

januari 2008, Steve Stomp

Inhoud
1. Introduction ... 3

2. Preparing Sandy3D for Adobe Flex .. 4

3. Basic Sandy Actionscript File ... 5

4. Camera and Motion... 7

4.1. Keyboard Events .. 8

4.2. Mouse Events .. 9

4.3. Controlling Camera Using Mouse and Keyboard Events .. 10

5. Materials and Textures .. 11

5.1 Sandy Materials and Attributes ... 11

5.2 Assigning textures.. 12

5.3 Interacting with the Movie/Video Texture.. 13

6. Sprites .. 15

6.1 Sprite2D and Sprite3D ... 15

6.2 Flash and Sandy ... 15

7. Conclusion.. 17

8. Bibliography ... 17

Appendix A - Files ... Error! Bookmark not defined.

1. Introduction

Internet is growing up. New development is presented almost every day. One these developments are
object oriented Actionscript 3D library, like Away3D, Papervision3D and Sandy3d. These 3D library
enable developers to create 3D while programming in Flash or Flex. Because this is rather new
development, not much documentation is available. That is why I am studying these libraries. This
paper focuses on Sandy3D, and gives in introduction on the basics of Sandy3D. For the study I used
Sandy3D 3.0.1 in conjunction with Flex Builder 2 and Adobe Flash CS3.

Chapter two discusses how to set up your computer system in order to get Sandy3D running properly.
Chapter three give an introduction of a basic Sandy Actionscript file. This followed by a chapter that
explains the basics of keyboard and mouse events. Chapter five explains the attributes and materials
types of Sandy 3.0. Chapter six gives a brief introduction in sprites. And finally chapter seven which
holds the conclusion.

2. Preparing Sandy3D for Adobe Flex

Start up Flex and create a new Actionscript project, RMB click (right mouse button) in the Navigator
section, see figure 2.1. Now the wizard will open. Give the project a name, select folders location and

Figure 2.1, Flex Navigator

Figure 2.2, SVN Checkout

In the project folder, IntroSandy you can find all the project files. If you want the compile/execute one
of these files out of Flex, they have to be application files. To make a file compliable right mouse click
on the file in the navigator and select Set as Default Application. Now the actionscript file icon will

change to . To run a file, select Run>Run [filename] or Ctrl + F11.

click on next. Create a directory by filling in a name in Main
source folder section, for example “source”, and click on
Finish. Now open up the file explorer and browse to just
created folder, and RMB click on the source folder. Select
SVN checkout, a new

window will open, see figure 2.2. For
URL of repository fill in
http://sandy.googlecode.com/svn/trunk/sandy/as3/trunk/src/

and click on OK. This will install the latest version on Sandy
in project source folder. I use Subversion client, TortoiseSVN
for the checkout. http://tortoisesvn.net/

http://sandy.googlecode.com/svn/trunk/sandy/as3/trunk/src/
http://tortoisesvn.net/

3. Basic Sandy Actionscript File

Every Actionscript file contains some basic elements which are necessary for creating a working
Actionscript file. In order to get Flash and Sandy functionality their classes needed to be imported.
This is done by declaring it at the top of the file. (see figure 3.1)

Figure 3.1, Importing Flash and Sandy classes

The Sandy (3D) world is structured as a tree, and describes the relationship between the elements in
the scene. It contain three types of nodes:

Group - general grouping node

TransformGroup - used for transformations to all its children

Shape3D - 3D object in the scene. (has no children)
In contrast to earlier versions of Sandy3D, it is not necessary to create transform groups in order to
move objects. The Shape3D and TransformGroup node now extends ATransformable, which
facilitates all kinds of movements1. The user looks at the scene through a Camera 3D object. This
object can be added to any group node in the 3D world.

Figure 3.2, class and function IntroSandy

1 http://www.petitpub.com/labs/media/flash/sandy3/

http://www.petitpub.com/labs/media/flash/sandy3/

In order to create a 3D scene we need to declare a variable which will contain all objects in the scene,
and to view everything we need a camera object (see figure 3.2). In the method IntroSandy the
following actions happen:

The camera object is defined.

All objects in the scene are grouped in a single variable. In this case the objects are defined by
a private method, createScene.

A scene group is defined, by four parameters:

o The name of the scene
o The container
o The camera
o The objects

An event listener is called that will render the scene.

Figure 3.3, method createScene

In the method createScene a variable is created that will contain all objects (including their attributes,
such as materials and translation). This variable will eventually be returned in order to create the
scene. Then an object is created. The material for it are assigned by creating a variable of the type
Material, and the attributes are defined by creating a variable of the type MaterialAttributes. This
constructor holds a variable number of parameters, in this case two:

LineAttributes hold three parameters:
o Line thickness
o Line color
o Line opacity

LightAttributes hold two parameters:
o Enable/disable light
o Level of ambient light

The material attributes are applied to a ColorMaterial. Other materials are BitmapMaterial,
MovieMaterial, VideoMaterial, etc. More about materials in the chapter 5. To use the light source on
the material we need to tell the rendering engine to use the light, material.lightEnable = true;. To map
the material to the object we need to create variable of the type Appearance and assign the material
parameter to it, var app:Appearance = new Appearance (material);. Finally we place the object in our
scene. In this case the object is also rotated.

Figure 3.4, method loop3D

As method names implies this method will loop. Every time the scene is rendered the torus is rotate
1degree in y-axis.

4. Camera and Motion

Standard all objects in a Sandy scene are manipulative. The class ATransformable gives all the
possible operations. An overview can be found at

http://sandy.googlecode.com/svn/trunk/sandy/as3/branches/3.0.1/docs/index.html. These operations can be divided in two
categories:

Gobal operations - operations around the global axis, such as rotation

Local operations - operations around the local axis, such as pan and tilt

The operations can assigned by user input. In the following section I will first discuss how to assign
keyboard events to manipulate objects and then how to assign mouse events, especially how to control
the camera using a mouse. To make everything more clear I created a xyz-axis, see figure 4.1and
IntroSandy.as

Figure 4.1, xyz-axis

4.1. Keyboard Events
In the method loop3D we added an eventlistener to catch user input events. The moment a keyboard
key is pressed it will call the method keyPressed. The (global) operations are assigned to keyboard
buttons, see figure 4.2. In this method all operations are executed on the box variable. To change this
to camera, the only thing that needs to be done is change the variable of the box variable to the camera
variable ([variable_name.type_of_operation]).

The way method keypressed is implemented give the user the possibility of executing one operation a
time. In other words the object can either be moved/rotated in x or in y direction, and not in both
directions. In order to move the object in both directions I made use of an extra Actionscript class,
Key.as. This class is created by Senolcular and can be found in the IntroSandy project folder or at
http://www.kirupa.com/forum/showpost.php?p=2098269&postcount=319. It recreates the
functionality of Key.isDown of AS1 and AS2. In order to use it, it has to be initialized,
Key.initialize(stage). Now all keyboard events can assign using the following line of code:

if (Key.isDown(Keyboard.Up))
box.z += 6;

(appendix A). For this I created a three variables, xLine,
yLine and zLine, which are all of the type Line3D. Then
the materials are created (var matAttrYLine
MaterialAttributes = new MaterialAttributes(new
LineAttributes(1, 0xFFFF33, 1));) and assigned to the
object (yLine.appearance = new Appearance (new
ColorMaterial (0, 1 , matAttrYLine));).

http://sandy.googlecode.com/svn/trunk/sandy/as3/branches/3.0.1/docs/index.html
http://www.kirupa.com/forum/showpost.php?p=2098269&postcount=319

Figure 4.2, keyPressed

4.2. Mouse Events
The file IntroSandy.as contains two mouse events which executes two methods, one operating on the
box objects and one operating the camera object. In the method loop3D, four lines of code are added,
see figure 4.4. Every time the mouse button is clicked the method startCamera will be executed and
when the mouse cursor moves over the objects in the scene the method activate will be executed.
These two methods both contain a Boolean variable, active and start which changes either to true or
false. The methods mouseOver and moveCamera contain a if statement which are depended of the
Boolean methods. Everytime the variable active becomes true the box objects start to rotate and
everyime the start variable becomes true the camera will roll, see figure 4.5 and figure 4.6.

Figure 4.4, mouse eventlisteners

Figure 4.3, Initialize Key.as

Figure 4.5, Mouse methods

4.3. Controlling Camera Using Mouse and Keyboard Events
In the file, Fps.as, two methods are created to navigate through a 3D environment. The method
navigate uses Key.as to assign keyboard events to camera manipulations (see figure 4.6). The numbers
represent buttons on the keyboard. In this case; a, d, w and s. For other codes you can visit,
http://www.flash-creations.com/notes/asclass_key.php.

Figure 4.6, function navigate

The method mouseLook2 lets the camera pan and tilt. This is done on basis of the scene (stage.X and
stage.Y). By default you can’t view with the mouse, Boolean activate is set to false. This can be
toggled by pressing spacebar. It has to be noted that this method is not written properly, so viewing
doesn’t work very good, but it is a start.

2 The method is copied from a tutorial on http://www.flashsandy.org/tutorials/3.0/sandy_cs3_tut042.

Figure 4.6, scene

http://www.flash-creations.com/notes/asclass_key.php
http://www.flashsandy.org/tutorials/3.0/sandy_cs3_tut042

5. Materials and Textures

In Actionscript files Basics.as and Materials.as I used a 3d model created in 3D Studio Max 9 and
exported to an Actionscript class by using the exporter created by shirotokoro
(http://seraf.mediabox.fr/showcase/as3-geom-class-exporter-for-3ds-max-english/). On this website
you can find a tutorial on how to set up 3D Studio Max in order to be able to export the model. In my
project directory the actionscript classes, Max.as and Maze.as both contain a 3d object and it is located
in the same directory as the application file. Therefore you don’t have to import it. Sandy 3.0 contains
the following materials3:

BitmapMaterial - Displays a bitmap on the faces of a 3D shape.

CelShadeMaterial - Displays the faces of a 3D shape as a Cel Shaded Material (polygon
based cel shading).

ColorMaterial - Displays a color with on the faces of a 3D shape.

Material - ABSTRACT CLASS - base class for all materials.

MovieMaterial - Displays a MovieClip on the faces of a 3D shape.

OutlineMaterial - Displays the outline of a 3D shape in wireframe.

VideoMaterial - Displays a Flash video (FLV) on the faces of a 3D shape.

WireframeMaterial - Displays the faces of a 3D shape as a wire frame.

ZShaderMaterial - Displays a kind of Z shading of any object that this material is
applied

to.
In this paragraph we will review CelShadeMaterial, ColorMaterial, OutlineMaterial,
WireFrameMaterial and ZShaderMaterial. The BitmapMaterial will be reviewed in paragraph 5.2 and
the MovieMaterial and VideoMaterial in paragraph 5.3.

5.1 Sandy Materials and Attributes
In Chapter 2 was mentioned that these materials can be expanded with a number of attributes. In total
there are four attribute types4:

GouraurdAttributes - Realize a Gouraud shading on a material.

LightAttributes - Realize a flat shading effect when associated to a material.

LineAttributes - Holds all line attribute data for a material.

OutlineAttributes - Holds all outline attributes data for a material.
In the project folder you can find file Materials.as. This file contains three object with different
material attributes. By click on them you can see which attributes are used. If you want to stop the
animation press spacebar. Sandy 3.0 contains the following materials:

BitmapMaterial - Displays a bitmap on the faces of a 3D shape.

CelShadeMaterial - Displays the faces of a 3D shape as a cel shaded material (polygon
based cel shading).

ColorMaterial - Displays a color with on the faces of a 3D shape.

Material - ABSTRACT CLASS - base class for all materials.

MovieMaterial - Displays a MovieClip on the faces of a 3D shape.

OutlineMaterial - Displays the outline of a 3D shape in wireframe.

3 http://sandy.googlecode.com/svn/trunk/sandy/as3/branches/3.0.1/docs/index.html

4 http://sandy.googlecode.com/svn/trunk/sandy/as3/branches/3.0.1/docs/index.html

http://seraf.mediabox.fr/showcase/as3-geom-class-exporter-for-3ds-max-english/
http://sandy.googlecode.com/svn/trunk/sandy/as3/branches/3.0.1/docs/index.html
http://sandy.googlecode.com/svn/trunk/sandy/as3/branches/3.0.1/docs/index.html

VideoMaterial - Displays a Flash video (FLV) on the faces of a 3D shape.

WireframeMaterial - Displays the faces of a 3D shape as a wire frame.

ZShaderMaterial - Displays a kind of Z shading of any object that this material is
applied

to.
The BitmapMaterial will be reviewed in paragraph 5.2 and the MovieMaterial and VideoMaterial in
paragraph 5.3

The ColorMaterial is very basic material that is flat shaded and assigns a color to your object. Besides
a color number as attribute you can also adjust alpha channel, which controls the transparency of the
object.

5.2 Assigning textures
This section describes how to import external textures. For this I used a tutorial created by Petit,
http://www.petitpub.com/labs/media/flash/sandy3/materials2.shtml. It a very handy tutorial, even for
beginners. All steps taken are explained very deeply. The first step is to load the textures this is done
in the method importTextures() (see figure 5.1). In this method a Loader variable is created to which
the textures are assigned by doing a URLRequest.

Figure 5.1, importTextures

For the variables two methods are called importCompletedMovie() and importCompleted() (see figure
5.2), which assigns the texture to an object. The same method is called because it can identify the
images by their filename, name = name.substring(name.lastIndexOf("/")+1).split(".")[0]; .

http://www.petitpub.com/labs/media/flash/sandy3/materials2.shtml

Figure 5.2, importCompletedMovie and importCompleted

The variable app is a BitmapMaterial that points to a texture file. Textures can either be assigned to
the whole object or to certain polygons (faces of an object). In the method importCompleted I assigned
image file, realisticCar.png, to 4 of the 6 polygon. This done checking if the file name is correct and
then a for statement assigns the texture to selected polygons. Polygons[0] and polygon[1] have a
different texture. In the other method a movie file is received. To assign this to an object we need to
create a MovieClip variable, which will be a reference to the moviefile;

var movie = new MovieClip();
movie.addChild(target.loader.content);

5.3 Interacting with the Movie/Video Texture
The MovieMaterial used in section 5.1 can only handle a MovieClip. To create a material that can
handle Flash video (flv) files you need to assign them to a VideoMaterial. In the file Movies.as I
created a plane which displays different kinds of movies (both swf and flv files). The user can toggle
between the movies by clicking on F1 – F5. To assign flv files as a texture you need a different
method than the one used in importCompletedMovie(). I used the method zapper() (see figure 5.3). It

is copied from the tutorial by Petit5. The only difference is that it is expanded with toggle function to
show the different movie files. Furthermore I created a method toggleFLV to pause the *.flv file which
is projected onto the plane. I also tried to create a toggle method for a *.swf file, but I couldn’t seem to
get it to work.

Figure 5.3, zapper()

5 First we create a Video object, on which we will project the video. We pass this to the constructor of a new VideoMaterial,
which we use as material in an Appearance, and we set this to be appearance of our everlasting box. We create a
NetConnection and call the connect() method on it. Passing null makes the connection work locally. On the connection we
then create a NetStream, which we attach to the display object, our Video.

The NetStream needs a client, that listens for meta data events, such as specific flags in the stream, called cue points. The
listener also needs a meta data handler. To make it simple, it does nothing in this case. A disclaimer is prudent here - the set
up of the connection and stream is done as simply as possible. If we want the application to be robust, we need to catch
possible errors and do something about them. If one day you have the time and urge to become experts on video in Flash,
there are lots web sites and books to read.

We tell the net stream to start playing our FLV as soon as the local buffer is full. We are at the end of the tutorial document,
so we don't want the video to start playing immediately and reach the end, before our reader gets to see it, so we call the
pause method. The user will start and pause the video by clicking on it, so we reuse the toggleMovie handler from the
MovieMaterial application above.

6. Sprites

6.1 Sprite2D and Sprite3D
Sprites are two-dimensional images or animations. Sandy 3.0 support two kinds, Sprite2D and
Sprite3D. Sprite2D are normal sprites what we are used to. In other words the image stays the same no
matter the orientation of the camera.

A Sprite3D is actually a MovieCip containing a maximum of 360 frames. If the camera moves a
different frame will be shown, thus mimicking a 3D effect. In this example I used a 3D package (Maya
8.5) to create two models (see figure 6.1) and render out the different frames. When you have all the
frames you

Figure 6.1, 3D objects

must create a MovieClip out of them. For this you have different options, you can either use only
Adobe Flash or a combination of a video editing program like Adobe After Effects or Adobe Premiere
and Flash. To create a MovieClip start Adobe Flash and start a new *.fla scene. Import the frames
images or video file into the library and export it as a MovieClip (File>Export>Export Movie).
Remember to add the Sandy 3.0 library to Flash. Go to
http://www.flashsandy.org/tutorials/3.0/installing_sandy_flash_cs3

for a tutorial on how to set Sandy
for Flash CS3.

6.2 Flash and Sandy
In contrast to the other examples I used Adobe Flash CS3 instead of Adobe Flex 2 for the creation of
the Sprite3D scenes. For some odd reason I couldn’t get the file to properly load in Flex. Whereas the
same file did properly load in Flash. I posted the problem on a Sandy forum and am awaiting an
answer.

The folder SpritesProjects contain all project files used in this chapter.

Carsprite.as & Sprites.as - Actionscript logic

Carsprite.fla & Sprites.fla - Flash scenes

Carsprite.swf & Sprites.swf - Flash movies

Assets>car.swf & Skull.swf - 360° MovieClip
For the most part the actionscript files are the same as the ones used in Flex. Only differences are in
the methods Sprites(), Carsprites() and createSceene(). To use the 360° MovieClip files in the Flash
scene, they have to be uploaded. The class LoaderQueue does this for use. First a new LoaderQueue

http://www.flashsandy.org/tutorials/3.0/installing_sandy_flash_cs3

object is created. Then add() creates a new request for the object. When the add() action is completed
the method init() is called, which creates the scene. And finally the start() loads all resources in the
queue (see figure 6.2). In the method creatScene() a new Sprite3D object is created which will
reference to 360° MovieClip. Now the MovieClip(Sprite3D object) has the same features as normal
Sandy primitive.

Figure 6.2, LoaderQueue and Sprite3D

In the project Sprites I used a skull with which can be interacted by pressing the left and right cursor or
by moving the mouse over the object. In the other project I tried to mimic a driving car, but that didn’t
go that well. When you press forward or backward (cursor-up and –down) the car moves over the
wrong axis, On the other hand turning the car did work.

Figure 6.3, Sprites.swf and Carsprite.swf

7. Conclusion

For me Sandy 3D gave web development a whole new way to look at it. Especially since my focus
used to be only on 3D computer graphics. By providing users with these 3D libraries a lot of nice
possibilities come to hand. Certainly if it is combined with Flex. In this paper I only used Flex for
writing and compiling the Actionscript codes. For future studies I hope to combine Flex components
to the Sandy Actionscipt files to created a better feeling of interactivity and more functional
“webapps”. During studying Sandy I also found out that there are a lot more extensions to Actionscript
and thus Sandy, such as animation libraries (Tweener) and physics libraries (Ape). So the next step is
to have a look at these libraries to see what can be created in web3D.

8. Bibliography

http://sandy.googlecode.com/svn/trunk/sandy/as3/trunk/src/

http://tortoisesvn.net/

http://www.flashsandy.org/tutorials/3.0/

http://www.petitpub.com/labs/media/flash/sandy3/

http://sandy.googlecode.com/svn/trunk/sandy/as3/branches/3.0.1/docs/index.html

http://www.kirupa.com/forum/showpost.php?p=2098269&postcount=319

http://www.senocular.com/flash/actionscript.php

http://www.flash-creations.com/notes/asclass_key.php

http://seraf.mediabox.fr/showcase/as3-geom-class-exporter-for-3ds-max-english/

http://www.petitpub.com/labs/media/flash/sandy3/materials2.shtml

http://www.flashsandy.org/tutorials/3.0/installing_sandy_flash_cs3

http://sandy.googlecode.com/svn/trunk/sandy/as3/trunk/src/
http://tortoisesvn.net/
http://www.flashsandy.org/tutorials/3.0/
http://www.petitpub.com/labs/media/flash/sandy3/
http://sandy.googlecode.com/svn/trunk/sandy/as3/branches/3.0.1/docs/index.html
http://www.kirupa.com/forum/showpost.php?p=2098269&postcount=319
http://www.senocular.com/flash/actionscript.php
http://www.flash-creations.com/notes/asclass_key.php
http://seraf.mediabox.fr/showcase/as3-geom-class-exporter-for-3ds-max-english/
http://www.petitpub.com/labs/media/flash/sandy3/materials2.shtml
http://www.flashsandy.org/tutorials/3.0/installing_sandy_flash_cs3

This document was created with Win2PDF available at http://www.win2pdf.com.
The unregistered version of Win2PDF is for evaluation or non-commercial use only.
This page will not be added after purchasing Win2PDF.

http://www.win2pdf.com

