterial;
...// set up material structures

Device->SetMaterial(&blueMaterial);
drawSphere(); // blue sphere

Device->SetMaterial(&redMaterial);
drawSphere(); // red sphere

5.3 Vertex Normals
A face normal is a vector that describes the direction a polygon is facing. Vertex normals are
based on the same idea, but rather than specifying the normal per polygon, we specify them
for each vertex that forms the polygon.

 40

Figure 5.4a: face normal Figure 5.4b: vertex normals

Direct3D needs to know the vertex normals so that it can determine the angle at which light
strikes a surface, and since lighting calculations are done per vertex, Direct3D needs to know
the surface orientation (normal) per vertex.
Our custom vertex structure from 4.2 is now updated to include normals:

struct Vertex {

float _x, _y, _z;
float _nx, _ny, _nz;
static const DWORD FVF;

}
const DWORD Vertex::FVF = D3DFVF_XYZ | D3DFVF_NORMAL;

The color member is no longer needed because the color of each vertex is now calculated
using lighting.

To compute the normals for complex meshes, the following way is the simplest. Suppose a
triangle that is formed by three vertices, the normals will be the face normal these three
vertices form. The following method computes this face normal. It assumes that the vertices
are specified in a clockwise winding order.

void ComputeNormal(D3DXVECTOR3* p0,

D3DXVECTOR3* p1,
D3DXVECTOR3* p2,
D3DXVECTOR3* out)

{
D3DXVECTOR3 u = *p1 - *p0;
D3DXVECTOR3 v = *p2 - *p0;

D3DXVec3Cross(out, &u, &v); // out = u * v
D3DXVec3Normalize(out, out);

}

The normal of the vertices p0, p1 and p2 will be the result of this method, namely out.

A problem with face normals is that it does not produce smooth results. Normal averaging
would be a better method for finding a vertex normal. To find the vertex normal vn of a vertex
v, we find the face normals for all the triangles in the mesh that share vertex v. Then vn is
given by averaging all of these face normals.
Suppose three triangles share the vertex v. Their face normals are n0, n1, and n2,.
Then the vertex normal vn is given by averaging the face normals:
vn = ⅓ (n0 + n1 + n2)

During the transformation stages, it is possible for vertex normals to become non-normal.
Therefore, it is best to be safe and have Direct3D renormalize all of your normals after the
transformation stages by enabling the D3DRS_NORMALIZENORMALS render state:

 41

Device->SetRenderState(D3DRS_NORMALIZENORMALS, true);

5.4 Light Sources
Direct3D support the following types of light sources:
Point lights: has a position in world space and emits light in all directions.
Directional lights: has no position but shoots parallel rays of light in the specified direction.

Spot lights: is similar to a flashlight; it has a position and shines light through a conical shape
in a particular direction. The angle φ (phi) describes an inner cone, and θ (theta) describes the
outer cone.
A light source is represented by the D3DLIGHT9 structure:

typedef struct _D3DLIGHT9 {

D3DLIGHTTYPE Type;
D3DCOLORVALUE Diffuse;
D3DCOLORVALUE Specular;
D3DCOLORVALUE Ambient;
D3DVECTOR Position;
D3DVECTOR Direction;
float Range;
float Falloff;
float Attenuation0;
float Attenuation1;
float Attenuation2;
float Theta;
float Phi;

} D3DLIGHT9;

The Type field defines the type of light and can be D3DLIGHT_POINT, D3DLIGHT_SPOT or
D3DLIGHT_DIRECTIONAL.
For information on the other fields of this struct, search for D3DLIGHT9 in the SDK
documentation.

The following function is added to the d3dUtility.h/cpp files to help us initialize a
D3DLIGHT9 structure:

D3DLIGHT9 InitDirectionalLight(D3DXVECTOR3* direction,

D3DXCOLOR* color);
D3DLIGHT9 InitPointLight(D3DXVECTOR3* position,

D3DXCOLOR* color);
D3DLIGHT9 InitSpotLight(D3DXVECTOR3* position,

D3DXVECTOR3* direction,
D3DXCOLOR* color);

Then to create a directional light that runs parallel with the x-axis in the positive direction and
emits white light, we would write:

D3DXVECTOR3 dir(1.0f, 0.0f, 0.0f);
D3DXCOLOR c = d3d::WHITE;
D3DLIGHT9 dirLight = d3d::InitDirectionalLight(&dir, &c);

After we have initialized a D3DLIGHT9 instance, we need to register with an internal list of
lights that Direct3D maintains:

Device->SetLight(

 42

0, // element in the light list to set, range is 0-maxlights
&light); // address of the D3DLIGHT9 structure to set

Once a light is registered, we can turn it on and off:

Device->LightEnable(

0, // the element in the light list to enable/disable
true); // true = enable, false = disable

5.5 Sample: litPyramid
The example litPyramid can be found at part 2 chapter 5. It shows a rotating pyramid with a
light.

The steps for adding light to a scene are:
Step 1. Enable lighting.
Step 2. Create a material for each object and set the material before rendering the

corresponding object.
Step 3. Create one or more light sources, set the light sources, and enable them.
Step 4. Enable any additional lighting states, such as specular highlights.

Only the most interesting code of the Setup method is shown here:

/* STEP 1: Turn on lighting. It is enabled by default, but this
won’t hurt */
Device->SetRenderState(D3DRS_LIGHTING, true);
.
.
// In this part the Pyramid vertex buffer if created and filled
.
.
/* STEP 2: Create and set the material */
D3DMATERIAL9 mtrl;
mtrl.Ambient = d3d::WHITE;
mtrl.Diffuse = d3d::WHITE;
mtrl.Specular = d3d::WHITE;
mtrl.Emissive = d3d::BLACK;
mtrl.Power = 5.0f;

/* STEP 3: Create one or more light sources, set the light sources,
and enable them */

// Setup a directional light
D3DLIGHT9 dir;
::ZeroMemory(&dir, sizeof(dir));
dir.Type = D3DLIGHT_DIRECTIONAL;
dir.Diffuse = d3d::WHITE;
dir.Specular = d3d::WHITE * 0.3f;
dir.Ambient = d3d::WHITE * 0.6f;
dir.Direction = D3DXVECTOR3(1.0f, 0.0f, 0.0f);

// Set and Enable the light
Device->SetLight(0, &dir);
Device->LightEnable(0, true);

/* STEP 4: Enable any additional lighting states, such as specular
highlights */

/* Turn on specular lighting and instruct Direct3D to renormalize
normals */

 43

Device->SetRenderState(D3DRS_NORMALIZENORMALS, true);
Device->SetRenderState(D3DRS_SPECULARENABLE, true);
.
.

There are additional samples provided for this subject. These samples use the D3DXCreate*
functions to create 3D objects. The vertex normals will be computed for us. Also, they make
use of the d3dUtility.h/cpp material and light functionality code. The first sample did not use
these to show how it’s done manually.

5.6 Summary
• Direct3D supports four light source models: directional lights, point lights, spot lights

and emissive lights.
• The material of a surface defines how light interacts with the surface that it strikes

(that is, how much light is reflected and absorbed, thus determining the color of the
surface).

• Vertex normals are used to define the orientation of a vertex. They are used so that
Direct3D can determine the angle at which a ray of light strikes the vertex. In some
cases, the vertex normal is equal to the normal of the triangle that it forms, but this is
not usually the case when approximating smooth surfaces (e.g., spheres, cylinders).

6. Texturing
Direct3D has the ability to map images onto the surfaces of our triangles so they can look like
brick, metal, or whatever. This capability is called texturing. A texture is simply an image, say
from a BMP file, which is mapped onto a triangle or series of triangles. Texturing increases
the details and realism significantly. As an example, you could build a cube and turn it into a
crate by mapping a crate texture to each side.

Figure 6.1: A cube with crate texture

Keywords: texture coordinates, texel, IDirect3DTexture9, filters, Nearest point sampling,
Linear filtering, Anisotropic filtering, mipmap, mipmap filter, address modes

6.1 Texture Coordinates
To use textures, the custom vertex structure will need to be modified again:

struct Vertex
{

float _x, _y, _z;
float _nx, _ny, _nz;
float _u, _v; // texture coordinates

static const DWORD FVF;

};
const DWORD Vertex::FVF = D3DFVF_XYZ | D3DFVF_NORMAL | D3DFVF_TEX1;

 44

We added D3DFVF_TEX1 to the vertex format description, making clear that our vertex
structure contains one pair of vertex coordinates.
Also note that texture coordinates are added. Texture coordinates are two-dimensional and
range from 0.0 to 1.0, where (0.0, 0.0) represents the top-left side of the texture and (1.0, 1.0)
represents the lower-right side of the texture. The horizontal axis of this coordinate system is
called u and the vertical one is called v. A (u, v) pair is called a texel. See figure 6.2.

Figure 6.2: Texture coordinates Figure 6.3: Result after mapping to (0,1), (0,0), (1,0)

If we map the texture onto a triangle using the coordinates (0,1), (0,0) and (1,0) the result will
be like figure 6.3.

6.2 Using textures in code
The D3DX function D3DXCreateTextureFromFile can be used to load an image file into
an IDirect3DTexture9 object.

HRESULT D3DXCreateTextureFromFile(

LPDIRECT3DDEVICE9 pDevice, // device to create the texture
LPCSTR pSrcFile, // filename of image to load
LPDIRECT3DTEXTURE9* ppTexture // ptr to receive the created
texture

);

For example, to create a texture from an image called stonewall.bmp, we would write the
following:

IDirect3Dtexture9* _stonewall;
D3DXCreateTextureFromFile(_device, "stonewall.bmp", &_stonewall);

To set the current texture, use:

HRESULT IDirect3DDevice9::SetTexture(

DWORD Stage, // the texture stage
IDirect3DBaseTexture9* pTexture // ptr to the texture to set

);

//Example usage:
Device->SetTexture(0, _stonewall);

You can actually have more than one texture active at the same time, which is what the Stage
argument is for. This is called multitexturing and is an advanced topic. Set it to 0 for now.

 45

To disable a texture at a particular texturing stage, set pTexture to 0. For instance, if we don’t
want to render an object with a texture, we would write:

Device->SetTexture(0, 0);
renderObjectWithoutTexture();

If our scene has triangles that use different textures, we would have to do something similar to
the following code:

Device->SetTexture(0, _tex0);
drawTrisUsingTex0();
Device->SetTexture(0, _tex1);
drawTrisUsingTex1();

6.3 Filters
When a texture triangle is smaller than the screen triangle, the texture triangle is magnified to
fit. When a texture triangle is larger than the screen triangle, the texture triangle is minified. In
both cases, distortion will occur. Filtering is a technique Direct3D uses to help smooth out
these distortions.
IDirect3DDevice9::SetSamplerState is used to set to filter type. Each type has a different level
of quality. The better the quality, the slower it is. The possible filter types are:

• Nearest-point sampling: Computes the texel address and copies the color of the texel
with the closest integer address. This is the default filter type. It is also the fastest, but
has the worst looking results. To set nearest-point sampling as the minification and
magnification filter, use:

Device->SetSamplerState(0, D3DSAMP_MAGFILTER, D3DTEXF_POINT);
Device->SetSamplerState(0, D3DSAMP_MINFILTER, D3DTEXF_POINT);

• Linear filtering: Is called bilinear filtering in the documentation. Does the same as

nearest-point sampling, but in addition computes a weighted average of the texels that
are immediately above, below, to the left of, and to the right of the nearest sample
point.
This filter type produces fairly good results and is very fast on today’s hardware.
Using linear filtering as minimum is recommended.

Device->SetSamplerState(0, D3DSAMP_MAGFILTER, D3DTEXF_LINEAR);
Device->SetSamplerState(0, D3DSAMP_MINFILTER, D3DTEXF_LINEAR);

• Anisotropic filtering: Anisotropy is the distortion visible in the image of a 3-D object

whose surface is oriented at an angle with respect to the viewing plane.
Produces the best results, but the most computation intensive.

Device->SetSamplerState(0, D3DSAMP_MAGFILTER, D3DTEXF_ANISOTROPIC);
Device->SetSamplerState(0, D3DSAMP_MINFILTER, D3DTEXF_ANISOTROPIC);

The D3DSAMP_MAXANISOTROPY level must be set when using this type of filtering.
The higher this level is, the better the quality. The D3DCAPS9 structure indicates the
range your device supports.
Example for setting D3DSAMP_MAXANISOTROPY level to 4:

Device->SetSamplerState(0, D3DSAMP_MAXANISOTROPY, 4);

 46

6.4 Mipmaps
Another solution for the distortion problem from 6.3 is using mipmaps. We take a texture and
create a series of smaller lower resolution textures.

Figure 6.4: A chain of mipmaps

If the device supports mipmaps, D3DXCreateTextureFromFile will generate a mipmap
chain for you. Direct3D will automatically select the mipmap that matches the screen triangle
the best. You can also use the DirectX Texture Editor (DxTex.exe) to generate a mipmap
chain for you. It can be found in “[YOUR_DXSDK_ROOT_DIR]\Utilities\Bin\x86” and at
the Windows start menu: “Microsoft DirectX 9.0 SDK Update (June 2005) -> DirectX
Utilities -> DirectX Texture Tool”.
Search for “Mipmapping” in the SDK documentation to find out how generate a mipmap
chain with the Texture Editor.

6.4.1 Mipmap filter
The mipmap filter is used to control how Direct3D uses the mipmaps. It can be set with:

Device->SetSamplerState(0, D3DSAMP_MIPFILTER, Filter);

The Filter option can be:

• D3DTEXF_NONE: Disables mipmapping
• D3DTEXF_POINT: By using this filter, Direct3D will choose the mipmap level that is

closest in size to the screen triangle. Once that level is chosen, Direct3D will filter that
level based on the specified minification and magnification filters.

• D3DTEXF_LINEAR: By using this filter, Direct3D will take the two closest mipmap
levels, filter each level with the minification and magnification filters, and linearly
combine these two levels to form the final color values.

6.5 Address Modes
Texture coordinates can exceed the range [0, 1]. The address modes must be set to control the
behavior of Direct3D with texture coordinates outside this range. These address modes are
wrap, border, clamp and mirror. See figure 6.5.

 47

Wrap Border color

Clamp Mirror

Figure 6.5: Address modes

The texture coordinates used in these figures are (0, 0), (0, 3), (3, 0), and (3, 3). This is why
the quad is tiled into a 3 x 3 area.
Example of how the address modes are set:

// set wrap address mode
Device->SetSamplerState(0, D3DSAMP_ADDRESSU, D3DTADDRESS_WRAP);
Device->SetSamplerState(0, D3DSAMP_ADDRESSV, D3DTADDRESS_WRAP);

// set border color address mode
Device->SetSamplerState(0, D3DSAMP_ADDRESSU, D3DTADDRESS_BORDER);
Device->SetSamplerState(0, D3DSAMP_ADDRESSV, D3DTADDRESS_BORDER);
Device->SetSamplerState(0, D3DSAMP_BORDERCOLOR, 0x000000ff);

// set clamp address mode
Device->SetSamplerState(0, D3DSAMP_ADDRESSU, D3DTADDRESS_CLAMP);
Device->SetSamplerState(0, D3DSAMP_ADDRESSV, D3DTADDRESS_CLAMP);

// set mirror address mode
Device->SetSamplerState(0, D3DSAMP_ADDRESSU, D3DTADDRESS_MIRROR);
Device->SetSamplerState(0, D3DSAMP_ADDRESSV, D3DTADDRESS_MIRROR);

6.6 Sample: Textured Quad
The sample application Textured Quad shows how to take the steps needed for adding
textures to a scene:
Step 1. Construct the vertices of the objects with the texture coordinates specified.
Step 2. Load a texture into an IDirect3DTexture9 interface using the

D3DXCreateTextureFromFile function.
Step 3. Set the minification, magnification, and mipmap filters.
Step 4. Before drawing an object, set the texture that is associated with the object with

IDirect3DDevice9::SetTexture.

 48

The sample takes the usual steps for drawing something, like creating a vertex buffer, drawing
it at the Display method etc. I will only show the Setup method. The four steps shown
above will be taken.

First the global variables:

IDirect3DVertexBuffer9* Quad = 0;
IDirect3DTexture9* Tex = 0;

Code snippet of this sample’s Setup method:

Vertex* v;
Quad->Lock(0, 0, (void**)&v, 0);

// STEP 1
// quad built from two triangles, note texture coordinates:
v[0] = Vertex(-1.0f, -1.0f, 1.25f, 0.0f, 0.0f, -1.0f, 0.0f, 1.0f);
v[1] = Vertex(-1.0f, 1.0f, 1.25f, 0.0f, 0.0f, -1.0f, 0.0f, 0.0f);
v[2] = Vertex(1.0f, 1.0f, 1.25f, 0.0f, 0.0f, -1.0f, 1.0f, 0.0f);
v[3] = Vertex(-1.0f, -1.0f, 1.25f, 0.0f, 0.0f, -1.0f, 0.0f, 1.0f);
v[4] = Vertex(1.0f, 1.0f, 1.25f, 0.0f, 0.0f, -1.0f, 1.0f, 0.0f);
v[5] = Vertex(1.0f, -1.0f, 1.25f, 0.0f, 0.0f, -1.0f, 1.0f, 1.0f);

Quad->Unlock();

// STEP 2: Load texture data.
D3DXCreateTextureFromFile(

Device,
"dx5_logo.bmp",
&Tex);

// STEP 4: Enable the texture.
Device->SetTexture(0, Tex);

// STEP 3: Set texture filters.
Device->SetSamplerState(0, D3DSAMP_MAGFILTER, D3DTEXF_LINEAR);
Device->SetSamplerState(0, D3DSAMP_MINFILTER, D3DTEXF_LINEAR);
Device->SetSamplerState(0, D3DSAMP_MIPFILTER, D3DTEXF_POINT);

6.7 Summary
• Texture coordinates are used to define a triangle on the texture that gets mapped to the

3D triangle.
• We can create textures from image files stored on disk using the

D3DXCreateTextureFromFile function.
• We can filter textures by using the minification, magnification, and mipmap filter

sampler states.
• Address modes define what Direct3D is supposed to do with texture coordinates

outside the [0, 1] range. For example, should the texture be tiled, mirrored, clamped,
etc.?

7. Blending
Blending is a technique that allows us to combine pixels to previously drawn primitives. This
way, we can achieve various effects, like transparency.

 49

Suppose we want to draw the scene from in figure 7.1, which shows a crate and a transparent
teapot in front of it. We need to combine the pixel colors of the teapot with the pixel colors of
the crate. This can be achieved by combining the pixels of the primitive currently being
rasterized with the pixel values previously written at the same locations on the back buffer.
This idea is called blending.
Keywords: blending, D3DRS_ALPHABLENDENABLE, transparency, alpha channel, DDS file,
DirectX Texture tool

Figure 7.1: Transparent teapot

When using blending, the following rule should be followed: “Draw objects that do not use
blending first. Then sort the objects that use blending by their distance from the camera; this
is most efficiently done if the objects are in view space so that you can sort simply by the z-
component. Finally, draw the objects that use blending in a back-to-front order.”

The blending of two pixel values is calculated as follows:
OutputPixel = SourcePixel * SourceBlendFactor + DestPixel * DestBlendFactor

• OutputPixel: The resulting blended pixel
• SourcePixel: The pixel that is to be blended with the pixel on the back buffer
• DestPixel: The pixel on the back buffer
• SourceBlendFactor and DestBlendFactor: A value between 0 and 1, specifies the

percent of the pixel to use in the blend

Blending is disabled by default, because it is not a cheap operation. You can enable it by
setting the D3DRS_ALPHABLENDENABLE render state to true:

Device->SetRenderState(D3DRS_ALPHABLENDENABLE, true);

Remember to only enable it for geometry that needs it. When done rendering that geometry,
disable alpha blending.

By setting different combinations of source and destination blend factors, you can create
dozens of different blending effects. You can set the source blend factor and the destination
blend factor by setting the D3DRS_SRCBLEND and D3DRS_DESTBLEND render states,
respectively.

 50

Device->SetRenderState(D3DRS_SRCBLEND, Source);
Device->SetRenderState(D3DRS_DESTBLEND, Destination);

Source and Destination can be one of the values of the D3DBLEND Enumerated Type.
This enumeration can be found in the SDK documentation for a full list of its values.
Examples of some of these values:

• D3DBLEND_ZERO: Blend factor is (0, 0, 0, 0).
• D3DBLEND_ONE: Blend factor is (1, 1, 1, 1).
• D3DBLEND_SRCALPHA: Blend factor is (As, As, As, As). This is the default source blend

factor.
• D3DBLEND_INVSRCALPHA: Blend factor is (1 - As, 1 - As, 1 - As, 1 - As). This is the

default destination blend factor.

7.2 Transparency
The alpha component of a vertex color was ignored in previous chapter. It is primarily used in
blending. It is mainly for specifying the level of transparency of a pixel. If there were 8 bits
reserved for the alpha component, its range would be [0, 255], which corresponds to [0%,
100%] opacity.
Set the source and destination blend factor to respectively D3DBLEND_SRCALPHA and
D3DBLEND_INVSRCALPHA to make the alpha component describe the transparency level of
the pixels. These values are the default blend factors.

7.2.1 Alpha Channels
We can obtain alpha information from two sources, alpha components or a texture’s alpha
channel. The latter is an extra set of bits reserved for each texel that stores an alpha
component. When a texture is mapped, the alpha component from the alpha channel is
mapped also. Figure 7.2 shows an 8-bit grayscale map representing the alpha channel of a
texture.

Figure 7.2 Figure 7.3
Figure 7.3 shows the result of rendering a textured quad with an alpha channel specifying the
parts that are transparent.

If the currently set texture:

• has an alpha channel, the alpha is taken from the alpha channel.
• has no alpha channel, the alpha is obtained from the vertex color.

You can manually specify which source to use:

// compute alpha from diffuse colors during shading
Device->SetTextureStageState(0, D3DTSS_ALPHAARG1, D3DTA_DIFFUSE);

 51

Device->SetTextureStageState(0, D3DTSS_ALPHAOP, D3DTOP_SELECTARG1);

// take alpha from alpha channel
Device->SetTextureStageState(0, D3DTSS_ALPHAARG1, D3DTA_TEXTURE);
Device->SetTextureStageState(0, D3DTSS_ALPHAOP, D3DTOP_SELECTARG1);

7.2.2 Creating an Alpha Channel using the DirectX Texture Tool
In this section we will see how to create a DDS file using the DirectX Texture Tool. A DDS
file is an image file designed for DirectX applications and textures.
We will use the image files from the texAlpha sample. Open the crate.jpg file with the
Texture Tool. The crate is automatically loaded in as a 24-bit RGB texture with 8 bits of red,
8 bits of green, and 8 bits of blue per pixel. We need 8-bits extra for the alpha channel, so we
change it to a 32-bit ARGB texture. Select Format->Change Surface Format. In the dialog
box that pops up, select ”Unsigned 32-bit: A8R8G8B8” from the drop down list. The crate
image will then be changed to 32-bit. See figure 7.4.

Figure 7.4: Changing the format Figure 7.5: Resulting texture with a alpha
channel

Next, select File from the menu, and then choose Open Onto Alpha Channel Of This
Texture. Locate the alphachannel.bmp file. Figure 7.5 shows the result after the alpha
channel data has been inserted.

7.3 Sample: Transparency
The sample application located in the MtrlAlpha folder draws the scene as shown in figure 7.1.
This sample allows you to increase/decrease the alpha component with the A and S keys.
Steps required when using blending:
Step 1. Set the blend factors D3DRS_SRCBLEND and D3DRS_DESTBLEND.
Step 2. If using the alpha component, specify the source (material or alpha channel).
Step 3. Enable the alpha blending render state.

As usual, I will show the steps in the code comments.
The following global variables are used:

ID3DXMesh* Teapot = 0; // the teapot
D3DMATERIAL9 TeapotMtrl; // the teapot’s material
IDirect3DVertexBuffer9* BkGndQuad = 0; // background quad - crate
IDirect3DTexture9* BkGndTex = 0; // crate texture

 52

D3DMATERIAL9 BkGndMtrl; // background material

Shown below is the Setup method with much omitted code. In this example we instruct the
alpha to be taken from the diffuse component of the material. Also, the diffuse alpha
component is set to 0.5, meaning 50% transparency.

bool Setup() {

TeapotMtrl = d3d::RED_MTRL;
TeapotMtrl.Diffuse.a = 0.5f; // set alpha to 50% opacity
BkGndMtrl = d3d::WHITE_MTRL;

D3DXCreateTeapot(Device, &Teapot, 0);

...// Create background quad snipped
...// Light and texture setup snipped

// use alpha in material's diffuse component for alpha
Device->SetTextureStageState(0, D3DTSS_ALPHAARG1,

D3DTA_DIFFUSE);
Device->SetTextureStageState(0, D3DTSS_ALPHAOP,

D3DTOP_SELECTARG1);

// STEP 1: set blending factors so that alpha
// component determines transparency
Device->SetRenderState(D3DRS_SRCBLEND, D3DBLEND_SRCALPHA);
Device->SetRenderState(D3DRS_DESTBLEND, D3DBLEND_INVSRCALPHA);

...// view/projection matrix setup snipped

return true;

}

In the Display function, we check to see if the A or S key was pressed and respond by
increasing or decreasing the material’s alpha value. We then render the background quad.
Finally, we enable alpha blending, render the teapot with alpha blending enabled, and then
disable alpha blending.

bool Display(float timeDelta) {

if(Device) {
// increase/decrease alpha via keyboard input
if(::GetAsyncKeyState('A') & 0x8000f)

TeapotMtrl.Diffuse.a += 0.01f;
if(::GetAsyncKeyState('S') & 0x8000f)

TeapotMtrl.Diffuse.a -= 0.01f;
// force alpha to [0, 1] interval
if(TeapotMtrl.Diffuse.a > 1.0f)

TeapotMtrl.Diffuse.a = 1.0f;
if(TeapotMtrl.Diffuse.a < 0.0f)

TeapotMtrl.Diffuse.a = 0.0f;

// Render
Device->Clear(0, 0, D3DCLEAR_TARGET | D3DCLEAR_ZBUFFER,
0xffffffff, 1.0f, 0);
Device->BeginScene();
// Draw the background
D3DXMATRIX W;
D3DXMatrixIdentity(&W);
Device->SetTransform(D3DTS_WORLD, &W);
Device->SetFVF(Vertex::FVF);
Device->SetStreamSource(0, BkGndQuad, 0, sizeof(Vertex));

 53

Device->SetMaterial(&BkGndMtrl);
Device->SetTexture(0, BkGndTex);
Device->DrawPrimitive(D3DPT_TRIANGLELIST, 0, 2);
// Draw the teapot
// STEP 3: Enable the alpha blending state
Device->SetRenderState(D3DRS_ALPHABLENDENABLE, true);
D3DXMatrixScaling(&W, 1.5f, 1.5f, 1.5f);
Device->SetTransform(D3DTS_WORLD, &W);
Device->SetMaterial(&TeapotMtrl);
Device->SetTexture(0, 0);
Teapot->DrawSubset(0);
Device->SetRenderState(D3DRS_ALPHABLENDENABLE, false);
Device->EndScene();
Device->Present(0, 0, 0, 0);

}
return true;

}

7.4 Summary
• Alpha blending allows combining the pixels of the primitive currently being rasterized

with the pixel values previously written at the same locations on the back buffer.
• The blend factors allow us to control how the source and destination pixels are

blended together.
• Alpha information can come from the diffuse component of the primitive’s material

alpha channel of the primitive’s texture.

8. Fonts
In this chapter shows how to display some text to the user. This will be achieved by using the
ID3DXFont interface, CD3DFont class or the D3DXCreateText function.
Keywords: ID3DXFont, CD3DFont, D3DXCreateText, DrawText

8.1 ID3DXFont
The ID3DXFont interface can handle complex fonts because it uses GDI (Graphical Device
Interface, see http://www.webopedia.com/TERM/G/GDI.html). It can be created with the
D3DXCreateFontIndirect function:

HRESULT WINAPI D3DXCreateFontIndirect(

LPDIRECT3DDEVICE9 pDevice,
CONST D3DXFONT_DESC *pDesc,
LPD3DXFONT *ppFont

);

Prior to the DirectX 9.0b update, this function used a LOGFONT struct as the second parameter.
The LOGFONT and D3DXFONT_DESC structs have almost the same members. The samples and
the book still use the LOGFONT struct, but the code shown here uses D3DXFONT_DESC. To
change the samples from the book (to make it work/compile with the latest SDK versions),
just replace LOGFONT with D3DXFONT_DESC and remove the members that LOGFONT has
which D3DXFONT_DESC does not have.
Example usage of D3DXCreateFontIndirect:

D3DXFONT_DESC fontDesc;
ZeroMemory(&fontDesc, sizeof(D3DXFONT_DESC));

fontDesc.Height = 25;
fontDesc.Width = 12;

 54

fontDesc.Weight = 500;
fontDesc.MipLevels = D3DX_DEFAULT;
fontDesc.Italic = false;
fontDesc.CharSet = 0;
fontDesc.OutputPrecision = 0;
fontDesc.Quality = 0;
fontDesc.PitchAndFamily = 0;
strcpy(fontDesc.FaceName, "Times New Roman"); // font style

ID3DXFont* Font = 0;
D3DXCreateFontIndirect(Device, &fontDesc, &Font);

The D3DXFONT_DESC structure must be filled to describe the font we want to create.

8.1.1 Drawing with ID3DXFont
To draw some text, simply call the ID3DXFont::DrawText method.

INT DrawText(
 LPD3DXSPRITE pSprite,

LPCTSTR pString,
INT Count,
LPRECT pRect,
DWORD Format,
D3DCOLOR Color

);

• pSprite: Pointer to an ID3DXSprite object that contains the string. This chapter does
not use this object. It can be set to NULL.

• pString: Pointer to the string to draw
• Count: Number of characters in the string. We can specify –1 if the string is null

terminating.
• pRect: Pointer to a RECT structure that defines the area on the screen to which the

text is to be drawn
• Format: Optional flags that specify how the text should be formatted; see the SDK

documentation for details.
• Color: The text color (see D3DCOLOR)

Example usage:

Font->DrawText(

NULL,
"Hello World", // String to draw.
-1, // Null terminating string.
&rect, // Rectangle to draw the string in.
DT_TOP | DT_LEFT, // Draw in top-left corner of rect.
0xff000000); // Black.

8.2 CD3DFont
CD3DFont uses Direct3D for rendering instead of GDI, making it much faster that
ID3DXFont. However, CD3DFont does not support complex fonts. Use CD3DFont when you
only need a simple font.
The following files are needed for CD3DFont: d3dfont.h, d3dfont.cpp, d3dutil.h, d3dutil.cpp,
dxutil.h, and dxutil.cpp. They can be found at the CFont sample directory.

To create a CD3DFont instance, simply call its constructor:

 55

CD3DFont(const TCHAR* strFontName,DWORD dwHeight,DWORD dwFlags=0L);

• strFontName: A null-terminated string that specifies the typeface name of the font
• dwHeight: The height of the font
• dwFlags: Optional creation flags; you can set this parameter to zero or use a

combination of the following flags; D3DFONT_BOLD, D3DFONT_ITALIC,
D3DFONT_ZENABLE.

After we have instantiated a CD3DFont object, we must call the following methods (in the
order shown) that initialize the font:

Font = new CD3DFont("Times New Roman", 16, 0); // instantiate
Font->InitDeviceObjects(Device);
Font->RestoreDeviceObjects();

8.2.1 Drawing with CD3DFont
CD3DFont also has a DrawText method for drawing text:

HRESULT CD3DFont::DrawText(FLOAT x, FLOAT y, DWORD dwColor,

const TCHAR* strText, DWORD dwFlags=0L);

• x: The x-coordinate in screen space of where to begin drawing the text
• y: The y-coordinate in screen space of where to begin drawing the text
• dwColor: The color of the text
• strText: Pointer to the string to draw
• dwFlags: Optional rendering flags; you can set this parameter to 0 or use a

combination of the following: D3DFONT_CENTERED, D3DFONT_TWOSIDED,
D3DFONT_FILTERED.

8.2.2 Cleanup
Before deleting a CD3DFont object, call some cleanup routines first:

Font->InvalidateDeviceObjects();
Font->DeleteDeviceObjects();
delete Font;

8.3 D3DXCreateText
D3DXCreateText creates a 3D mesh containing the specified text.

HRESULT WINAPI D3DXCreateText(

LPDIRECT3DDEVICE9 pDevice,
HDC hDC,
LPCTSTR pText,
FLOAT Deviation,
FLOAT Extrusion,
LPD3DXMESH *ppMesh,
LPD3DXBUFFER *ppAdjacency,
LPGLYPHMETRICSFLOAT pGlyphMetrics

);

• pDevice: The device to be associated with the mesh

 56

• hDC: A handle to a device context that contains a description of the font that we are
going to use to generate the mesh

• pText: Pointer to a null-terminating string specifying the text to create a mesh of
• Deviation: Maximum chordal deviation from TrueType font outlines. This value

must be greater than or equal to 0. When this value is 0, the chordal deviation is equal
to one design unit of the original font.

• Extrusion: The depth of the font measured in the negative z-axis direction
• ppMesh: Returns the created mesh
• ppAdjacency: Returns the created mesh’s adjacency info. Specify null if you don’t

need this.
• pGlyphMetrics: A pointer to an array of LPGLYPHMETRICSFLOAT structures that

contain the glyph metric data. You can set this to 0 if you are not concerned with
glyph metric data.

To draw some text looking like this:

Figure 8.1: 3D text created with the D3DXCreateText function

Use the following code:

// Obtain a handle to a device context.
HDC hdc = CreateCompatibleDC(0);

//Fill out a LOGFONT structure that describes the font’s properties.
LOGFONT lf;
ZeroMemory(&lf, sizeof(LOGFONT));
lf.lfHeight = 25; // in logical units
lf.lfWidth = 12; // in logical units
lf.lfWeight = 500; // boldness, range 0(light) - 1000(bold)
lf.lfItalic = false;
lf.lfUnderline = false;
lf.lfStrikeOut = false;
lf.lfCharSet = DEFAULT_CHARSET;
strcpy(lf.lfFaceName, "Times New Roman"); // font style

// Create a font and select that font with the device context.
HFONT hFont;
HFONT hFontOld;
hFont = CreateFontIndirect(&lf);
hFontOld = (HFONT)SelectObject(hdc, hFont);

// Create the 3D mesh of text.
ID3DXMesh* Text = 0;
D3DXCreateText(_device, hdc, "Direct3D", 0.001f, 0.4f, &Text, 0, 0);

// Reselect the old font, and free resources.
SelectObject(hdc, hFontOld);
DeleteObject(hFont);
DeleteDC(hdc);

 57

The drawing of the 3D text mesh can be done by:

Text->DrawSubset(0);

8.4 Font Samples
The font samples are located in Book Part III Code\Chapter 9. The ID3DXFont sample will
not compile with the latest DirectX 9 SDK because of the LOGFONT problem (see section 8.1).
A modified version can be found at:
http://www.cs.vu.nl/~tljchung/directx/samples/ID3DXFont_adjusted_sample.zip.

8.5 Summary
• Use the ID3DXFont interface to render text when you need to support complex fonts

and formatting. This interface uses GDI internally to render text and is therefore
slower.

• Use CD3DFont to render simple text quickly. This class uses textured triangles and
Direct3D to render text and is therefore much faster than ID3DXFont.

• Use D3DXCreateText to create a 3D mesh of a string of text.

9. Stenciling
Direct3D supports an additional buffer called the stencil buffer. It is an off-screen buffer and
has the same resolution as the back buffer and depth buffer. The stencil buffer allows us to
block rendering certain parts of the back buffer. This means your software can "mask"
portions of the rendered image so that they aren't displayed.
For an example see figure 9.1. The screenshot shows the implementation of a mirror. We use
the stencil buffer to block rendering when it is not on the mirror.

Figure 9.1a: Teapot reflected without a stencil buffer.

 Figure 9.1b: Teapot reflected with a stencil buffer.

This chapter uses an example to explain stenciling. This example implements the mirror
shown in figure 9.1. Stenciling is a rather complicated subject. I recommend reading about it
in Luna’s book (part 2, chapter 8) and in the SDK documentation.

 58

Keywords: stencil buffer, D3DRS_STENCILENABLE, stencil test, ref, mask, value, comparison
operation, stencil write mask, mirror, reflection matrix, D3DXMatrixReflect, planar
shadow, shadow matrix, double blending

9.1 Using the stencil buffer
We can enable a stencil buffer with the following code:

Device->SetRenderState(D3DRS_STENCILENABLE, true);

... // do stencil work

// disable the stencil buffer
Device->SetRenderState(D3DRS_STENCILENABLE, false);

The IDirect3DDevice9::Clear method is used to clear the stencil buffer to a default
value.

Device->Clear(0, 0,

D3DCLEAR_TARGET | D3DCLEAR_ZBUFFER | D3DCLEAR_STENCIL,
0xff000000, 1.0f, 0);

The flags given in the third argument indicate that the back buffer (D3DCLEAR_TARGET),
depth buffer (D3DCLEAR_ZBUFFER) and stencil buffer (D3DCLEAR_STENCIL) should be
cleared.

9.1.1 Requesting a Stencil Buffer
The stencil and depth buffer share the same off-screen surface buffer. To request a stencil
buffer, specify the format of the stencil buffer at the same time as when specifying the format
of the depth buffer. A segment of memory in each pixel is designated to each particular buffer.
The following depth/stencil formats illustrate this:

• D3DFMT_D24S8: This format says to create a 32-bit depth/stencil buffer and designate
24 bits per pixel to the depth buffer and 8 bits per pixel to the stencil buffer.

• D3DFMT_D24X4S4: 32-bit depth/stencil buffer, 24 bits per pixel to the depth buffer, 4
bits per pixel to the stencil buffer. Four of the bits will not be used.

9.1.2 Stencil Test
As previously stated, we can use the stencil buffer to block rendering to certain areas of the
back buffer. To determine whether a pixel should be written is given by the following
expression:

(ref & mask) ComparisonOperation (value & mask)

The variables are:

• ref: stencil reference value
• mask: application defined masking value
• value: the particular pixel that we are testing

How the expression works:

1. Perform a bitwise AND operation on ref with mask.
2. Perform a bitwise AND operation on value with mask.

 59

3. Compare the results of Step 1 (this will called A) and Step 2 (will be called B) by
using the comparison operation.

A Boolean value will be returned as result. If this value is

• true: write the pixel to the back buffer.
• false: block the pixel from being written to the back buffer. If a pixel isn’t written to

the back buffer, it isn’t written to the depth buffer either.

9.1.3 Controlling the Stencil Test
In this section we will see how to control the variables used in the stencil test.

Stencil Reference Value (ref)
The ref value is zero by default, but we can change it with the D3DRS_STENCILREF render
state. To set the stencil reference value to one:

Device->SetRenderState(D3DRS_STENCILREF, 0x1);

We tend to use hexadecimal because it makes it easier to see the bit alignment of an integer,
and this is useful to see when doing bit-wise operations, such as the AND operation.

Stencil Mask (mask)
The mask value is used to mask (hide) bits in both the ref and value variables. The default
mask is 0xffffffff, which doesn’t mask any bits. We can change the mask by setting the
D3DRS_STENCILMASK render state. The following example masks the 16 high bits:

Device->SetRenderState(D3DRS_STENCILMASK, 0x0000ffff);

Stencil Value (value)
This is the value in the stencil buffer for the current pixel that we are stencil testing. If we are
performing the stencil test on the ijth pixel, then value will be the value in the ijth entry of the
stencil buffer.
We can not explicitly set individual stencil values, but we can clear the stencil buffer. In
addition we can use the stencil render states to control what gets written to the stencil buffer.
These render states will be covered shortly.

Comparison Operation
We can set the comparison operation by setting the D3DRS_STENCILFUNC render state. The
comparison operation can be any member of the D3DCMPFUNC enumerated type:

typedef enum _D3DCMPFUNC {

D3DCMP_NEVER = 1,
D3DCMP_LESS = 2,
D3DCMP_EQUAL = 3,
D3DCMP_LESSEQUAL = 4,
D3DCMP_GREATER = 5,
D3DCMP_NOTEQUAL = 6,
D3DCMP_GREATEREQUAL = 7,
D3DCMP_ALWAYS = 8,
D3DCMP_FORCE_DWORD = 0x7fffffff

} D3DCMPFUNC;

• D3DCMP_NEVER: Always fail the test.

 60

• D3DCMP_LESS: Accept the new pixel if its value is less than the value of the current
pixel. A < B, where A means (ref & mask) and B means (value & mask). See
section 9.1.2.

• D3DCMP_EQUAL: Accept the new pixel if its value equals the value of the current pixel.
A = B

• D3DCMP_LESSEQUAL: Accept the new pixel if its value is less than or equal to the
value of the current pixel. A ≤ B

• D3DCMP_GREATER: Accept the new pixel if its value is greater than the value of the
current pixel. A > B

• D3DCMP_NOTEQUAL: Accept the new pixel if its value does not equal the value of the
current pixel. A ≠ B

• D3DCMP_GREATEREQUAL: Accept the new pixel if its value is greater than or equal to
the value of the current pixel. A ≥ B

• D3DCMP_ALWAYS: Always pass the test.
• D3DCMP_FORCE_DWORD: Forces this enumeration to compile to 32 bits in size.

Without this value, some compilers would allow this enumeration to compile to a size
other than 32 bits. This value is not used.

9.1.3 Updating the Stencil Buffer
In addition to deciding whether to write or block a particular pixel from being written to the
back buffer, we can define how the stencil buffer entry should be updated based on three
possible cases which are represented by render states:

• D3DRENDERSTATE_STENCILFAIL: Indicates the stencil operation to perform if the
stencil test fails. The stencil operation can be one of the members of the
D3DSTENCILOP enumerated type. The default value is D3DSTENCILOP_KEEP.

• D3DRENDERSTATE_STENCILZFAIL: Indicates the stencil operation to perform if the
stencil test passes and the depth test fails. The operation can be one of the members of
the D3DSTENCILOP enumerated type. The default value is D3DSTENCILOP_KEEP.

• D3DRENDERSTATE_STENCILPASS: Indicates the stencil operation to perform if both
the stencil test and the depth test pass. The operation can be one of the members of the
D3DSTENCILOP enumerated type. The default value is D3DSTENCILOP_KEEP.

The D3DSTENCILOP enumerated type describes the stencil operations for the these three
render states:

typedef enum _D3DSTENCILOP {

D3DSTENCILOP_KEEP = 1,
D3DSTENCILOP_ZERO = 2,
D3DSTENCILOP_REPLACE = 3,
D3DSTENCILOP_INCRSAT = 4,
D3DSTENCILOP_DECRSAT = 5,
D3DSTENCILOP_INVERT = 6,
D3DSTENCILOP_INCR = 7,
D3DSTENCILOP_DECR = 8,
D3DSTENCILOP_FORCE_DWORD = 0x7fffffff

} D3DSTENCILOP;

• D3DSTENCILOP_KEEP: Specifies to not change the stencil buffer (that is, keep the
value currently there)

• D3DSTENCILOP_ZERO: Specifies to set the stencil buffer entry to zero

 61

• D3DSTENCILOP_REPLACE: Specifies to replace the stencil buffer entry with the
stencil reference value

• D3DSTENCILOP_INCRSAT: Specifies to increment the stencil buffer entry. If the
incremented value exceeds the maximum allowed value, we clamp the entry to that
maximum.

• D3DSTENCILOP_DECRSAT: Specifies to decrement the stencil buffer entry. If the
decremented value is less than zero, we clamp the entry to zero.

• D3DSTENCILOP_INVERT: Specifies to invert the bits of the stencil buffer entry
• D3DSTENCILOP_INCR: Specifies to increment the stencil buffer entry. If the

incremented value exceeds the maximum allowed value, we wrap to zero.
• D3DSTENCILOP_DECR: Specifies to decrement the stencil buffer entry. If the

decremented value is less than zero, we wrap to the maximum allowed value.
• D3DSTENCILOP_FORCE_DWORD: Forces this enumeration to be compiled to 32 bits.

Without this value, some compilers would allow this enumeration to compile to a size
other than 32 bits. This value isn't used.

Suppose we want to set the stencil buffer entry to zero when the stencil test fails, we would
write the following code:

Device->SetRenderState(D3DRS_STENCILFAIL, D3DSTENCILOP_ZERO);

9.1.4 Stencil Write Mask
In addition to the mentioned stencil render states, we can set a write mask that will mask off
bits of any value that we write to the stencil buffer. We can set the write mask with the
D3DRS_STENCILWRITEMASK render state. The default value is 0xffffffff. The following
example masks the top 16 bits:

Device->SetRenderState(D3DRS_STENCILWRITEMASK, 0x0000ffff);

Don’t confuse this with D3DRENDERSTATE_STENCILMASK. This render state specifies the
mask to apply to the reference value and each stencil buffer entry (see 9.1.3).

9.2 Sample: Mirror
This part describes how to implement a mirror. The sample can be found at part 2 chapter 8,
“Stencil Mirror” folder. For simplicity, the mirror is only implemented for planar surfaces.
Like a mirror hanging on a wall or a shiny floor.
Implementing a mirror requires solving two problems:

1. Reflect an object about an arbitrary plane, see section 9.2.1
2. Only display the reflection in the mirror (see figure 9.1b), we will use the stencil

buffer to achieve this

9.2.1 Reflecting about an arbitrary plane
I am not going to explain the mathematics for achieving this effect. We will simply use the
matrix R to transform a point v to its reflected point v’.

 62

This matrix can also be found at the SDK documentation. Search for “D3DXMatrixReflect”
in the index. Use the D3DX library function D3DXMatrixReflect to generate this reflection
matrix for a given plane.

D3DXMATRIX *WINAPI D3DXMatrixReflect(

D3DXMATRIX *pOut, // The resulting reflection matrix
CONST D3DXPLANE *pPlane // The plane to reflect about

);

To get an arbitrary plane, the function D3DXPlaneFromPointNormal can be used. This
function returns the plane using a point (which is on the plane) and the plane’s normal.

D3DXPLANE *WINAPI D3DXPlaneFromPointNormal(

D3DXPLANE *pOut, // The resulting plane
CONST D3DXVECTOR3 *pPoint, // point on the plane
CONST D3DXVECTOR3 *pNormal // plane’s normal

);

The following code shows how to get the xy plane.

D3DXPLANE plane; // the resulting plane
D3DXVECTOR3 point(0.0f, 0.0f, 0.0f); // a point on the xy plane
D3DXVECTOR3 normal(0.0f, 0.0f, 1.0f); // xy plane’s normal

D3DXPlaneFromPointNormal(&plane, &pnt, &nrm);

There are three special case reflection transformations. They are the reflections about the
three standard coordinate planes, the yz plane, xz plane, and xy plane, and are represented by
the following three matrices, respectively:

To reflect a point across the yz plane, we simply take the opposite of the z-component.
Similarly, to reflect a point across the xz plane, we take the opposite of the y-component.
Finally, to reflect a point across the xy plane, we take the opposite of the z-component. These
reflections are readily seen by observing the symmetry on each of the standard coordinate
planes.

9.2.2 Mirror Implementation
When implementing a mirror, an object is only reflected if it is in front of a mirror. To
simplify things, we always reflect the object and render it no matter where it is. As said before,
to avoid the problem seen in figure 9.1a, we will use the stencil buffer.
The following steps briefly outline how the mirror application is implemented:

1. Render the entire scene as normal, the floor, walls, mirror, and teapot, but not the
teapot’s reflection.

2. Clear the stencil buffer to 0.
3. Render the primitives that make up the mirror into the stencil buffer only. Set the

stencil test to always succeed, and specify that the stencil buffer entry should be
replaced with 1 if the test passes. Since we are only rendering the mirror, all the pixels
in the stencil buffer will be 0 except for the pixels that correspond to the mirror, they
will have a 1. Essentially, we are marking the pixels of the mirror in the stencil buffer.

 63

4. Now we render the reflected teapot to the back buffer and stencil buffer. But recall
that we only render to the back buffer if the stencil test passes. This time we set the
stencil test to only succeed if the value in the stencil buffer is a 1. In this way, the
teapot is only rendered to areas that have a 1 in their corresponding stencil buffer entry.
Since the areas in the stencil buffer that correspond to the mirror are the only entries
that have a 1, the reflected teapot is only rendered into the mirror.

9.2.3 Sample Application’s code
The code relevant to this sample lies in the RenderMirror function, which first renders the
mirror primitives to the stencil buffer and then renders the reflected teapot only if it is being
rendered into the mirror. We walk through the RenderMirror function almost line by line
and explain what is occurring and, more importantly, why.
If you are using the steps outlined in section 9.2.2 to serve as an overall guide to the code,
note that we are starting at step 3 since steps 1 and 2 have nothing to do with the stencil buffer.
Also be aware that we are discussing the rendering of the mirror through this explanation.

Enabling the stencil buffer
void RenderMirror()
{
Device->SetRenderState(D3DRS_STENCILENABLE, true);
Device->SetRenderState(D3DRS_STENCILFUNC, D3DCMP_ALWAYS);
Device->SetRenderState(D3DRS_STENCILREF, 0x1);
Device->SetRenderState(D3DRS_STENCILMASK, 0xffffffff);
Device->SetRenderState(D3DRS_STENCILWRITEMASK,0xffffffff);
Device->SetRenderState(D3DRS_STENCILZFAIL, D3DSTENCILOP_KEEP);
Device->SetRenderState(D3DRS_STENCILFAIL, D3DSTENCILOP_KEEP);
Device->SetRenderState(D3DRS_STENCILPASS, D3DSTENCILOP_REPLACE);

We set the stencil comparison operation to D3DCMP_ALWAYS, specifying that the stencil test
will always pass.
If the depth test fails, we specify D3DSTENCILOP_KEEP, which indicates to not update the
stencil buffer entry. That is, we keep its current value. We do this because if the depth test
fails, it means the pixel is obscured. Therefore, we do not want to render part of the reflection
to a pixel that is obscured.
We also specify D3DSTENCILOP_KEEP if the stencil test fails. But this isn’t really necessary
here, since the test never fails because we specified D3DCMP_ALWAYS. However, we change
the comparison operation in just a bit, so setting the stencil fail render state is required
eventually; we just do it now.
If the depth and stencil tests pass, we specify D3DSTENCILOP_ REPLACE, which replaces the
stencil buffer entry with the stencil reference value, 0x1.

Render the mirror to the stencil buffer
This next block of code renders the mirror, but only to the stencil buffer. We can stop writes
to the depth buffer by setting the D3DRS_ZWRITEENABLE and specifying false. We can
prevent updating the back buffer with blending and setting the source blend factor to
D3DBLEND_ZERO and the destination blend factor to D3DBLEND_ONE. Plugging these blend
factors into the blending equation, we show that the back buffer is left unchangedii:

ii Note that in the equation, the * operator means component-wise multiplication. Example:
(a1, a2, a3) * (b1, b2, b3) = (a1b1, a2b2, a3b3)

 64

FinalPixel = sourcePixel * (0, 0, 0, 0) + DestPixel * (1, 1, 1, 1)
= (0, 0, 0, 0) + DestPixel
= DestPixel

// disable writes to the depth and back buffers
Device->SetRenderState(D3DRS_ZWRITEENABLE, false);
Device->SetRenderState(D3DRS_ALPHABLENDENABLE, true);
Device->SetRenderState(D3DRS_SRCBLEND, D3DBLEND_ZERO);
Device->SetRenderState(D3DRS_DESTBLEND, D3DBLEND_ONE);

// draw the mirror to the stencil buffer
Device->SetStreamSource(0, VB, 0, sizeof(Vertex));
Device->SetFVF(Vertex::FVF);
Device->SetMaterial(&MirrorMtrl);
Device->SetTexture(0, MirrorTex);
D3DXMATRIX I;
D3DXMatrixIdentity(&I);
Device->SetTransform(D3DTS_WORLD, &I);
Device->DrawPrimitive(D3DPT_TRIANGLELIST, 18, 2);

// re-enable depth writes
Device->SetRenderState(D3DRS_ZWRITEENABLE, true);

At this point, the pixels in the stencil buffer that correspond to the visible pixels of the mirror
have an entry on 0x1, thus marking the area where the mirror has been rendered. We now
prepare to render the reflected teapot. We only want to render the reflection into pixels that
correspond to the mirror. This can be easily done now that we have marked those pixels in the
stencil buffer.
We set the following render states:

Device->SetRenderState(D3DRS_STENCILFUNC, D3DCMP_EQUAL);
Device->SetRenderState(D3DRS_STENCILPASS, D3DSTENCILOP_KEEP);

Thus making the stencil test:

(ref & mask) == (value & mask)
(0x1 & 0xffffffff) == (value & 0xffffffff)

(0x1) == (value & 0xffffffff)

This shows that the stencil test only succeeds if value = 0x1. Since value is only 0x1 in areas
of the stencil buffer that correspond to the mirror, the test only succeeds if we are rendering to
those areas. Thus, the reflected teapot is only drawn into the mirror and is not drawn into
other surfaces.
We have changed the D3DRS_STENCILPASS render state to D3DSTENCILOP_KEEP, which
means keeping the value in the stencil buffer if the test passed. Therefore, in this next
rendering pass, we do not change the values in the stencil buffer (all controls are
D3DSTENCILOP_KEEP). We are only using the stencil buffer to mark the pixels that
correspond to the mirror.

Compute the reflection matrix
The next part of the RenderMirror function computes the matrix that positions the
reflection in the scene:

// position reflection
D3DXMATRIX W, T, R;
D3DXPLANE plane(0.0f, 0.0f, 1.0f, 0.0f); // xy plane

 65

D3DXMatrixReflect(&R, &plane);

D3DXMatrixTranslation(&T,

TeapotPosition.x,
TeapotPosition.y,
TeapotPosition.z);

W = T * R;

We first translated to the non-reflection teapot position. Then it is reflected across the xy
plane. This plane is one of the special planes described in section 9.2.1, that is why we could
simply use (0.0f, 0.0f, 1.0f, 0.0f) as the plane.

Render the reflected teapot
If we render the reflected teapot now, it will not be displayed. Because the reflected teapot’s
depth is greater than the mirror’s depth, and thus the mirror primitives technically obscure the
reflected teapot. To get around this, we clear the depth buffer:

Device->Clear(0, 0, D3DCLEAR_ZBUFFER, 0, 1.0f, 0);

However, if we simply clear the depth buffer, the reflected teapot is drawn in front of the
mirror and things do not look right. What we want to do is clear the depth buffer in addition to
blending the reflected teapot with the mirror. In this way, the reflected teapot looks like it is
“in” the mirror. This can be done with the following equation:

FinalPixel = sourcePixel * destPixel + DestPixel * (0, 0, 0, 0)

= sourcePixel * destPixel

In code this would be:

Device->SetRenderState(D3DRS_SRCBLEND, D3DBLEND_DESTCOLOR);
Device->SetRenderState(D3DRS_DESTBLEND, D3DBLEND_ZERO);

Finally, we are ready to draw the reflected teapot:

Device->SetTransform(D3DTS_WORLD, &W);
Device->SetMaterial(&TeapotMtrl);
Device->SetTexture(0, 0);

Device->SetRenderState(D3DRS_CULLMODE, D3DCULL_CW);
Teapot->DrawSubset(0);

The matrix W correctly transforms the reflected teapot into its appropriate position in the scene.
See the previous section.
Also, the backface cull mode (see section 2.3.4: Backface Culling) is changed. We must do
this because when an object is reflected, its front faces will be swapped with its back faces;
however, the winding order will not be changed. Thus, the “new” front faces will have a
winding order that indicates to Direct3D that they are back facing. Similarly, the “new” back-
facing triangles will have a winding order that indicates to Direct3D that they are front facing.
Therefore, to correct this, we must change our backface culling condition.

Cleanup
When done, we disable blending and stenciling and restore the usual cull mode:

 66

Device->SetRenderState(D3DRS_ALPHABLENDENABLE, false);
Device->SetRenderState(D3DRS_STENCILENABLE, false);
Device->SetRenderState(D3DRS_CULLMODE, D3DCULL_CCW);
} // end RenderMirror()

9.3 Sample: Planar Shadows
In this section we will see an implementation of planar shadows, a shadow which lies on a
plane. These types of shadows are not as realistic as shadow volumes, but shadow volumes
are an advanced topic. The DirectX SDK has an example demonstrating shadow volumes.
To implement planar shadows, we must first find the shadow that an object casts to a plane
and model it geometrically so that we can render it. This can easily be done with some 3D
math. We then render the polygons that describe the shadow with a black material at 50%
transparency.
The example application for this section is called Stencil Shadow. It can be found in part 2,
chapter 8.

9.3.1 Shadow Matrix
A shadow is essentially a parallel projection of an object onto the plane. We can represent the
transformation from a vertex p to its projection s with the following shadow matrix:

P = normalize(Plane);
L = Light;
d = dot(P, L)

P.a * L.x + d P.a * L.y P.a * L.z P.a * L.w
P.b * L.x P.b * L.y + d P.b * L.z P.b * L.w
P.c * L.x P.c * L.y P.c * L.z + d P.c * L.w
P.d * L.x P.d * L.y P.d * L.z P.d * L.w + d

To see how to derive this matrix, see Chapter 6 of “Me and My (Fake) Shadow,” from Jim
Blinn’s Corner: A Trip Down the Graphics Pipeline.
The D3DX library provides the following function to build the shadow matrix given the plane
that we wish to project the shadow to and a vector describing a parallel light if w = 0 or a
point light if w = 1:

D3DXMATRIX *D3DXMatrixShadow(

D3DXMATRIX *pOut,
CONST D3DXVECTOR4 *pLight, // L
CONST D3DXPLANE *pPlane // plane to cast shadow onto

);

9.3.2 Double Blending problem
To generate a shadow, we flatten out the geometry of an object onto the plane. When the
shadow with transparency is rendered (using blending), the areas that have overlapping
triangles will get blended multiple times and thus appear darker. See figure 9.2.

 67

Figure 9.2: The teapot in (a) shows some black areas.
These are areas where parts of the teapot overlap,
causing a “double blend”. The teapot in (b) is rendered
without double blending.

Double blending can be solved with the stencil buffer. This can be done by marking the
corresponding stencil buffer entries when the shadow’s pixels are rendered to the back buffer.
Then, if we attempt to write a pixel to an area that has already been rendered to (marked in the
stencil buffer), the stencil test will fail. In this way, writing overlapping pixels is prevented
and therefore avoids double blending artifacts.

9.3.3 Stencil Shadow example code
The code that generates the shadow is in the RenderShadow function.
We set the stencil render states first. The stencil comparison function is set to D3DCMP_EQUAL
and the D3DRS_STENCILREF render state to 0x0, thereby specifying to render the shadow to
the back buffer if the corresponding entry in the stencil buffer equals 0x0.
The stencil buffer is cleared to zero (0x0), which will make the stencil test always pass if we
write a particular pixel of the shadow for the first time. Because we set
D3DRS_STENCILPASS to D3DSTENCILOP_INCR, every time at a successful write of a pixel,
its entry will be incremented to 0x1. The test will fail if we try to write to a pixel that we have
already written to. This way, we avoided double blending.

void RenderShadow()
{
Device->SetRenderState(D3DRS_STENCILENABLE, true);
Device->SetRenderState(D3DRS_STENCILFUNC, D3DCMP_EQUAL);
Device->SetRenderState(D3DRS_STENCILREF, 0x0);
Device->SetRenderState(D3DRS_STENCILMASK, 0xffffffff);
Device->SetRenderState(D3DRS_STENCILWRITEMASK, 0xffffffff);
Device->SetRenderState(D3DRS_STENCILZFAIL, D3DSTENCILOP_KEEP);
Device->SetRenderState(D3DRS_STENCILFAIL, D3DSTENCILOP_KEEP);
Device->SetRenderState(D3DRS_STENCILPASS, D3DSTENCILOP_INCR);

Next, we compute the shadow transformation and translate the shadow into the appropriate
place in the scene.

// compute the transformation to flatten the teapot into a shadow.
D3DXVECTOR4 lightDirection(0.707f, -0.707f, 0.707f, 0.0f);
D3DXPLANE groundPlane(0.0f, -1.0f, 0.0f, 0.0f);

 68

D3DXMATRIX S;
D3DXMatrixShadow(&S, &lightDirection, &groundPlane);

D3DXMATRIX T;
D3DXMatrixTranslation(&T, TeapotPosition.x, TeapotPosition.y,

TeapotPosition.z);

D3DXMATRIX W = T * S;
Device->SetTransform(D3DTS_WORLD, &W);

Lastly, we set a black material at 50% transparency, disable depth testing, render the shadow,
and then clean up by re-enabling the depth buffer and disabling alpha blending and stencil
testing. We disable the depth buffer to prevent z-fighting, which is a visual artifact that occurs
when two different surfaces have the same depth values in the depth buffer; the depth buffer
doesn’t know which should be in front of the other, and an annoying flicker occurs. Because
the shadow and floor lie on the same plane, z-fighting between them will most likely occur.
By rendering the floor first and the shadow after with depth testing disabled, we guarantee our
shadow will be drawn over the floor.

Device->SetRenderState(D3DRS_ALPHABLENDENABLE, true);
Device->SetRenderState(D3DRS_SRCBLEND, D3DBLEND_SRCALPHA);
Device->SetRenderState(D3DRS_DESTBLEND, D3DBLEND_INVSRCALPHA);

D3DMATERIAL9 mtrl = d3d::InitMtrl(d3d::BLACK, d3d::BLACK,

d3d::BLACK, d3d::BLACK, 0.0f);
mtrl.Diffuse.a = 0.5f; // 50% transparency.

// Disable depth buffer so that z-fighting doesn't occur when we
// render the shadow on top of the floor.
Device->SetRenderState(D3DRS_ZENABLE, false);

Device->SetMaterial(&mtrl);
Device->SetTexture(0, 0);
Teapot->DrawSubset(0);

Device->SetRenderState(D3DRS_ZENABLE, true);

Device->SetRenderState(D3DRS_ALPHABLENDENABLE, false);
Device->SetRenderState(D3DRS_STENCILENABLE, false);

}//end RenderShadow()

9.4 Other usages for stenciling
Stenciling is not only used for mirrors, but can also be used for achieving other various effects.
Examples can be outlines, silhouettes etc.
To get an outline of an object, you could apply a stencil mask to a primitive that's the same
shape but slightly smaller than the primitive. The resulting image will contain only the
primitive's outline. You can then fill this stencil-masked area of the primitive with a color or
set of colors to produce an outline around the image.
For achieving a silhouette, set the stencil mask to the same size and shape as the primitive
you're rendering, Direct3D will produce a final image containing a "black hole" where the
primitive should be. By coloring this hole, you can produce a silhouette of the primitive.
See http://www.gamasutra.com/features/20000807/kovach_03.htm for more examples.

 69

9.4 Summary
• The stencil buffer and depth buffer share the same surface and are therefore created at

the same time. We specify the format of the depth/stencil surface using the
D3DFORMAT types.

• Stenciling is used to block certain pixels from being rasterized. As we have seen in
this chapter, this ability is useful for implementing mirrors and shadows among other
applications.

• We can control stenciling operations and how the stencil buffer is updated through the
D3DRS_STENCIL* render states.

10. A Flexible Camera Class
Thus far, we have used the D3DXMatrixLookAtLH function to compute a view space
transformation matrix. This function is useful for a camera in a fixed position, but not so
useful for a moving camera that reacts to user input. This chapter will show how to implement
a Camera class suitable for e.g. first-person games.
Keywords: camera, up vector, right vector, position vector, look vector, pitch, yaw, roll,
strafe, fly, move, transformation matrix, rotation, D3DXMatrixRotationAxis

10.1 Camera Design
We define a local coordinate system for the camera relative to the world coordinate system
using four camera vectors: a right vector, up vector, look vector, and position vector, as figure
10.1 illustrates.

Figure 10.1: The camera vectors

The camera class will be able to perform the following six operations:

• Rotate around the right vector (pitch)
• Rotate around the up vector (yaw)
• Rotate around the look vector (roll)
• Strafe along the right vector
• Fly along the up vector
• Move along the look vector

The following shows a part of the Camera class where these six operations can be called.

class Camera {

public:
enum CameraType { LANDOBJECT, AIRCRAFT };

 70

Camera();
Camera(CameraType cameraType);
~Camera();
void strafe(float units); // left/right
void fly(float units); // up/down
void walk(float units); // forward/backward
void pitch(float angle); // rotate on right vector
void yaw(float angle); // rotate on up vector
void roll(float angle); // rotate on look vector
void getViewMatrix(D3DXMATRIX* V);
void setCameraType(CameraType cameraType);
void getPosition(D3DXVECTOR3* pos);
void setPosition(D3DXVECTOR3* pos);
void getRight(D3DXVECTOR3* right);
void getUp(D3DXVECTOR3* up);
void getLook(D3DXVECTOR3* look);

private:
CameraType _cameraType;
D3DXVECTOR3 _right;
D3DXVECTOR3 _up;
D3DXVECTOR3 _look;
D3DXVECTOR3 _pos;

};

The Camera class also provides a CameraType enumerated type. It has two modes:
LANDOBJECT model and an AIRCRAFT model. The AIRCRAFT model allows us to move
freely through space and gives us six degrees of freedom. However, in some games, such as a
first-person shooter, we must restrict movement on certain axes. Specifying LANDOBJECT for
the camera type will for example restrict a character from flying.

10.2 Implementation

10.2.1 The View Matrix
We now show how the view matrix transformation can be computed given the camera vectors.
Let p = (px, py, pz), r = (rx, ry, rz), u = (ux, uy, uz), and d = (dx, dy, dz) be the position, right, up,
and look vectors, respectively.
Recall that in Chapter 2 we said that the view space transformation transforms the geometry
in the world so that the camera is centered at the origin and axis aligned with the major
coordinate axes (see Figure 2.7).
We want a transformation matrix V such that:
pV = (0, 0, 0): The matrix V transforms the camera to the origin.
rV = (1, 0, 0): The matrix V aligns the right vector with the world x-axis.
uV = (0, 1, 0): The matrix V aligns the up vector with the world y-axis.
dV = (0, 0, 1): The matrix V aligns the look vector with the world z-axis.

The matrix V is defined as:

 71

The left matrix is the translation matrix and the right one the rotation matrix. These two
matrices are combined and results in the matrix V. I will again omit the mathematics involved
in how these matrices were generated. Call Camera::getViewMatrix to build the matrix V.

10.2.2 Rotation about an arbitrary axis
To rotate about an arbitrary axis, use the following D3DX function:

D3DXMATRIX *D3DXMatrixRotationAxis(

D3DXMATRIX *pOut, // returns rotation matrix
CONST D3DXVECTOR3 *pV, // axis to rotate around
FLOAT Angle // angle, in radians, to rotate

);

Suppose we want to rotate π/2 radians around the axis defined by the vector (0.707, 0.707, 0).
We would write:

D3DXMATRIX R;
D3DXVECTOR3 axis(0.707f, 0.707f, 0.0f);
D3DXMatrixRotationAxis(&R, &axis, D3DX_PI / 2.0f);

10.2.3 Pitch, Yaw and Roll
When we pitch, we need to rotate the up and look vectors around the right vector by the
specified rotation angle. When we yaw, we need to rotate the look and right vectors around
the up vector by the specified rotation angle. Finally, when we roll, we need to rotate the up
and right vectors around the look vector by the specified rotation angle. The function
D3DXMatrixRotationAxis is used for the rotation.
The pitch, yaw and roll functions are implemented as follows:

void Camera::pitch(float angle) {

D3DXMATRIX T;
D3DXMatrixRotationAxis(&T, &_right, angle);

// rotate _up and _look around _right vector
D3DXVec3TransformCoord(&_up,&_up, &T);
D3DXVec3TransformCoord(&_look,&_look, &T);

}

void Camera::yaw(float angle) {

D3DXMATRIX T;

// rotate around world y (0, 1, 0) always for land object
if(_cameraType == LANDOBJECT)

D3DXMatrixRotationY(&T, angle);

// rotate around own up vector for aircraft
if(_cameraType == AIRCRAFT)

D3DXMatrixRotationAxis(&T, &_up, angle);

// rotate _right and _look around _up or y-axis
D3DXVec3TransformCoord(&_right,&_right, &T);
D3DXVec3TransformCoord(&_look,&_look, &T);

}

void Camera::roll(float angle) {

// only roll for aircraft type
if(_cameraType == AIRCRAFT) {

D3DXMATRIX T;
D3DXMatrixRotationAxis(&T, &_look, angle);

 72

// rotate _up and _right around _look vector
D3DXVec3TransformCoord(&_right,&_right, &T);
D3DXVec3TransformCoord(&_up,&_up, &T);

}
}

The roll operation is only done for the AIRCRAFT camera type. This is because it doesn’t feel
right if a land object yaws when tilted. You could of course change this behavior in the
Camera class.

10.2.4 Walking, Strafing and Flying
Walking means moving in the direction that we are looking (that is, along the look vector).
Strafing is moving side to side from the direction we are looking, which is of course moving
along the right vector. Finally, we say that flying is moving along the up vector. To move
along any of these axes, we simply add a vector that points in the same direction as the axis
that we want to move along to our position vector.
The walk, strafe, and fly methods implementation:

void Camera::walk(float units) {

// move only on xz plane for land object
if(_cameraType == LANDOBJECT)

_pos += D3DXVECTOR3(_look.x, 0.0f, _look.z) * units;
if(_cameraType == AIRCRAFT)

_pos += _look * units;
}

void Camera::strafe(float units) {

// move only on xz plane for land object
if(_cameraType == LANDOBJECT)

_pos += D3DXVECTOR3(_right.x, 0.0f, _right.z) * units;
if(_cameraType == AIRCRAFT)

_pos += _right * units;
}

void Camera::fly(float units) {

if(_cameraType == AIRCRAFT)
_pos += _up * units;

}

10.3 Sample: Camera
The Camera application can be found at part 3, chapter 12. This sample uses the Camera class
which was discussed in this chapter. The following keys are implemented:

• W/S: Walk forward/backward
• A/D: Strafe left/right
• R/F: Fly up/down
• Up/Down arrow keys: Pitch
• Left/Right arrow keys: Yaw
• N/M: Roll

These keys are handled in the Display function.
The global Camera object TheCamera is instantiated at the global scope. Also notice that we
move the camera with respect to the time change (timeDelta); this keeps us moving at a
steady speed independent of the frame rate.

 73

bool Display(float timeDelta) {
if(Device) {

//
// Update: Update the camera.
//
if(::GetAsyncKeyState('W') & 0x8000f)

TheCamera.walk(4.0f * timeDelta);
if(::GetAsyncKeyState('S') & 0x8000f)

TheCamera.walk(-4.0f * timeDelta);
if(::GetAsyncKeyState('A') & 0x8000f)

TheCamera.strafe(-4.0f * timeDelta);
if(::GetAsyncKeyState('D') & 0x8000f)

TheCamera.strafe(4.0f * timeDelta);
if(::GetAsyncKeyState('R') & 0x8000f)

TheCamera.fly(4.0f * timeDelta);
if(::GetAsyncKeyState('F') & 0x8000f)

TheCamera.fly(-4.0f * timeDelta);
if(::GetAsyncKeyState(VK_UP) & 0x8000f)

TheCamera.pitch(1.0f * timeDelta);
if(::GetAsyncKeyState(VK_DOWN) & 0x8000f)

TheCamera.pitch(-1.0f * timeDelta);
if(::GetAsyncKeyState(VK_LEFT) & 0x8000f)

TheCamera.yaw(-1.0f * timeDelta);
if(::GetAsyncKeyState(VK_RIGHT) & 0x8000f)

TheCamera.yaw(1.0f * timeDelta);
if(::GetAsyncKeyState('N') & 0x8000f)

TheCamera.roll(1.0f * timeDelta);
if(::GetAsyncKeyState('M') & 0x8000f)

TheCamera.roll(-1.0f * timeDelta);

// Update the view matrix representing the cameras
// new position/orientation.
D3DXMATRIX V;
TheCamera.getViewMatrix(&V);
Device->SetTransform(D3DTS_VIEW, &V);

//
// Render
//
Device->Clear(0, 0, D3DCLEAR_TARGET | D3DCLEAR_ZBUFFER,

0x00000000, 1.0f, 0);

Device->BeginScene();
d3d::DrawBasicScene(Device, 1.0f);
Device->EndScene();

Device->Present(0, 0, 0, 0);

}
return true;

}

10.4 Summary
• We describe the position and orientation of our camera in the world coordinate system

by maintaining four vectors: a right vector, an up vector, a look vector, and a position
vector. With this description, we can easily implement a camera with six degrees of
freedom, giving a flexible camera interface

 74

11. Sample Project
The final sample is a self provided demo application. I have tried to implement as many
techniques, which were discussed in this document, as possible. All techniques except for
colors were actually used.
The sample is not really a fun game, but shows a nice screen with a rotating model, pyramid
or teapot, two mirrors and a shadow. The controls can be inspected by pressing the ‘H’ button.
See the screenshot.
The sample can be found at: http://www.cs.vu.nl/~tljchung/directx/samples/Project.zip.

11.1 Implementation
The following was used for this sample:

• The pyramid: Used vertex buffer and index buffer, drawn with
DrawIndexedPrimitive. See chapter 3 Drawing.

• Teapot: Generated with the D3DX library. D3DXCreateTeapot and drawn with
DrawSubset. See chapter 3.
Press ‘M’ to switch between the pyramid and the teapot.

• Light: Enabled a white directional light. The models use some of the materials
provided in the d3dUtility.h file. The Vertex format has normals added for this
purpose. See chapter 5.

• Textures: Applied textures on the floor, mirrors, walls and the bottom of the pyramid.
The pyramid bottom has a crate texture. The Vertex format has been added texture
coordinates _u and _v for textures. See chapter 6.

• Blending: Was needed for the mirrors and the shadow. See chapter 7.
• Fonts: Used ID3DXFont to draw the help messages and the fps. See chapter 8.

 75

• Stenciling: For the mirrors and shadow. See chapter 9.
• Camera: Used the Camera class from chapter 10.
• Rotation: Added rotations using a global rotation matrix ROT. This matrix is multiplied

with the matrix provided to SetTransform.

Bibliography
• Luna, Frank. Introduction to 3D GAME Programming with DirectX 9.0. Wordware

Publishing, Inc, 2003.
http://www.moon-labs.com/

• Kovach, Peter. Gamasutra: Inside Direct3D: Stencil Buffers [08.07.00].
http://www.gamasutra.com/features/20000807/kovach_01.htm

• Microsoft. DirectX 9.0 SDK documentation.
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/directx9_c/directx/directx9cpp.asp

Device->SetTransform(D3DTS_WORLD, &(ROT * W));

