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In the major independent particle models of electronic structure theory—Hartree–Fock, Kohn–Sham
�KS�, and natural orbital �NO� theories—occupations are constrained to 0 and 1 or to the interval
�0,1�. We carry out a constrained optimization of the orbitals and occupation numbers with
application of the usual equality constraints �i

� ni=N and ��i �� j�=�ij. The occupation number
optimization is carried out, allowing for fractional occupations, with the inequality constraints ni

�0 and ni�1 with the Karush–Kuhn–Tucker method. This leads in all cases to an orbital energy
spectrum with �only for NO and KS� possibly fractionally occupied degenerate levels at energy
equal to the Lagrange multiplier � for the first equality constraint, completely occupied levels at
lower energies and completely unoccupied levels at higher energies. Aufbau thus follows in all cases
directly from this general derivation. © 2010 American Institute of Physics.
�doi:10.1063/1.3426319�

I. INTRODUCTION

In effective, one-electron theories such as Hartree–Fock
�HF�, the Kohn–Sham �KS� approach to density functional
theory �DFT�, and one-body reduced density matrix func-
tional theory�DMFT�, one-electron Hamiltonians are derived
which have the one-electron states �orbitals� as eigenfunc-
tions. Occupation numbers are often �in HF and KS calcula-
tions� fixed to 0 and 1, and in assigning occupations to the
orbitals, the orbital energy spectrum is commonly used, as-
suming that application of the Aufbau principle will yield the
lowest energy solution. However, we will show that the Auf-
bau solution can actually be derived from the minimum en-
ergy condition using the Karush–Kuhn–Tucker �KKT�
conditions1,2 for the handling of inequality constraints like
ni�0 and ni�1.

All theories have in common that the energy can be writ-
ten as a functional of a one-body reduced density matrix
�1RDM�, E���, where the 1RDM is defined as

��x,x�� 	 �
K

dK��K�	̂†�x��	̂�x���K� . �1�

The 1RDM can be expanded in its spectral representation,

��x,x�� = �
k

nk�k�x��k
��x� . �2�

The eigenfunctions of the 1RDM, �k�x�, are called natural
orbitals �NOs�. These NOs are the HF and KS orbitals in the

HF and DFT cases, respectively, and the true NOs in the
DMFT case. We will occasionally refer to them collectively
as NOs. The eigenvalues, nk, are called occupation numbers.

We allow here in Eq. �1� for a 1RDM that is derived
from an ensemble of states with weights dK ,0�dK

�1, �KdK=1. The HF model is characterized by the restric-
tion of the trial wave function to a single determinant, and
the energy expression for the single determinant wave func-
tion �in terms of its �, see Eq. �4�� is used. Lieb3 proved that
minimizing � is actually always a pure state �single determi-
nant� � in the HF case, see below. In the KS case the energy
is a functional of the diagonal of the 1RDM, the electron
density 
�r�. It is known that some exact ground state den-
sities of interacting correlated electron systems are only en-
semble, representable with the densities of the determinantal
eigenstates of the KS independent particle system.4,5 In that
case Eq. �1� uses an ensemble of KS determinants. The exact
solution in the KS case �with the exact E�
�� would yield the
exact diagonal density 
�r�, but not the exact �. In DMFT
one uses, in principle, the exact E���, which exists according
to the proof by Gilbert.6 The 1RDM can be written with the
exact wave function in Eq. �1�, as the single term ��x ,x��
	��0�	̂†�x��	̂�x���0� �in the case of a nondegenerate
ground state �0�. It can also be written with the �K of Eq.
�1� being the determinants constructed with the orbitals of
the independent particle system of this case, i.e., the NOs.
The determinants are degenerate states of the independent
particle system since all fractionally occupied NOs obey
one-electron equations with degenerate energies.6 An en-
semble is surely needed, with such weights dK that the occu-
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pation numbers for the NOs in the exact wave function
would result. We will return to the possible ensemble repre-
sentation of � in the various cases below.

So the energy can be written as a functional of the
1RDM for all the effective one-electron theories, and it can
be split into one-body and two-body parts,

E��� = �
k

nkhkk + W��� . �3�

The one-body part contains the usual kinetic energy operator
and the external potential. Since we are working on the spec-
tral representation of the 1RDM of the particular method, the
one-body part becomes an occupation number weighted sum
over diagonal matrix elements of the one-body Hamiltonian
in NO representation.

That the exact two-body part W is a functional of � for
nonlocal external potentials is the content of Gilbert’s proof.6

In DMFT we use, in principle, this exact W���, or rather
approximations since the exact W��� is not known. We opti-
mize the energy by variation in the components of �, the
NOs, and the occupation numbers. If the determinants in Eq.
�1� are on the basis of the NOs, or if the exact wave function
is expanded in NO-based determinants, it is easy to see that
all occupation numbers must be between 0 and 1 for fermi-
ons and that the occupation numbers should sum to the total
number of electrons.7 It was proven by Coleman8 that the
requirements 0�ni�1 and �ini=N are not only necessary,
but also sufficient conditions for � to be ensemble
N-representable.

If the external potential is restricted to be local, Hohen-
berg and Kohn9 showed that only the diagonal of the 1RDM,
i.e., the density 
�x�=��x ,x� is required to determine the
exact energy. Therefore, in the case of DFT, the functional
W��� can be set to the Hartree plus �KS� exchange-
correlation energy, EHxc�
�. The � would correspond to the
1RDM of the KS system.10 In KS-DFT, integer solutions for
the ni will result most of the time, but not always. In this case
fractional occupation numbers are certainly allowed and in-
deed may be necessary.4,5

In the case of HF we can use the expression for the
two-electron part of the energy in terms of the 1RDM when
the wave function is restricted to one-determinantal form,

WHF 	
1

2

 dx
 dx����x,x���x�,x��w�x,x���

− ��x,x����x�,x�w�x,x��

=
1

2�
r,s

nrns�wrssr − wrsrs� , �4�

where w�x ,x��=1 / �r−r�� is the electron-electron interaction
potential. We use the following definition for the two-
electron integrals:

wklrs 	
 dx
 dx��k
��x��l

��x��w�x,x���r�x���s�x� . �5�

When we use the constraints 0�ni�1, this raises the ques-
tion of the meaning of the expression for WHF when frac-
tional occupation numbers are allowed. Without going into

the question of the physical meaning, Lieb3 considered the
completely unrestricted variational optimization of E��� with
WHF of Eq. �4�, allowing for fractional occupation numbers,
i.e., under the conditions 0�ni�1 and �ini=N. He proved
that there is always a single determinant �integer occupa-
tions� with an energy that is a lower bound to EHF���:
EHF���� ��0�Ĥ��0�, where �0 is the ground state HF deter-
minant �or one of them in case of degeneracy�. We can thus
consider the general variation in Eq. �3� with WHF, allowing
for fractional occupation numbers, while we can be sure this
will yield integer occupations in the HF case �see also com-
ment below Eq. �32��.

So the ground state energy in all these theories is ob-
tained by requiring that the variation in the energy due to
variations in the 1RDM vanishes. If one assumes the func-
tional to be differentiable, this condition can be formulated
as

�E

���x,x��
= 0. �6�

This paper deals with the constraints that have to be applied
on this variation and on the consequences of enforcing these
constraints. We will optimize the energy with respect to the
components of �, the NOs, and occupation numbers. How-
ever, the 1RDM does not determine the phase of its eigen-
functions, the NOs, so the energy functional expressed in
terms of orbitals and occupation numbers is only a true den-
sity matrix functional if it is independent of the NO phases.
From this requirement we can immediately derive a condi-
tion on the NO derivatives.11 First we make the phase of the
NOs explicit by writing �k�x�=e−i�k
k�x�. Since the energy
has to be invariant under phase changes, we have

0 =
dE

d�k
=
 dx

�E

��k�x�
d�k�x�

d�k
+
 dx

�E

��k
��x�

d�k
��x�

d�k

= i
 dx��k
��x�

�E

��k
��x�

−
�E

��k�x�
�k�x�� . �7�

This is an important requirement on any 1RDM functional. It
is evidently obeyed by the DFT and �generalized� HF ener-
gies. Further, the following constraints have to be applied to
ensure that the NOs and occupation numbers represent a
proper 1RDM: �1� the NOs have to be orthonormal; �2� the
occupation numbers have to sum the total number of elec-
trons N; �3� the occupation numbers should obey 0�nk�1.8

�1� and �2� are equality constraints that can easily be taken
into account by Lagrange multipliers. However, it is gener-
ally believed that the inequality constraints 0�nk�1 cannot
be incorporated by Lagrange multipliers. For example, Zum-
bach and Maschke12 stated: “Unfortunately, the conditions
0�nk�1 cannot be expressed in terms of Lagrange param-
eters.” However, the generalization of the method of
Lagrange multipliers to inequality constraints has already
been established in 1939 in a master thesis of Karush.1 This
result only reached a larger audience after a 1951 conference
paper by Kuhn and Tucker.2 We will give a brief introduction
to the KKT technique in Sec. II. Then in Sec. III the appli-
cation to the one-electron theories of HF, KS, and DMFT
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will be given. The main result is that the eigenvalue spec-
trum for the one-electron equations that can be obtained in
each case has a very similar structure. All fractionally occu-
pied orbitals �if any� are degenerate, with energy �, with � as
the Lagrange multiplier for the electron number constraint
�ini=N. For them, the inequality constraints are not “bind-
ing.” For all fully occupied orbitals the inequality constraint
ni�1 is binding and their orbital energies �i are equal to �i

=�−�i
1, with �i

1 as the corresponding positive Lagrange mul-
tiplier. All fully occupied orbitals have therefore energies
below �. All completely empty orbitals, for which the con-
straint ni�0 is active, have orbital energies �a=�+�a

0, all
above � since also the Lagrange multipliers �a

0 are positive.
In the case of HF important previous results were already
obtained by Lieb and co-workers.3,13 In the case of DFT, our
treatment generalizes the ones of Slater14,15 and Janak.16

These authors introduced fractional occupations without
physical justification; the issue was clarified by the introduc-
tion of ensembles in DFT.4,17,18 In the case of DMFT, the
degeneracy of the fractionally occupied orbitals was an im-
portant result of Gilbert.6 The behavior of the orbital energies
for the completely occupied and unoccupied NOs �if any� in
the DMFT case has often been conjectured or just assumed,
but we are not aware of any proof.

II. THE KARUSH–KUHN–TUCKER CONDITIONS

We will not present a rigorous mathematical treatment of
the KKT conditions. A more rigorous treatment can be found
in literature on optimization and nonlinear programming,
e.g., Refs 19–21. We will use a graphical illustration to just
bring out the essential points. First consider a general two
dimensional optimization problem with an equality con-
straint,

min
x,y�R

f�x,y� ,

subject to h�x,y� = 0. �8�

Now consider an arbitrary feasible point �x ,y�, i.e., a point
that satisfies the constraint h�x ,y�=0 �Fig. 1�. In general, this
point will not be optimal so there will exist a nonvanishing
gradient at this point, �f �0. Therefore, one could obtain a
lower value by moving down the gradient. The physical pic-
ture is to consider a particle at �x ,y� in a potential f . The

potential will exert a force −�f on the particle and it will
attain its lowest potential energy if the force is zero, i.e., it
reached a local minimum.

However, in our case the particle is not free to move
over the potential surface but is constraint to the curve de-
fined by h�x ,y�=0. To keep the particle at this curve, an
additional force is required which is perpendicular to the
curve, −��h, where � is some scaling factor to give the
force −�h the right magnitude to keep the particle on the
curve h�x ,y,�=0. The total force on the particle will now be
the sum of the two forces,

Fnet = − �f − � � h . �9�

Similar to the unconstrained case, the particle will attain its
lowest potential energy if the total force is zero �Fig. 2�, so
we obtain the usual first-order optimality condition for equal-
ity constraints,

Fnet = − �f − � � h = 0, �10�

where the scaling factor � of the force due to the constraint is
generally known as the Lagrange multiplier.

Now consider a minimization problem with an inequal-
ity constraint,

min
x,y�R

f�x,y� ,

subject to g�x,y� � 0. �11�

The inequality constraint g�x ,y��0 effectively defines a re-
gion where the solution is feasible with a boundary g�x ,y�
=0. There are two situations possible at the optimal point: �1�
the constraint is binding so the particle is at the boundary of
the constraint, g�x ,y�=0, and we need a force −��g to keep
the optimal point at the boundary, or �2� the constraint is not
binding, g�x ,y��0, and no force is required. The constraint
is not active when the corresponding Lagrange multiplier is
zero, �=0. So we have g�x ,y�=0 or �=0, which can be for-
mulated as

�g�x,y� = 0. �12�

This condition is known as the complementary slackness
condition. There is also the possibility that the unconstrained
optimal point happens to be at the boundary of the feasible
region. In that case we have g�x ,y�=�=0, which is also cov-
ered by condition �12�.

x

y

h = 0

f = const.

−∇f

−λ∇h

Fnet

FIG. 1. The force of the objective function −�f and the force of the con-
straint −��h are imbalanced. A net force Fnet remains.

x

y

h = 0

f = const.

−λ∇h

−∇f

FIG. 2. At the optimal point the forces of the constraint −��h exactly
cancels the force of the objective function −�f , so there is no net force.
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Note that using the gradient to constrain the problem can
fail if �g=0 at some point for which g=0, so using −��g as
a force to keep the solution in the feasible region does not
work. Therefore, one usually has to check if the constraints
are “qualified” so that the optimal point will not have
�g=0 and g=0, since such an optimal point will not be
recognized by the KKT conditions. However, our constraints
for the occupation numbers are linear so this problem will
not arise. Further, it is usually never checked if the con-
straints for the orbitals �orthonormality� are qualified. How-
ever, this follows directly from the fact that their gradients
are linearly independent if the solution is feasible. For more
details about constraint qualification consult literature on op-
timization, e.g., Refs 19–21.

Further the constraining force is only allowed to work in
one direction. It should only push the particle into the fea-
sible region and not outside it. Therefore, the corresponding
Lagrange multiplier has to be positive �if the sign of the
condition is chosen as g�x ,y��0�,

� � 0. �13�

It has been shown by KKT that these conditions �Eqs. �12�
and �13�� are necessary conditions for a local minimum �or
maximum�. So an optimization problem with inequality con-
straints can be treated in the same way as a problem with
equality constraints with the only difference that the comple-
mentary slackness condition and the positivity of the
Lagrange multipliers must be taken into account. So the first-
order stationarity conditions for a general minimization prob-
lem,

min
x�RN

f�x� ,

subject to gi�x� � 0 for i = 1, . . . ,m ,

hj�x� = 0 for j = 1, . . . ,l , �14�

can be formulated with the help of the following Lagrangian:

L�x,�,�� = f�x� + �
i=1

m

�igi�x� + �
j=1

l

�ihi�x� . �15�

The first-order stationarity conditions are traditionally
grouped into three:21 the primal feasibility conditions,

gi�x� � 0, ∀ i = 1, . . . ,m , �16a�

hj�x� = 0, ∀ j = 1, . . . ,l , �16b�

the dual feasibility conditions,

�xL = �f�x� + �
i=1

m

�i � gi�x� + �
j=1

l

�i � hi�x� = 0, �17a�

�i � 0, ∀ i = 1, . . . ,m , �17b�

and the complementary slackness conditions,

�igi�x� = 0, ∀ i = 1, . . . ,m . �18�

III. APPLICATION OF THE KKT CONDITIONS TO
EFFECTIVE ONE-ELECTRON THEORIES

Now that we have the KKT conditions to deal with the
inequality constraints, we introduce the following Lagrang-
ian for the energy functional:

� 	 E − �
rs

�sr���r��s� − �rs� − ���
r

nr − N�
+ �

r

�r
0�− nr� + �

r

�r
1�nr − 1� , �19�

where we introduced Lagrange multipliers for the orthonor-
mality of the NOs, for the �nk−N=0 condition, and for the
inequality constraints −n�0 and n−1�0, respectively. The
first of the dual feasibility conditions �Eq. �17a�� implies that
the derivative of the Lagrangian � with respect to the NOs
and occupation numbers has to be set to zero,

�E

��k�x�
− �

r

�kr�r
��x� = 0, ∀k, �20a�

�E

��l
��x�

− �
s

�s�x��sl = 0, ∀l, �20b�

�E

�nk
− �k

0 + �k
1 − � = 0, ∀k. �20c�

The second of the dual feasibility conditions �Eq. �17b��
shows that the Lagrange multipliers of the inequality con-
straints have to be positive,

�k
0 � 0, �21a�

�k
1 � 0. �21b�

Additionally, we have the complementary slackness condi-
tions for the inequality constraints �Eq. �18��,

�k
0nk = 0, ∀k, �22a�

�k
1�nk − 1� = 0, ∀k. �22b�

Of course the optimal point also has to obey the primal fea-
sibility conditions �Eq. �16�� �the constraints�,

��k��l� = �kl, �23a�

nk � 0, �23b�

nk � 1, �23c�

�
k

nk = N . �23d�

There are many equations that have to be solved simulta-
neously. However, the Lagrange multipliers for the orthonor-
mality of the NOs, �, can be eliminated all together. There-
fore, we project Eq. �20a� to �l�x� and Eq. �20b� to �k

��x�,
which gives


 dx
�E

��k�x�
�l�x� − �kl = 0, ∀k, �24a�
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 dx�k
��x�

�E

��l
��x�

− �kl = 0, ∀l. �24b�

Subtracting these equations from each other eliminates the
Lagrange multipliers �,


 dx� �E

��k�x�
�l�x� − �k

��x�
�E

��l
��x�� = 0. �25�

Note that this equation is valid for all k , l pairs. However, as
we have shown before, for k= l this equation is automatically
satisfied for proper energy functionals �Eq. �7��, i.e., energy
functionals that are invariant under the phase of the NOs. So
we only need to consider pairs k� l.

Now consider the dual feasibility condition with the oc-
cupation number derivative �Eq. �20c��. It contains three
Lagrange multipliers, �k

0, �k
1, and �. To simplify the expres-

sion, we define the quantity �k,

�k 	 � + �k
0 − �k

1, �26�

which we will show as the orbital energy in the effective
one-electron equations for the NOs that will be derived.
From the complementary slackness conditions �Eq. �22��, we
find that for fractional occupation numbers �k

0=�k
1=0 so the

orbital energies are all equal to �. However, for fully occu-
pied or completely empty NOs, the orbital energy will differ
from �. Taking the positivity of the Lagrange multipliers �k

0

and �k
1 into account �Eq. �21��, one obtains the Aufbau solu-

tion as detailed in Table I. Although Aufbau has commonly
been assumed in all effective one-electron models and has
been proven for �completely� unrestricted HF,3,13 we are not
aware of a general proof based on the proper treatment of the
constraints on the occupation numbers.

We proceed with the derivation of the effective one-
electron equations. Using Eq. �3� for the energy, Eq. �25�
�from the orbital derivatives Eqs. �20a� and �20b�� can be
written as Eq. �27a�, and the occupation number derivative
�20c� yields Eq. �27b�,

�nl − nk�hkl + �Wkl
† − Wkl� = 0, ∀ k � l , �27a�

hkk +
�W

�nk
= �k, ∀ k , �27b�

where we introduced

Wkl 	
 dx
�W

��k�x�
�l�x� . �28�

By dividing Eq. �27a� by �nl−nk�, both stationarity equations
can be combined into the following effective one-electron
eigenvalue equations:

ĥeff�k = �ĥ + v̂eff��k = �k�k, �29�

where v̂eff is determined by its matrix elements,

vkl
eff 	


�Wkl
† − Wkl�

�nl − nk�
for k � l

�W

�nk
for k = l .� �30�

The off-diagonal matrix elements were derived before by
Pernal22 for the case that the energy is not an explicit func-
tional of �, but a functional of the NOs and occupation num-
bers. One way to do this is by applying the chain rule to
Gilberts’ expression for the potential, veff�x ,x��
=�E /���x ,x��. We use condition �20c� on the occupation
number derivative to also fix the diagonal elements vkk

eff, and
therefore, the orbital energies that afford the results in Table
I.

The division by the occupation number differences in
Eq. �30� appears to be dangerous, in particular, if the orbital
occupancies are �nearly� equal. However, we can show that
the �Wkl

† −Wkl� term exactly contains a �nl−nk� term so the
�nl−nk� factor in the denominator cancels out in the off-
diagonal matrix element of v̂eff. In the case of exactly degen-
erate occupancies, which will occur for the whole set of fully
occupied orbitals in HF, and for the set of empty orbitals, Eq.
�27a� becomes �nl−nk�hkl

eff=0 and is obeyed regardless of the

value of the off-diagonal matrix element of ĥeff. Stationarity
in the energy is then obtained leaving arbitrary rotations of
these orbitals among themselves possible. Such rotations
would of course affect the diagonal and off-diagonal ele-

ments of ĥeff. The rotations of the set of fully occupied NOs
among themselves and similarly of the set of completely
unoccupied NOs, which diagonalize heff, yield the eigenfunc-

tions of ĥeff with the �k as eigenvalues. These NOs are known
as the canonical HF and KS orbitals in the case of HF and
DFT, respectively.

We will now derive explicit expressions for the effective
potential for HF, KS, and DMFT. Depending on the defini-
tion of the general coordinate, either x=r� or x=r, we obtain
equations for the completely unrestricted or spin free ver-
sions of these theories. The common closed shell case �equal
spin up and spin down orbitals, always both occupied� is
trivially included in these results. With “completely unre-
stricted” we denote the case that the orbitals are general
functions of space and spin, and are not restricted to be either
� or � spin orbitals. The formalism is also easily extended to
the usual unrestricted versions where the number of � and �
electrons is specified as N� and N�. For each spin the condi-
tions 0�nk

�/��1 and �knk
�/�=N�/� have to be enforced so

each spin group has its own multipliers �k
�/�. Within these

spin groups Aufbau is required for a minimum energy solu-
tion. However, between the � and � electrons Aufbau does
not necessarily occur since the specific number of electrons
is constrained to sum to N� and N�, respectively. A generali-
zation to more complicated schemes such as restricted open-
shell HF �ROHF�, if at all possible, would be nontrivial in
view of the special requirements for the Fock operator to
obtain meaningful orbital energies �with Koopmans’ type

TABLE I. Relation between the occupation numbers and orbital energies as
given by the KKT conditions.

NO energies ⇒ occupation

�k�� nk=1
�k=� 0�nk�1
�k�� nk=0
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interpretation23�. Extension to ROHF is beyond the scope of
this article. Here, we only demonstrate the versions with
straightforward constraints: spin free or �completely� unre-
stricted.

For HF we can use WHF �Eq. �4��. The projected orbital
derivative and the occupation number derivative of this defi-
nition of the HF two-body contribution to the energy yield

Wkl
HF = nk�

r

nr�wkrrl − wkrlr� , �31a�

�WHF

�nk
= �

r

nr�wkrrk − wkrkr� . �31b�

Therefore, the effective potential for HF can be written as

vkl
eff:HF = �

r

nr�wkrrl − wkrlr� , �32�

which is the traditional HF potential if the occupation num-
bers are integers. Lieb3 proved that a single determinant
wave function �0 �integer occupations� will always exist,

that is a lower bound to the energy E���, E���� ��0�Ĥ��0�.
However, it was showed by Cancés et al. in Ref. 24 p. 126
that although solutions with fractional occupation numbers
might satisfy the first-order conditions, they never corre-
spond to a �local� minimum. This is basically an extension of
the result by Bach et al.13 that in the completely unrestricted
case a single determinant always has a finite orbital energy
gap between the highest occupied and lowest unoccupied
orbital. Therefore, a proper optimization of NOs and occu-
pation numbers with the general constraint 0�ni�1 will not
lead to fractional occupations in this case.

In the KS system the two-body part of the energy is the
exchange-correlation energy Exc plus the classical Coulomb
interaction,

WKS 	
1

2�
r,s

nrnswrssr + Exc�
� . �33�

We have to keep in mind that WKS should now be regarded
as a functional of the density so we cannot take the deriva-
tives directly with respect to the NOs and occupation num-
bers. Instead, we will use that the density is determined by
the orbitals and occupation numbers as


�x� = �
r

nr��r�x��2, �34�

so the derivatives can be taken via the chain rule

Wkl
KS =
 dx
 dx�

�WKS

�
�x��
�
�x��
��k�x�

�l�x� = nkvkl
Hxc, �35a�

�WKS

�nk
=
 dx

�WKS

�
�x�
�
�x�
�nk

= vkk
Hxc, �35b�

where we used the matrix representation of the Hartree-
exchange-correlation potential, which is defined as the func-
tional derivative of WKS with respect to the density

vHxc�x� 	
�WKS

�
�x�
. �36�

The Hartree-exchange-correlation potential is equal to the
sum of the more commonly used Hartree potential and the
exchange-correlation potential, vHxc�x�=vH�x�+vxc�x�. Us-
ing these results for the effective potential, we find that the
effective potential is equal to the Hartree-exchange-
correlation potential,

vkl
eff:KS = vkl

Hxc. �37�

Note that in the KS system fractional occupations are for-
mally allowed.4,17,18,25,26 It was proven that for interacting
electron systems, densities may exist which in the noninter-
acting system are not V-representable by a pure state �single
determinant, integer occupations� but which may be nonin-
teracting ensemble V-representable �and are described with
fractional occupation numbers�.4 This is not only a formal
mathematical point: It was shown that in strongly correlated
systems �with an essentially multideterminant ground state
wave function�, such ensembles are necessary in the KS sys-
tem in order to describe the interacting ground state density.5

The one-electron orbitals with fractional occupations are de-
generate in that case. The weights of the determinants in the
ensemble are not arbitrary; they are fixed by the requirement
of reproduction of the true interacting density.

For DMFT one actually would not need to use the chain
rule since the NOs and occupation numbers just constitute
some particular representation of the 1RDM. However, using
the chain rule, we can remove the division by �nl−nk�. For
the derivatives we have

Wkl
DMFT =
 dx
 dx�
 dx�

�WDMFT

���x�,x��
���x�,x��

��k�x�
�l�x�

= nkvkl
DMFT, �38a�

�WDMFT

�nk
=
 dx
 dx�

�WDMFT

���x�,x��
���x�,x��

�nk
= vkk

DMFT,

�38b�

where vkl
DMFT are the matrix elements of the DMFT potential

in the one-electron equations for the NOs derived originally
by Gilbert,6 which is defined in spin-coordinate space as

vDMFT�x,x�� 	
�WDFMT

���x�,x�
. �39�

So we find that the effective potential of Eq. �30� in the
DMFT case is equal to Gilbert’s vDMFT of Eq. �39�,

vkl
eff:DMFT = vkl

DMFT. �40�

Gilbert already found that all fractionally occupied NOs
should have the same one-electron energy. In the DMFT
case, this degeneracy usually extends to all NOs since in
practice, all NOs have fractional occupation numbers. The
occurrence of integer occupations is—except for incidental
occurrence of a zero occupation27—not established. The ex-
plicit form �WDFMT /���x� ,x� of the effective potential will
be rarely used in DMFT since most approximations are de-
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fined in terms of the NOs and their occupation numbers.28–43

The expression for the effective potential in Eq. �30� can
then be used directly.

IV. SUMMARY

We have shown that Aufbau does not have to be as-
sumed when solving the equations of the main one-electron
models of electronic structure theory, HF, KS, and NO theo-
ries. They can be derived straightforwardly from the mini-
mum energy condition. Allowing for fractional occupations
in the HF functional, we were able to treat the optimization
procedure in HF, KS-DFT, and DMFT on the same footing.
Effective one-electron equations are obtained in all cases,
which can be identified with the HF, KS, and Gilbert equa-
tions in the cases of HF, KS, and DMFT, respectively. Uti-
lizing the KKT conditions, the constraints that the occupa-
tion numbers should be between zero and one, 0�nk�1,
could be directly enforced with Lagrange multipliers. For the
fractionally occupied orbitals these constraints are not bind-
ing and they have orbital energy equal to the Lagrange mul-
tiplier for the �knk=N constraint. The orbital energies for the
fully occupied orbitals are �−�i

1, with �i
1 being the Lagrange

multiplier for the ni�1 constraint. The orbital energies for
the unoccupied orbitals are �+�a

0 with �a
0 the Lagrange mul-

tipliers for the na�0 constraint. The derivation leads to the
Aufbau solution, with fractionally occupied orbitals at the
degenerate energy �, all fully occupied orbitals are below �
and all empty orbitals are above �, for HF, DFT, and DMFT.
The difference is in the nature of the orbital spectrum: In the
DMFT case �almost� all orbitals are fractionally occupied
and degenerate at �, in the KS case a limited number of
orbitals may be fractionally occupied and degenerate, and in
the HF case no orbitals will ever be fractionally occupied.

We note that the derivation shows that in all cases the
orbital energy is equal to the derivative of the energy with
respect to the occupation number, �k=�E /�nk. The magni-
tude of the Lagrange multiplier indicates how strongly the
constraining force has to act in order to enforce the constraint
�the multiplier is precisely this force when the derivative of
the constraint function is + or �1, like in our case�. For
instance, if the energy gain upon increasing the occupation of
a specific orbital would be large ��E /�nk is large and nega-
tive�, as holds, e.g., for a core orbital, the corresponding
Lagrange multiplier �i

1 has to be large in order to balance this
“force.” The orbital energy �−�i

1 therefore becomes large
and negative.
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