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Time-dependent density matrix functional theory can be formulated in terms of coupled-perturbed
response equations, in which a coupling matrix K��� features, analogous to the well-known
time-dependent density functional theory �TDDFT� case. An adiabatic approximation is needed to
solve these equations, but the adiabatic approximation is much more critical since there is not a good
“zero order” as in TDDFT, in which the virtual-occupied Kohn-Sham orbital energy differences
serve this purpose. We discuss a simple approximation proposed earlier which uses only results from
static calculations, called the static approximation �SA�, and show that it is deficient, since it leads
to zero response of the natural orbital occupation numbers. This leads to wrong behavior in the
�→0 limit. An improved adiabatic approximation �AA� is formulated. The two-electron system
affords a derivation of exact coupled-perturbed equations for the density matrix response, permitting
analytical comparison of the adiabatic approximation with the exact equations. For the two-electron
system also, the exact density matrix functional �2-matrix in terms of 1-matrix� is known, enabling
testing of the static and adiabatic approximations unobscured by approximations in the functional.
The two-electron HeH+ molecule shows that at the equilibrium distance, SA consistently
underestimates the frequency-dependent polarizability ����, the adiabatic TDDFT overestimates
����, while AA improves upon SA and, indeed, AA produces the correct ��0�. For stretched HeH+,
adiabatic density matrix functional theory corrects the too low first excitation energy and
overpolarization of adiabatic TDDFT methods and exhibits excellent agreement with high-quality
CCSD �“exact”� results over a large � range. © 2007 American Institute of Physics.
�DOI: 10.1063/1.2800016�

I. INTRODUCTION

In its static variant, density matrix functional theory
�DMFT�1–9 represents a promising many-electron theory,
which operates with functionals of the natural orbitals �NOs�
�i and NO occupations ni. The energy is considered in
DMFT as �implicit� functional of the one-particle reduced
density matrix �or 1-matrix� � �Refs. 2 and 10� and the ef-
fects of electron correlation are reflected in the functional
dependence of the energy on the NOs and the occupation
numbers, and of course the shape and values, respectively, of
the latter.

For response properties, the time-dependent variant of
density matrix functional theory �TDDMFT� is needed,
which was formulated in our previous work.11 The master
equation of TDDMFT is the equation of motion �EOM� for
the 1-matrix ��t� in the basis of the stationary natural spin-
orbitals �i �atomic units are used throughout the paper�,

i
���t�

�t
= �h�t�,��t�� + �W����;t� − W†����;t�� , �1.1�

which has been derived in Ref. 11 from the EOM for the
Heisenberg field operator.12 The first term in the right-hand
side of Eq. �1.1� is a commutator of the matrix of the time-
dependent one-electron operator ĥ�t�=− 1

2�2+vext�t� and
��t�. The matrix W in the square brackets is a contraction
over three indices of the two-electron integrals ��i� j ��k�l	
=
�i�x1�*� j�x2�*�k�x1��l�x2��r1−r2�−1dx1dx2 �xi��ri ,si�
denotes spatial and spin electron coordinates� with the time-
dependent two-particle reduced density matrix �2-matrix� �,
which is defined by

��x1,x2,x1�,x2�,t�

= N�N − 1� � ��x1,x2,x3, . . . ,xN,t�

��*�x1�,x2�,x3, . . . ,xN,t�dx3 ¯ dxN

= 

jklm

� jklm�t�� j
*�x1���k

*�x2���l�x1��m�x2� ,

and which is considered to be a functional of the 1-matrix,a�Electronic mail: baerends@few.vu.nl
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Wij�t� = 

klm

� jklm����;t���i�k��l�m	 . �1.2�

EOM �1.1� represents the full dynamics of ��t� so that it can
be partitioned11 into the EOM for the NOs ���t�,

∀��	 �n	�t� − n��t���i����t�� ��	�t�
�t

��
− h�	�t� −

W�	�t� − W	�
* �t�

n	�t� − n��t� � = 0, �1.3�

and the EOM for the NO occupations n��t�,

∀� i
�n��t�

�t
= W���t� − W��

* �t� . �1.4�

Here and throughout the paper, we use the Greek indices
�, 	, etc., for the matrices in the basis of the time-dependent
NOs ���t� and the Latin indices i, j, etc., for the matrices in
the basis of the stationary NOs �i �the expression of the
matrix W in the time-dependent basis is completely analo-
gous to Eq. �1.2�; see Sec. III�.

The �linear� response form of TDDMFT �TDDMFRT�,
which is most useful for chemical applications, was also for-
mulated in Ref. 11. In TDDMFRT, a frequency-dependent
response 
�ij��� of the 1-matrix to an external perturbation

vij

ext��� of frequency � is produced. Inserting the perturbed
1-matrix �ij�t�=
ijni+
�ij�t� and the matrix elements vij

ext�t�
=vij

ext+
vij
ext�t� into Eq. �1.1�, keeping only the first-order per-

turbation terms, and taking the Fourier transform of the re-
sultant expression, one obtains the following coupled-
perturbed equations:

∀ij 

kl

��
ik
 jl − hik
 jl + 
ikhlj − Kijkl����
�kl���

= �nj − ni�
	ij
ext��� . �1.5�

The 1-matrix changes 
�ij��� and 
�kl��� are coupled in Eq.
�1.5� with the frequency-dependent coupling matrix K���
�see the next section for its definition�. Note, that in Ref. 11
an alternative to Eq. �1.1� form of EOM was perturbed,
which produces slightly different response equations that are
entirely equivalent to Eq. �1.5�. For electron excitation ener-
gies �q, the eigenequation

∀ij 

kl

�hik
 jl − 
ikhlj + Kijkl��q��
�kl = �q
�ij �1.6�

follows from Eq. �1.5�.
TDDMFRT as given in Eq. �1.6� differs from the popular

time-dependent density functional response �TDDFT�
theory13–16 in one crucial aspect. In the latter theory, the lead-
ing diagonal terms in the matrix in square brackets are the
differences ��a−�i� of the energies of the occupied and vir-
tual Kohn-Sham orbitals �the dimension of the matrix is
noccnvirt�noccnvirt�. These differences provide rather accurate
zero order approximations to the excitation energies �q.17

The coupling matrix K��� makes relatively small, though by

no means negligible, modifications to these zero order val-
ues. The structure of the total matrix in TDDMFT is more
involved. All �fractionally occupied� NOs are involved in the
eigenvalue equations �1.6� �the dimension is, in principle,
m2�m2, if m=nocc+nvirt is the total number of basis func-
tions�, and the diagonal elements do not have such a clear
physical interpretation. The role of the coupling matrix K���
can be expected to be much more critical. Accurate evalua-
tion of the frequency-dependent coupling matrix, which, in
principle, accounts for all dynamical correlation “memory”
effects, is at present not feasible in both TDDFT and
TDDMFT. Because of this, virtually all applications of TD-
DFT use the so-called adiabatic approximation, most often in
its simple local density �adiabatic local density approxima-
tion �ALDA�� form, with a �-independent �static� K. In
TDDMFT, we are also forced to apply adiabatic approxima-
tions.

It is the purpose of this paper to investigate the adiabatic
approximation in density matrix functional theory
�ADMFT�. We use two-electron systems in this work, since
the required functional ���� �see Eq. �1.2�� is available in
that case. We do not have to resort to approximations for the
functional6,8,9,18–21 which would make it difficult to distin-
guish effects of the adiabatic approximation from deficien-
cies of the functional. In Sec. II, the matrix form of the
coupled-perturbed TDDMFRT equations is presented and a
definition of the exact frequency-dependent coupling matrix
K��� is given. In Sec. III, the most straightforward adiabatic
approximation to K���, which was already proposed in Ref.
11 and which we denote static approximation �SA�, is
analyzed. It is shown that the SA is deficient, since it leads
to fixed NO occupations, neglecting the dynamical response
of these quantities. This leads to an incorrect static limit
���→0� of the frequency-dependent polarizability, as will
be demonstrated by calculations for the prototype two-
electron HeH+ molecule. To remedy this deficiency, the SA
has to be augmented with response equations for the occu-
pation numbers, which are obtained within the adiabatic ap-
proximation �AA� in Sec. IV. In AA, the dynamical change
of the NO occupations is considered as an instant response to
the perturbation 
v=
vext�t� inserted in the variational equa-
tions for the ni of the static DMFT. The physical meaning of
the adiabatic approximation can be further assessed by a
comparison to exact dynamical equations for the relevant
quantities �the density matrix elements, including the diago-
nal elements which are the occupation numbers in the NO
basis�. These exact equations can be obtained for two-
electron systems, as will be derived in Sec. V. It is well
known from the results of Löwdin and Shull1 that the con-
figuration interaction �CI� expansion of the fully correlated
wave function of a singlet two-electron system assumes a
simple form in the NO basis. The CI expansion coefficients
in that case have a simple relation to one-electron density
matrix elements, and the full time-dependent Schrödinger
equation can be cast into the form of dynamical equations for
the density matrix elements. This affords a comparison of the
exact solution for the density matrix dynamics to the various
approximations. Comparative DMFT calculations of the
HeH+ polarizability are performed in Sec. VI. The SA and
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AA ���� values are compared with those calculated with
approximate TDDFT methods, employing either the LDA
Kohn-Sham potential or the statistical average of �different�
orbital potentials �SAOP�22 and the ALDA for the exchange-
correlation kernel throughout. At the equilibrium distance,
SA consistently underestimates ����, the adiabatic TDDFT
overestimates it, while AA significantly improves upon SA.
For the stretched HeH+, both SA and AA DMFT correct the
overpolarization and the too low first excitation energies of
the LDA-ALDA and SAOP-ALDA.

II. TIME-DEPENDENT DENSITY MATRIX FUNCTIONAL
RESPONSE THEORY

Just as all electron-electron interaction terms in the
EOMs �1.1�, �1.3�, and �1.4�, the exact frequency-dependent
coupling matrix K��� in the TDDMFRT equation �1.5� is
also defined through the matrix W,

Kijkl���

= � � e−i��t−t��
�Wij����;t� − Wji����;t�*�

�kl�t��

�
��t�=��0�

�d�t − t�� . �2.1�

The functional derivative in Eq. �2.1� is the variation

�Wij���� ; t�−Wji���� ; t�*� at the time t in response to a
variation of the argument 
�kl�t�� at the time t�, and the
resultant functional is evaluated at the stationary 1-matrix
��0�. It can be Fourier transformed on the assumption that it
only depends on the time difference t-t�. Equation �1.5� with
K��� of Eq. �2.1� can be transformed to a set of “off-
diagonal” equations for the Fourier transforms Xkl

R ��� and
Xkl

I ��� of the real and imaginary �multiplied by i� parts of the
changes of off-diagonal elements 
�kl�t�,

∀k�l Xkl
R ��� = F�Re�
�kl����� , �2.2�

∀k�l Xkl
I ��� = F�i Im�
�kl����� , �2.3�

where F indicates a Fourier transform, and a “diagonal”
equation for the Fourier transformed changes of the diagonal
elements 
�kk�t�, which are real since � is a Hermitian ma-
trix,

Zkk
R ��� = F�
�kk���� = 
nk��� . �2.4�

The transformed equations are the off-diagonal equations

∀i�j �Xij
R��� +

1

2

k�l

�Aijkl��� + Aijlk��� + Ajikl���

+ Ajilk����Xkl
R ��� +

1

2

k�l

�Aijkl��� − Aijlk���

+ Ajikl��� − Ajilk����Xkl
I ��� +

1

2

k

�Aijkk���

+ Ajikk����Zkk
R ��� = Vij

I ��� , �2.5�

∀i�j �Xij
I ��� +

1

2

k�l

�Aijkl��� + Aijlk��� − Ajikl���

− Ajilk����Xkl
R ��� +

1

2

k�l

�Aijkl��� − Aijlk���

− Ajikl��� + Ajilk����Xkl
I ��� +

1

2

k

�Aijkk���

− Ajikk����Zkk
R ��� = Vij

R��� , �2.6�

and the diagonal equation

∀i �Zii
R��� + 


k�l

�Aiikl��� + Aiilk����Xkl
R ���

+ 

k�l

�Aiikl��� − Aiilk����Xkl
I ���

+ 

k

Aiikk���Zkk
R ���

= Vii
I ��� . �2.7�

VR��� and VI��� are the Fourier transforms of the real and
imaginary �multiplied by i� parts of the external perturbation
matrix weighed with occupation number differences

Vij
R��� = �nj − ni�

1
2 �
vij

ext��� + 
v ji
ext���� , �2.8�

Vij
I ��� = �nj − ni�

1
2 �
vij

ext��� − 
v ji
ext���� . �2.9�

Defining the matrices A��� and B��� which include off-
diagonal elements of the coupling matrix,

Aijkl��� = 
ikhlj − hik
 jl − Kijkl��� ,

�2.10�
Bijkl��� = Aijlk��� ,

we introduce the matrices A+��� and A−��� as well as B+���
and B−���,

Aijkl
± ��� = 1

2 �Aijkl��� ± Ajilk���� ,

�2.11�
Bijkl

± ��� = Aijlk
± ��� .

The set of linear equations �2.5�–�2.7� can be brought to the
matrix form
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�
� + A+��� + B+��� A−��� − B−��� A+���

A−��� + B−��� � + A+��� − B+��� A−���

2A+��� 2A−��� � + 2A+���
��

XR���

XI���

ZR���
� =�

VI���

VR���

0
� . �2.12�

Since the functional dependence of the matrix W in Eq. �2.1�
on the time-dependent density matrix is not known, the de-
rivative in the integrand cannot be taken and the Fourier
transform to obtain the frequency-dependent coupling matrix
K��� of Eq. �2.1� is not feasible at present. Therefore, for
practical TDDMFRT applications, adiabatic approximations
are needed and are developed in the following sections.

III. STATIC APPROXIMATION

In conventional adiabatic approximations, the explicit �
dependence of the diagonal terms of matrix equation �2.12�
is retained, while the �-dependent K���, i.e., the related ma-
trices A��� and B��� in Eq. �2.10�, are approximated with
frequency-independent ones. If we approximate the coupling
matrix K��� by some frequency-independent approximation
and choose real basis functions, the general symmetry rela-
tion for the A��� matrix,

Aijkl��� = − Ajilk
* �− �� , �3.1�

simplifies to

Aijkl = − Ajilk. �3.2�

Using this symmetry relation in the definitions for A��� and
B��� �Eq. �2.10�� and A± ��� and B± ��� �Eq. �2.11��, we
have

Aijkl
+ = Bijkl

+ = 0,

Aijkl
− = Aijkl, �3.3�

Bijkl
− = Bijkl = Aijlk.

Therefore, matrix equation �2.12� is simplified in adiabatic
approximations to

�
� A − B 0

A + B � D

0 2G �
��

XR���

XI���

ZR���
� =�

VI���

VR���

0
� , �3.4�

where we introduced the following matrices:

∀i�j Dijkk = Aijkk,

�3.5�
∀k�l Giikl = Aiikl.

We now start formulation of ADMFT with the partitioning of
K��� of Eq. �2.1� into a static one-electron part Koe and a
frequency-dependent electron-electron interaction part
Kee���,

K��� = Koe + Kee��� . �3.6�

We accomplish this partitioning by representing Wij in Eq.
�2.1� as a unitary transform of the matrix W�	 in the time-
dependent basis,

Kijkl��� = � � e−i��t−t��

�


�	
Ui�����;t��W����;t� − W†����;t���	Uj	

* ����;t��

�kl�t��

�
��t�=��0�

d�t − t�� , �3.7�

with

W�	�t� = 


��

�	
������;t�����t��
�t�����t����t�	 �3.8�

and the orbital evolution matrix U,

���x,t� = 

i

Ui��t��i�x� , �3.9�

which connects, by unitary transformation, the time-
independent NOs with the time-dependent ones, the latter
being conventionally labeled with Greek indices.

Equation �3.7� provides the partitioning in Eq. �3.6� for
K��� with the matrices Koe,

Kijkl
oe = � � e−i��t−t���


�	

�W�	�t� − W	��t�*�

�
��Ui�����;t�Uj	

* ����;t��
��kl�t��

��
��t�=��0�

�d�t − t�� , �3.10�

and Kee���,
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Kijkl
ee ��� = � � e−i��t−t���


�	

Ui��t�Uj	
* �t�

�
��W�	����;t� − W	�����;t�*�

��kl�t��
��

��t�=��0�

�d�t − t�� . �3.11�

Due to the locality in time of the derivative
�Ui��t� /��kl�t�� �see the Appendix�, matrix �3.10� is evalu-
ated explicitly. Using a variational relation between the one-
and two-electron static matrices h and W, Koe can be ex-
pressed through the elements of the former matrix �see the
Appendix for the corresponding formulas�.

It is the frequency-dependent matrix Kee��� for which
the adiabatic approximation should be used. This means, in
principle, taking the limit �→0 of Eq. �3.11�. However, this
operation is not feasible, since, as pointed out at the end of
the previous section, K��� cannot be obtained. Because of
this, we first take a simpler route, according to which Eq.
�3.11� is approximated with the derivative with respect to the
static 1-matrix of a static matrix W, which is defined analo-
gous to Eq. �1.2� as functional of the 1-matrix,

Kijkl
ee ��� � Kijkl

ee = � ��Wij��� − Wji���*�
��kl

�
�=��0�

with Wij = 

klm

� jklm�����i�k��l�m	 . �3.12�

We call this the static approximation. It is, in fact, analogous
to the what is usually called the adiabatic approximation in
TDDFT, where the static derivative 
2Exc /
�2 is commonly
used.

The sum of Eqs. �3.10� and �3.12� constitutes the cou-
pling matrix K of SA,

K = Koe + Kee. �3.13�

A characteristic feature of the SA is that the subdiagonal
elements Kiikl of K vanish in this approximation,

Kiikl
ee =

��Wii��� − Wii���*�
��kl

= 0, �3.14�

due to the vanishing numerator of Eq. �3.12�. That the nu-
merator vanishes is evident in the usual case of real static
quantities �NOs and ����� and therefore real static matrix W.
In the general case, one can use the expression for Wij as the
orbital derivative of the electron-electron interaction energy
functional Eee���,

Wij = 

klm

� jklm�����i�k��l�m	 =� 
Eee���

� j�x1�*�i�x1�*dx1,

�3.15�

Eee��� =
1

2
� �����;x1,x2�

�r1 − r2�
dx1dx2, �3.16�

which was established in Ref. 23. This leads to a vanishing
numerator,

Wii��� − Wii���* =� 
Eee���

�i�x1�*�i�x1�*dx1

−� 
Eee���

�i�x1�

�i�x1�dx1

= ni� 
Eee���

��x1�,x1�

�i�x1���i�x1�*dx1dx1�

− ni� 
Eee���

��x1,x1��

�i�x1��
*�i�x1�dx1dx�

= 0. �3.17�

With Eq. �3.14�, the matrix G of Eq. �3.5� also vanishes in
the SA, Giikl=0, since another component of Kiikl, the ele-
ment Kiikl

oe �see Eq. �A7�� cancels the one-electron terms in
Giikl=Aiikl.

Since Eqs. �3.4� with G=0 lead to �ZR=0, the SA leads
to zero changes of the NO occupations. With ZR=0, the re-
sponse SA equations may be reduced to

� � A − B

A + B �
��XR���

XI���
� = �VI���

VR���
� , �3.18�

where the static matrices A and B are obtained according to
Eq. �2.10� from SA coupling matrix �3.12�. Thus, SA pro-
duces a deficient 1-matrix response 
����, in which changes
of the NO occupations Zii

R��� are neglected. This deficiency,
although not very large, is clearly confirmed numerically
with Fig. 1�a�, which presents the frequency-dependent po-
larizability ���� calculated with SA for the prototype two-
electron molecule HeH+ �for the details of the calculations,
see Sec. VI�. One can see in Fig. 1�a�, that SA underesti-
mates ���� compared to the full response coupled-cluster
singles and doubles �CCSD� calculations. Moreover, SA does
not reproduce the accurate static limit ��0�, contrary to what
one would expect from a correct adiabatic approximation.

An obvious conclusion from the present results is that
the dynamic coupling matrix Kee��� of Eq. �3.11� does not
coincide in the limit �→0 with the chosen approximation,
the static Kee of Eq. �3.12�. This leads to the wrong �→0
limit for the polarizability. The fact that a similar approxima-
tion in “adiabatic” TDDFT does not lead to a wrong limiting
behavior is perhaps related to the fact that in the present case,
the erroneous behavior has been traced to the wrong behav-
ior �zero response� of the occupation numbers, while in TD-
DFT the occupation numbers are always fixed according to
the Kohn-Sham model.

In the next section, an adiabatic approximation with a
nonzero Zii

R��� will be formulated, which uses the equations
of the response DMFT in the case of a static perturbation.

IV. ADIABATIC APPROXIMATION

As was demonstrated in the previous section, the SA is
deficient since it leads to zero change of the NO occupations.
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In the spirit of adiabatic approximations, we may rather take
the opposite view that the occupation numbers should re-
spond instantaneously to a change in the external field. So
we take as starting point the static response of the occupation
numbers to a perturbation, as derived in Ref. 24, and calcu-
late the responses 
ni�t� at time t as the responses in the
time-independent theory that would result from a static per-
turbation 
vext�r� equal to 
vext�r , t�. The equations which
determine the static response 
ni�Zii

R of the NO occupations
ni in DMFT have been derived in Ref. 24 from the stationary
variational equations for ni,

∀i hii +
�Eee���

�ni
= � , �4.1�

where � is the Lagrange multiplier �chemical potential�. In-
serting the perturbed static quantities vext+
vext, �k+
�k,
nk+Zkk

R , �+
� into Eq. �4.1� and keeping only first-order
terms, one obtains

∀i 
vii
ext + �
�i�ĥ��i	 + ��i�ĥ�
�i	

+ 

k

���
Eee���/
�k�
�k	
�ni

+ 

k

���
Eee���/
�k
*�
�k

*	
�ni

+ 

k

QikZkk
R = 
� . �4.2�

Inserting into Eq. �4.2� the orbital expansion of 
�k, 
�k

=
l�k
Ulk�l, using relation �A3�, and employing definitions
�3.5� and �3.12� for the matrices D, K, and W, we obtain
from Eq. �4.2� the following equations:

∀i − 2

k�l

�nl − nk�−1DkliiXkl
R + 


k

QikZkk
R = − 
vii

ext + 
� ,

�4.3�

where 
� is the change of the Lagrange multiplier �chemical
potential� of the static variational equations for ni and Q is
the matrix of the second partial derivatives of the electron-
electron interaction energy functional �Eq. �3.16�� with re-
spect to ni,

Qij =
�2Eee���
�ni�nj

. �4.4�

So from Eq. �4.3�, we obtain the instant response ZR�t�
to the change of the potential 
vext�t� as well as to the re-
sponses XR�t� of the off-diagonal 1-matrix elements on the
assumption that the potential changes so slowly that these
responses adiabatically follow the potential, i.e., are equal to
those for a static change of the potential. After Fourier trans-
formation, Eq. �4.3� becomes an equation for the ZR��� and
XR���, which can be used instead of the deficient Eq. �2.7�
�or rather its static approximation, the third of Eqs. �3.4�� to
complete the set of equations �2.5� and �2.6�, i.e., the first
two equations of Eqs. �3.4�. The resultant set of coupled-
perturbed equations,

∀i�j 

k�l

��
ki
ljXkl
R ��� + �Aijkl − Bijkl�Xkl

I ���� = Vij
I ��� ,

�4.5�

∀i�j 

k�l

��
ki
ljXkl
I ��� + �Aijkl + Bijkl�Xkl

R ����

+ 

k

DijkkZkk
R ��� = Vij

R��� , �4.6�

∀i − 2

k�l

�nl − nk�−1Diikl
T Xkl

R ��� + 

k

QikZkk
R ���

= − 
vii
ext��� + 
���� , �4.7�

represents what we call the adiabatic approximation. The

FIG. 1. Comparison of the longitudinal frequency-dependent polarizabilities
���� �a.u.� of the HeH+ molecule calculated with CCSD �solid line�, with
TDDMFT in the static approximation �SA� �course grained dotted�, and with
the adiabatic approximation �AA� �fine grained dotted�, as well as with
TDDFT, in the LDA-ALDA �dashed line� and the SAOP-ALDA �dash-dot
line� variants. �a� At the equilibrium bond distance Re=1.43 bohrs and �b� at
R=5.0 Bohr.
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change of the chemical potential 
���� is determined from
the sum-rule condition



k

Zkk
R ��� = 0. �4.8�

Equations �4.5� and �4.6� are identical to the first two
equations of Eq. �3.4�. We determine the matrices A, B, and
D as in the SA with the static coupling matrix K of Eq.
�3.12� inserted in the equations for A, B, and D, i.e., they are
� independent. In this way, the AA reproduces the correct
static perturbation theory results of TDDMFRT in the limit
of �→0, as can be seen as follows. At �=0, with VI=0, Eq.
�4.5� yields XI=0, so only the real parts XR and ZR of the
1-matrix response remain. Equation �4.6� turns to the first
equation of the static response DMFT,24

∀i�j 

k�l

�Aijkl + Bijkl�Xkl
R + 


k

DijkkZkk
R = Vij

R , �4.9�

while Eq. �4.7� becomes just Eq. �4.3�, which is the second
equation of the static perturbation theory24 from Eq. �4.1�.
The correct static limiting point �=0 is therefore obtained.

The matrix form of the AA equations can be written as

�
� A − B 0

A + B � D

− 2D̃T 0 Q
��

XR���

XI���

ZR���
� = �

VI���

VR���

ṼR���
� , �4.10�

where

Ṽij
R��� = 
ij�− 
vii

ext��� + 
����� �4.11�

and D̃iikl
T = �nl−nk�−1Diikl

T . The quality of the AA will be as-
sessed in Sec. VI.

V. EQUATION OF MOTION FOR THE NO-CI
EXPANSION COEFFICIENTS OF THE TWO-ELECTRON
WAVE FUNCTION

In order to further assess the adiabatic approximations
for the density matrix dynamics, we derive in this section
exact dynamical equations for two-electron systems. Two-
electron systems play an outstanding role in DMFT. They
have been used to develop approximate density matrix
functionals.8,9,20 The basis for these developments has been
the finding by Löwdin and Shull1 that for these systems, the
CI expansion of the symmetrical spatial part ��r1 ,r2� of the
total wave function of a closed-shell system,

��x1,x2� =
��s1���s2� − ��s1���s2�

�2
��r1,r2� , �5.1�

reduces to just a summation over doubly excited configura-
tions when NOs are used as an expansion basis,

��r1,r2� = 

i

Ci�i�r1��i�r2� . �5.2�

Wave function normalization yields 
i�Ci�2=1. Note that
while in the general N-electron case of the previous sections
natural spin-orbitals �i�x� with the occupations 0�ni�1 are
used as a basis, in the two-electron case considered in this

section the spatial NOs �i�r� of a closed-shell system �0
�ni�2� are employed. When the wave function is time de-
pendent, the Löwdin-Shull expansion can be carried out at
any time t, using the NOs ���r , t� that diagonalize the den-
sity matrix ��t�,

��r1,r2,t� = 

�

C��t����r1,t����r2,t�

= 

kl

Ckl�t��k�r1��l�r2�, 

kl

�Ckl�2 = 1, �5.3�

where Ckl�t� are obtained from the unitary transformation
���x , t�=
iUi��t��i�x� to the time-independent �t=0� NOs
�i�x�, yielding Ckl�t�=
�Uk��t�C��t�Ul��t�. In keeping with
the symmetry of ��r1 ,r2�, one has Ckl�t�=Clk�t�.

The spatial part of the two-particle reduced density ma-
trix in the two-electron case reduces to

��r1,r2;r1�,r2�;t� = 2��r1,r2,t��*�r1�,r2�,t�

= 2 

ij,mn

Cij�t�Cmn
* �t��i�r1�� j�r2�

��m
*�r1���n

*�r2�� , �5.4�

i.e., �ijmn�t�=2Cij�t�Cmn
* �t�, and the spatial part of the

1-matrix is

��r1,r1�,t� =� ��r1,r2;r1�,r2,t�dr2

= 2 

ij,mn

Cij�t�Cmn
* �t��i�r1��m

*�r1��
nj

= 

im

�

j

2Cij�t�Cmj
* �t���i�r1��m

*�r1�� , �5.5�

i.e., �im�t�=
 j2Cij�t�Cmj
* �t� or �=2CC†.

At t=0, the expansions simplify since Cij�0�=Ci
ij �cf.
Eq. �5.1��, i.e., ��r1 ,r1��=2
i�Ci�2�i�r1��i

*�r1��. Using the
natural orbital expansion at t=0, ��r1 ,r1��=
ini�i

*�r1���i�r1�,
one obtains Ci= f i�ni /2, with f i a phase factor, �f i�=1.

Comparing the general expansion of the 2-matrix � in
the time-independent case in a general orbital basis,

��r1,r2;r1�,r2�� = 

ijkl

�ijkl�i
*�r1��� j

*�r2���k�r1��l�r2� , �5.6�

with the expansion in NOs, which simplifies from Eq. �5.4�
to ��r1 ,r2 ;r1�r2��=2
i,mCm

*Ci�m
*�r1���m

*�r2���i�r1��i�r2�, we
see that in the two-electron case the elements of the 2-matrix
in NO basis become at t=0 �ijkl=2Ci

*Ck
ij
kl

= f i
*fk�nink
ij
kl.

We first obtain the EOM for the coefficients Ckl�t� from
the time-dependent Schrödinger equation,

i
���r1,r2,t�

�t
= Ĥ��r1,r2,t� , �5.7�

with the time-dependent Hamiltonian Ĥ= ĥ1�t�+ ĥ2�t�+r12
−1.

Substituting the wave function expansion of Eq. �5.2� into
Eq. �5.7�, we obtain by multiplying with �k�r1�*�l�r2�* and
integrating over r1 and r2 the EOM for Ckl�t�,
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i
�Ckl�t�

�t
= 


i

Cil�t�hki�t� + 

j

Ckj�t�hlj�t�

+ 

ij

Cij�t���k�l��i� j	 . �5.8�

The equations of motion for the �ij�t� can be derived from
Eqs. �5.5� and �5.8�,

i
��kl�t�

�t
= i2


j
� �Ckj�t�

�t
Clj�t�* + Ckj�t�

�Clj�t�*

�t
�

= 

j

�hkj� jl�t� − �kj�t�hjl� + 

jmn

�2Clm�t�*Cnj�t�

���k�m��n� j	 − 2Ckm�t�Cnj�t�*��n� j��l�m	� .

�5.9�

At this point, we note that there are, in the general
N-electron case, many more degrees of freedom for the vari-
ables of the full time-dependent wave function than for those
of the 1-matrix. Since the latter is Hermitian, the imaginary
parts of the diagonal elements are zero, so that there are two
variables Re��kl� and Im��kl�, k� l, and one per diagonal
element �ii=Re��ii�, m2 in total where m is the dimension of
the basis. In the two-electron case, there are, in contrast to
the many-electron case, only a limited number of additional
degrees of freedom for the full-CI wave function in a finite
basis. There are as many degrees of freedom for the off-
diagonal expansion coefficients Ckl as there are for the off-
diagonal elements �kl, but for the diagonal Cii the imaginary
parts are in general not zero, yielding m additional degrees of
freedom.

In order to obtain a set of equations equivalent to the
m2+m equation �5.8� for the real and imaginary parts of the
Ckl, i.e., for the full wave function dynamics, we augment the
m2 equation �5.9�, which includes the ones for the real diag-
onal elements ��kk�t� /�t=2
 j��Ckj�t� /�t�Ckj�t�*+2
 jCkj�t�
���Ckj�t�* /�t�, with the set of m derivatives for the corre-
sponding imaginary quantities

2i�

j

Ckj�t�*�Ckj�t�
�t

− 

j

Ckj�t�
�Ckj�t�*

�t �
= 


j

�� jk�t�hkj + �kj�t�hjk� + 4

jm

Ckm�t�*Ckj�t�hmj

+ 2

jmn

�Ckm�t�*Cnj�t���k�m��n� j	

+ Ckm�t�Cnj�t�*��n� j��k�m	� . �5.10�

We now want to use EOMs �5.9� and �5.10� to derive
coupled-perturbed equations for the response of the NO ex-
pansion coefficients, or rather the derived quantities, the
1-matrix elements and the imaginary quantity of Eq. �5.10�,
to a time-dependent perturbation of the external potential. So
we consider the coefficient Ckl�t�=Ckl

�0��t�+
Ckl�t�, which is
perturbed with respect to the Ckl

�0��t� of the stationary situa-
tion �time-independent potential vext� in response to an exter-
nal potential variation 
vext�t�. The Ckl

�0��t� follow from the
fact that for a time-independent Hamiltonian, Eq. �5.7� can

be trivially solved by the product of an eigenstate of Ĥ obey-
ing Ĥ��r1 ,r2�=E��r1 ,r2� �in particular, for the ground
state� and a time-dependent phase factor,

��r1,r2,t� = e−iEt��r1,r2� . �5.11�

So from Eq. �5.2�, ��r1 ,r2 , t�=e−iEt
kCk�k�r1��k�r2�, and
by comparing to the expansion of ��r1 ,r2 , t� in the general
case, ��r1 ,r2 , t�=
klCkl�t��k�r1��l�r2�, we find for Ckl

�0��t� in
the stationary case

Ckl
�0��t� = 
kle

−iEtCk = 
kle
−iEtfk

�nk/2, �5.12�

where �fk�=1. Here, the total energy E is

E = 

k

nkhkk + Eee, �5.13�

where Eee is the electron-electron repulsion energy,

Eee = 

ij

CiCj��i�i�� j� j	

= 

ij

f i�ni

2
f j�nj

2
��i�i�� j� j	 . �5.14�

In accordance with Eq. �5.11�, we slightly redefine 
Ckl�t� so
that the phase factor e−iEt is made explicit in both the Ckl

0 �t�
of the stationary case and in the perturbed part of the coef-
ficients,

Ckl�t� = e−iEt�
klfk
�nk/2 + 
Ckl�t�� . �5.15�

The 1-matrix response 
�kl�t� is


�kl�t� = 
�2C�t�C�t�†�kl

= 2
Ckl�t�Cl + 2Ck
Ckl
† �t�

= 2
Ckl�t�f l
�nl/2 + 2fk

�nk/2
Ckl
† �t� . �5.16�

In order to obtain the equations for the real and imagi-
nary parts of the responses 
�kl, to the perturbation 
vkl

ext���,
the perturbed Ckl�t� of Eq. �5.15� and the perturbed vkl

ext�t� are
inserted into Eqs. �5.9� and �5.10�, the first-order terms are
collected, and the necessary additions and subtractions are
made to obtain the equations for 
�kl±
�kl

*. A Fourier trans-
formation of the resultant equations is performed, and the
1-matrix responses Xkl

R ��� and Xkl
I ��� of Eqs. �2.2� and �2.3�

and Zkk
R ��� are used which appear in the SA and AA equa-

tions, and which follow for two-electron systems from Eq.
�5.16�,

∀k�l Xkl
R ��� = 2� fk

�nk/2 + f l
�nl/2�
Ckl

R ��� , �5.17�

∀k�l Xkl
I ��� = i2
Ckl

I ���� f l
�nl/2 − fk

�nk/2� , �5.18�

∀k Zkk
R ��� = 2fk

�nk/2
Ckk
R ��� . �5.19�

The above mentioned additional m degrees of freedom of the
wave function are taken into account with the additional
variables

∀k Zkk
I ��� = i
Ckk

I ��� . �5.20�

The exact coupled-perturbed response equations are now
obtained, with off-diagonal equations
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∀i�j 

k�l

��
ki
ljXkl
R ��� + �Aijkl − Bijkl�Xkl

I ����

− 2

k

MijkkZkk
I ��� = Vij

I ��� , �5.21�

∀i�j 

k�l

��
ki
ljXkl
I ��� + �Aijkl + Bijkl�Xkl

R ����

+ 

k

DijkkZkk
R ��� = Vij

R��� , �5.22�

as well as with diagonal equations

∀i �Zii
R��� + 2


k�l

GiiklXkl
I ��� − 2


k

MiikkZkk
I ��� = 0, �5.23�

∀i − 2ni

k�l

D̃iikl
T Xkl

R ��� + ni

k

QikZkk
R ��� − � 4f i

�ni/2Zii
I ���

= − 2ni
vii
ext��� . �5.24�

We emphasize that in Eqs. �5.21�–�5.24�, the static
��-independent� coupling matrices A, B, D, and G enter.
They are obtained according to Eqs. �2.10� and �3.5� from
the static matrix K, which is evaluated according to Eq.
�3.12� with

Kijkl
ee =

��Wij��� − Wji���*�
��kl

. �5.25�

The static 2-matrix in the two-electron case has been ob-
tained as �see lines below Eq. �5.6��

� jklm = f j
*f l

�njnl
 jk
lm, �5.26�

and the matrix W is accordingly �cf. Eq. �1.2��

Wij = 

klm

� jklm��i�k��l�m	 = 

l

f j
*f l

�njnl��i� j��l�l	 .

�5.27�

Differentiation of the W elements accoring to Eq. �5.25�
leads to the explicit expression of Kijkl in the two-electron
case given in the Appendix �Eq. �A9� as well as Eq. �A10�
for the matrix M in Eq. �5.21��. In turn, the matrix Q in Eq.
�5.24� is obtained with the differentiation of the energy Eee of
Eq. �5.14� according to Eq. �4.4�.

So in the two-electron case, we are able to obtain the
exact response equations �5.21�–�5.24� in a form that affords
a direct comparison to the SA and AA. It is gratifying indeed
that the exact response equations, without any adiabatic ap-
proximation, can be cast in a form which resembles in many
respects the equations resulting from the static and adiabatic
approximations. It is still not straightforward to obtain from
the exact equations a physical understanding of these ap-
proximations, or deduce alternative �improved� adiabatic ap-
proximations. Indeed, the approximations that have to be
made to obtain from the exact equations �5.21�–�5.24� the
static or adiabatic ones do not appear to be minor. The SA
Eqs. �3.18� are seen to arise by removal of the diagonal equa-
tions �5.23� and �5.24� and neglecting the last terms in the
left-hand sides of Eqs. �5.21� and �5.22�. As for the AA equa-
tions, they lack the MZI term in the first equation

�Eq. �5.21�→Eq. �4.5�� and the complete third equation �Eq.
�5.23��. As for the comparison of Eq. �5.24� to the third AA
equation �Eq. �4.7��, a numerical analysis of the exact equa-
tions �5.21�–�5.24� for the prototype two-electron system
HeH+ shows that the product �Zii

I ��� in Eq. �5.24� tends to a
constant in the static limit, �Zii

I ���→�i at �→0. With this,
Eq. �5.24� becomes equivalent to AA equation �4.7� if �i

=
�f i�ni /2. So if we replace �f i�niZii
I ��� in Eq. �5.24� with

its static limit ni
�, remove diagonal equation �5.23�, and
neglect the term with Zkk

I ��� in Eq. �5.21�, we transform the
exact equations to the AA ones of Eqs. �4.5�–�4.7�.

Although we can thus establish the connection between
the analytic exact and adiabatic equations, this does not an-
swer the question what deficiencies the adiabatic approxima-
tions, in fact, entail. In the following section, a numerical
assessment of these approximations is provided for a proto-
type two-electron system, HeH+.

VI. COMPARATIVE SA, AA, AND TDDFT
CALCULATIONS OF THE FREQUENCY-DEPENDENT
POLARIZABILITY OF HeH+

Two-electron systems as considered in the previous sec-
tion offer a unique opportunity to assess the quality of the
adiabatic TDDMFT formulated in this paper. In the general
N-electron case, the exact functionals Eee���, W���, and
���� required to obtain the TDDMFT coupling matrix K are
not known, so that their DMFT approximations are to be
introduced. However, in the two-electron case, we do not
have to introduce such approximations, since the exact de-
pendence of � on � is known. The coupling matrix K of Eq.
�A9� is available, obtained from the accurate Eee of Eq.
�5.14� and W of Eq. �5.27�, and we are basically only testing
the adiabatic approximations �SA and AA�.

This section presents application of the SA and AA to the
frequency-dependent polarizability ���� of the prototype
two-electron HeH+ molecule. The matrix K of Eq. �A9� is
used to calculate the SA/AA matrices A and B and the AA
matrix D, while the AA matrix Q �Qij =�2Eee /�ninj� is cal-
culated from expression �5.14� for Eee. The NOs, NO occu-
pations, and the phase factors obtained from the full configu-
ration interaction ground-state calculations are used to
calculate K and D. Calculations have been performed with
the GAMESS-UK package25 at the experimental equilibrium
bond distance R�He–H+�=1.463 a.u. �Ref. 26� and for the
stretched molecule, R�He–H+�=5.0 a.u. The corresponding
���� values are plotted in Figs. 1�a� and 1�b�, respectively.
The SA and AA curves ���� are compared with the reference
curve obtained with the full response CCSD calculations
with the DALTON package.27 All calculations have been per-
formed with the same Gaussian basis sets, which were cc-
pVTZ basis sets with specially designed p-type polarization
functions for polarizability calculations. The cc-pVTZ basis
for H is from Ref. 28 and for He from Ref. 29.The p-type
polarization functions are from the work by Chong.30 These
basis sets are able to approach the basis set limit values for
the polarizabilities to a few hundredths a.u. Comparison is
also made with the TDDFT methods LDA-ALDA and
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SAOP-ALDA, which have been obtained in a large basis set
of Slater type orbitals.

As was already mentioned in Sec. III, SA consistently
underestimates ���� of HeH+ and it is deficient in that it
does not reproduce the accurate static limit ���→0� �see
Fig. 1�a��. Thus, the SA neglect of the response of the NO
occupations established in Sec. III makes the electron distri-
bution of the molecule more rigid �less polarizable�. The
corresponding error is approximately 7% at �=0 and in-
creases with �. In turn, LDA-ALDA somewhat overesti-
mates ���� and this trend was already well documented in
the literature for LDA and generalized gradient approxima-
tion �GGA� Kohn-Sham potentials, which yield too high oc-
cupied orbital energies and have wrong asymptotic
behavior.31,32 As a matter of fact, the overestimation is con-
siderably less than in He,33 which we attribute to the overall
positive charge of HeH+ which makes it “harder” than He.
The more advanced Kohn-Sham potential SAOP22 corrects
in SAOP-ALDA calculations this overestimation at low �,
but with increasing � the SAOP-ALDA polarizability also
develops an overestimation.

Addition of the approximate NO occupation response in
AA substantially improves the performance of ADMFT �see
Fig. 1�a��. As expected from the formulation of AA, its ����
curve coincides with that of the full response CCSD at small
�. Moreover, AA produces a systematic improvement over
SA in the whole range of the frequencies considered, thus
providing a good quality approximation to the rigorous re-
sponse theory, in spite of the adiabatic approximation.

For the stretched HeH+ �Fig. 1�b��, LDA-ALDA consid-
erably overestimates the polarizability at small � values. The
overestimation rapidly increases with increasing �, since
���� diverges at the first excitation energy. This first excita-
tion energy, which corresponds to the long-range charge
transfer �CT� He→H+, is severely underestimated in
LDA-ALDA. The first LDA-ALDA excitation energy can be
estimated from Fig. 1�b� as the � value, at which ���� di-
verges, ��0.2 a.u. Indeed, while the LDA-ALDA curve di-
verges at ��0.2 a.u., the CCSD curve experiences diver-
gence at a twice as high value, ��0.4 a.u. SAOP-ALDA
reduces this underestimation, but still its excitation energy is
too low. Note, that HeH+ represents a special type of CT,
namely, to the zero-electron system H+, and in this case
standard TDDFT does not possess the deficiencies character-
istic for a typical CT between donor and acceptor
fragments.34–36 Rather, the present errors of LDA-ALDA and
SAOP-ALDA can be traced back to the LDA �much too
high� and SAOP �too high� energies of the 1s orbital of He.
It is gratifying to see in Fig. 1�b� that the TDDMFT calcula-
tions, into which such orbital energies never enter, provide
an excellent quality of the response TDDMFT calculations in
this case. The static and adiabatic approximations do not
worsen the performance appreciably, so that both the overall
and near-resonance agreement of the SA and AA curves with
the CCSD one are excellent.

In conclusion, we have identified certain deficiencies of
the simple SA in TDDMFT, which had been proposed ear-
lier, and we have proposed a remedy in the form of an AA.
Numerical results for a simple prototype system �HeH+�

demonstrate the feasibility of the TDDMFT approach, in
general, and an encouraging quality of the AA, in particular.

The quality of the AA invites a more extensive investi-
gation, on a larger set of benchmark systems, and not only
for the polarizability but notably also for the excitation en-
ergies. In particular, the inability of the TDDFT method to
provide correct excitation energies along the whole dissocia-
tion coordinate for a lengthening electron pair bond �cf. the
H2 results in Ref. 37� provides a challenge for TDDMFT.
Since approximate DMFT functionals have been proposed
that provide much improved ground state E versus R disso-
ciation curves compared to DFT �LDA or GGA�,20 it will be
intriguing to investigate their performance for excitation en-
ergies along the dissociation coordinate.
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APPENDIX: MATRIX Koe AND THE MATRICES K
AND M FOR TWO-ELECTRON SYSTEMS

In this appendix, we present the explicit expressions for
the static matrix Koe of Eq. �3.10� using the relations for the
orbital evolution matrix U of Eq. �3.4� and its response. By
its definition, U connects ��t� with the NO occupations n��t�
�note that we stick to the convention of labeling the time-
dependent NOs with Greek indices�,

�ij�t� = 

�

Ui��t�n��t�Uj�
* �t� , �A1�

which provides the relation between the linear responses

∀l 
�ll�t� = 
n��t� , �A2�

∀m�l 
�ml�t� = �nl − nm�
Um��t� , �A3�

where of course �= l.
From these equations, for the derivatives of the matrix U

follows

� �Ui�
* �t�

��km�t��
�

��t�=��0�
= − 
�t − t��

�1 − 
km�
im
�k

nm − nk
, �A4�

� �Ui��t�
��km�t��

�
��t�=��0�

= 
�t − t��
�1 − 
km�
ik
�m

nm − nk
. �A5�

Inserting Eqs. �A4� and �A5� into Eq. �3.10� and using in the
resultant formula the variational condition for the static one-
and two-electron matrices W and h,11
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∀i�j

Wij − Wji
*

nj − ni
= − hij , �A6�

we obtain the expressions for the matrix elements of Koe,

∀i,k�l Kiikl
oe = − 
ilhki + 
ikhil, �A7�

∀ij,k�l Kijkl
oe =

hjl�nl − nj�
nl − nk


ik −
hki�ni − nk�

nl − nk

 jl. �A8�

Differentiating the matrix W of Eq. �5.27� according to Eq.
�5.25� and adding the resultant Kee to the matrix Koe, one
obtains the explicit expression of the matrix K for two-
electron systems. For the elements Kijkl �i� j�, we have

Kijkl = −
1

2

kl� 1

fk
�nk

�
 jk − 
ik��1 − 
ij�hij�f i
�ni + f j

�nj� +
f i
�ni − f j

�nj

fk
�nk

��i� j��k�k	� − �f ifk
�nink + f j f l

�njnl����k�l�� j�i	

+ ��l�k�� j�i	�
�1 − 
kl�
nk − nl

+ � fk
�nk
 jl


m

fm
�nm��i�k��m�m	 + fk

�nk
 jk

m

fm
�nm��m�m��l�i	� �1 − 
kl�

nk − nl

+ � f l
�nl
il


m

fm
�nm��k� j��m�m	 + f l

�nl
ik

m

fm
�nm��m�m�� j�l	� �1 − 
kl�

nk − nl
. �A9�

In turn, the subdiagonal �k= l� matrix M in Eq. �5.21� is obtained from K of Eq. �A9� by a formal �before setting k= l� omission
of the factor �1−
kl�, subsequent multiplication of Eq. �A9� by the factor �fk�nk /2− f l�nl /2�, and, only after those operations,
by setting k= l,

Mijkl = − 
kl�f j
�nj/2��k�k�� j�i	 + f i

�ni/2��i� j��k�k	� + 
kl�1

2

 jk


m

fm
�nm/2��i�k��m�m	

+
1

2

 jk


m

fm
�nm/2��m�m��k�i	� + 
kl�1

2

ik


m

fm
�nm/2��k� j��m�m	 +

1

2

ik


m

fm
�nm/2��m�m�� j�k	� . �A10�
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