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The key characteristics of electronic excitations of many-electron systems, the excitation energies
ωα and the oscillator strengths fα , can be obtained from linear response theory. In one-electron mod-
els and within the adiabatic approximation, the zeros of the inverse response matrix, which occur
at the excitation energies, can be obtained from a simple diagonalization. Particular cases are the
eigenvalue equations of time-dependent density functional theory (TDDFT), time-dependent density
matrix functional theory, and the recently developed phase-including natural orbital (PINO) func-
tional theory. In this paper, an expression for the oscillator strengths fα of the electronic excitations
is derived within adiabatic response PINO theory. The fα are expressed through the eigenvectors
of the PINO inverse response matrix and the dipole integrals. They are calculated with the phase-
including natural orbital functional for two-electron systems adapted from the work of Löwdin
and Shull on two-electron systems (the phase-including Löwdin-Shull functional). The PINO cal-
culations reproduce the reference fα values for all considered excitations and bond distances R of
the prototype molecules H2 and HeH+ very well (perfectly, if the correct choice of the phases in
the functional is made). Remarkably, the quality is still very good when the response matrices are
severely restricted to almost TDDFT size, i.e., involving in addition to the occupied-virtual orbital
pairs just (HOMO+1)-virtual pairs (R1) and possibly (HOMO+2)-virtual pairs (R2). The shape
of the curves fα(R) is rationalized with a decomposition analysis of the transition dipole moments.
© 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4793740]

I. INTRODUCTION

The excitation energies ωα and the oscillator strengths fα
are the key characteristics of electronic excitations in many-
electron systems. The latter quantity provides a measure of
the intensity of the corresponding excitation in the electronic
spectrum. Linear response theory applied to an independent
electron model system provides an efficient framework for the
evaluation of these quantities. The response of a one-electron
property, such as the electron density or the one-particle den-
sity matrix, δg(ω), to an external perturbation δvext(r, ω) with
frequency ω is evaluated as follows:

χ−1(ω) · δg(ω) = V (ω). (1)

Here, the vector V collects the matrix elements of the pertur-
bation in the chosen one-electron basis, Vpq = 〈φp|δvext|φq〉.
χ−1(ω) is the inverse response function corresponding to the
chosen perturbation and the electronic property. It can be ex-
pressed in the case of real perturbations and real property
functions in terms of a matrix �[g0](ω)

χ−1(ω) = (ω21 − �[g0](ω)) (2)

with the latter being considered in response theory as a func-
tional of the ground-state function g0. With (1) and (2),
the excitation energies ωα are obtained as the frequencies at
which a response exists even in the absence of an external per-

turbing field (ω’s where χ (ω) diverges, which are the zeros of
χ−1(ω)). These frequencies are the roots ωα of the following
matrix equations:

�[g0](ωα)Fα = ω2
α Fα. (3)

Virtually, all applications of the theory are made within the
adiabatic approximation, in which the frequency-dependent
�(ω) is replaced with a frequency-independent static matrix,
�(ω) ≈ �0, so that all ωα and Fα of the adiabatic eigenvalue
problem

�0[g0]Fα = ω2
α Fα (4)

can be simultaneously obtained with a single diagonalization
of �0. The eigenvectors Fα of Eq. (4) are used to evaluate the
oscillator strengths fα (See Sec. II where the derivation will
be given).

In particular, the adiabatic response approach of time-
dependent density functional theory (TDDFT)1 has become
the method of choice for the calculation of electronic excita-
tions in large molecules. In this approach, the electron density
ρ(r, ω) is chosen as the one-electron function g(ω) in Eq. (1).
The squared differences (εa − εi)2 between the energies
of the virtual ψa(r) and occupied ψi(r) Kohn–Sham (KS)
orbitals of DFT, constitute the leading diagonal contribution
to �0 of Eqs. (2)–(4). Defining the diagonal matrix Eia,jb

= δij δab(εa − εi), the matrix �0 can be written as �0 = E2
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+ √
E K

√
E . In order to produce a better approximation to the

true excitations ωα , the orbital energy differences are shifted
and coupled with the coupling matrix K constructed with the
Hartree-exchange-correlation (Hxc) kernel fHxc(r1, r2).

In spite of its general success, adiabatic response TDDFT
also exhibits serious failures. Using the response of the KS
orbitals to obtain the density response, it is found that δρ

can be expanded only with the virtual-occupied pairs of the
ground-state KS orbitals as

∑
i∈occ

∑
a∈virt δρiaψiψ

∗
a . Because

of the simple structure of the density response δρ(ω), which
includes only “transitions” ψ i → ψa from occupied to virtual
KS orbitals, adiabatic TDDFT lacks double excitations.2, 3 As
was shown in Refs. 2 and 4–8, double excitations could be, in
principle, recovered with a frequency dependent Hxc kernel
fHxc(r1, r2, ω) with a rather involved frequency dependence.
Furthermore, because of the features of the KS orbital spec-
trum, conventional adiabatic TDDFT yields vanishing exci-
tation energies in the case of bond breaking9–12 and too low
excitation energies in the case of long-range charge transfer
(CT).13, 14 As was established in Refs. 15 and 16, in order to
provide the correct excitation energies, the Hxc kernel should
diverge, which classifies the bond breaking and CT cases as
problematic for adiabatic TDDFT.

These problems of adiabatic TDDFT are illustrated with
Figures 1–4, which show the excitation energies ωTDDFT and
oscillator strength f TDDFT for the lowest two 1	+

u excita-
tions in the H2 molecule, and the lowest two 1	+ excitations
in the HeH+ molecule. The comparison is between standard
TDDFT calculations (BP86, basis set aug-cc-pVTZ) with the
reference quantities ωFCI and f FCI of the full configuration
interaction (FCI) method. The failure of TDDFT for these
excitations (and not only for these) have been spelled out in
Refs. 11, 12, and 17. We note that the (larger) basis used here
shows considerable difference with the previous (smaller)
one, notably for the 21	+

u state, both for the FCI curve and

FIG. 1. Excitation energies with CI and TDDFT methods for the excitation
to the first two excited states of 1	+

u symmetry of H2. Solid lines full-CI
reference, dashed lines TDDFT with the BP86 functional.

FIG. 2. Oscillator strengths with CI and TDDFT methods for the excitation
to the first two excited states of 1	+

u symmetry of H2. Solid lines full-CI
reference, dashed lines TDDFT with the BP86 functional.

the TDDFT curve. This is a consequence of the use of an aug-
cc-pVTZ basis rather than the nonaugmented cc-pVTZ one of
Ref. 12. Further extension to aug-cc-pVQZ has little effect. It
is surprising that, whereas the TDDFT excitation energy is to-
tally wrong for the first excited state of 1	+

u symmetry of H2,
the oscillator strength seems to be still qualitatively right. As
we will demonstrate below, this is fortuitous, being caused by
a cancellation of errors.

The problems of TDDFT were addressed with the
development of time-dependent density matrix functional
theory (TDDMFT).12, 17, 18 In this theory, the first-order
reduced density matrix (1RDM) γ (r, r′, ω) is chosen as the

FIG. 3. Excitation energies with CI and TDDFT methods for the excitation
to the first two excited states of 1	+ symmetry of HeH+. Solid lines full-CI
reference, dashed lines TDDFT with the BP86 functional.
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FIG. 4. Oscillator strengths with CI and TDDFT methods for the excitation
to the first two excited states of 1	+ symmetry of HeH+. Solid lines full-CI
reference, dashed lines TDDFT with the BP86 functional.

one-electron function g(ω) of Eq. (1). The 1RDM
response in Eq. (1) is represented as the vector
δγ (ω) = (δγ R(ω), δn(ω))T , where δγ R(ω) collects the
responses of the real part of the off-diagonal matrix elements
δγ R

pq(ω), while δn(ω) is the response of the diagonal elements
np = γ pp. The matrix elements of the perturbed 1RDM are
expressed in the natural orbital (NO) basis. The natural or-
bitals are defined as the eigenfunctions of the 1RDM and the
corresponding eigenvalues are called the occupation numbers.

The adiabatic approximation (4) is also applied in
TDDMFT,19 but then it encounters a serious problem with the
proper evaluation of the response of the occupation numbers
δn(ω).17, 19–22 It can be proven17, 21, 22 that an adiabatic TD-
DMFT with a functional �0[γ0] produces an incorrect zero
response of the NO occupations, δn(ω) = 0. This makes it
impossible to describe diagonal double excitations of the type
(φi)2 → (φa)2, which entail a response in the occupation num-
bers (diagonal elements of the 1RDM). This deficiency also
holds for the conventionally used functionals that depend on
the NOs and NO occupations, �0[{φ0

i }, {n0
i }], when they do

not depend, just as the 1RDM itself, on the phases of the NOs
φ0

i . Furthermore, it has been shown that the adiabatic TD-
DMFT results are quite poor if no phase dependence, as in-
troduced in the PINO theory, is allowed in the functional. One
can write the exact ground state energy of the two-electron
system with exchange integrals 〈ij|ji〉, so that the energy is
not dependent on the phases of the NOs. This defines the so-
called Löwdin-Shull density-matrix functional (DMLS).21 In
spite of the fact that the DMLS functional is exact for the
ground state energy, and is a true density matrix functional,
the adiabatic TDDMFT calculations with this functional, for
e.g., the 1	+

u H2 excitation energies yield a completely spuri-
ous excitation spectrum, see Figure 5.23

This problem of adiabatic TDDMFT was addressed re-
cently with the development of phase-including NO (PINO)
functional theory,21, 24, 25 which goes beyond the TDDMFT
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FIG. 5. Excitation energies (black lines) of the lowest excitations of 1	+
u

symmetry of H2 with adiabatic TDDMFT using the true density matrix func-
tional DMLS, compared to the full-CI first 4 excitations (red lines) as refer-
ence.

proper. In the response PINO theory, the same response
δγ (ω) = (δγ R(ω), δn(ω))T is considered in (1) as in TD-
DMFT. However, more variables are inserted into the repre-
sentation of �(ω) in (2) and (3). These additional variables as-
sume the form of the phases of the NOs, so that �0 is consid-
ered in adiabatic PINO theory as a functional �0[{�π0

i }, {n0
i }]

of orbitals and their phases, i.e., the phase-including NOs or
PINOs �π 0

i and their occupations n0
i . A proof of principle has

been given for prototype two-electron systems that adiabatic
response PINO theory is able to resolve the above mentioned
problematic cases of adiabatic TDDFT in calculation of exci-
tation energies ωα .26

In this paper, the expression for the oscillator strengths
fα of electronic excitations is derived within the adiabatic re-
sponse PINO theory and fα is calculated for the prototype
two-electron molecules HeH+ and H2. In Sec. II, a full
account of the response equations (1) and (2), as well
as the eigenvalue problem (4) of adiabatic PINO theory
is presented. The adiabatic PINO matrix �0[{�π0

i }, {n0
i }] is

obtained by taking (functional) derivatives of the ground
state functional for the electron-electron interaction energy
with respect to the PINOs �π 0

i and their occupations n0
i .

The dynamic dipole polarizability tensor α(ω) is expressed
through the response function χ(ω) of (2). The eigende-
composition of χ (ω) is employed to represent α(ω) with
the sum-over-states formula. From the residues of this for-
mula, an expression is derived, which relates the oscil-
lator strengths fα directly to the eigenvectors of �0. In
Sec. III, the results of the PINO calculations of fα are pre-
sented for the lowest excitations along the dissociating bond
coordinate R of the prototype two-electron molecules HeH+

and H2. The response matrices are obtained from the electron-
electron interaction energy in terms of NOs, occupation num-
bers and orbital phases, which are available from the work
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of Löwdin and Shull.27 This is an explicit PINO functional
(the phase-including Löwdin-Shull functional, PILS) for the
electron-electron interaction energy. The PINO calculations
reproduce the reference fα values for all considered excita-
tions in HeH+ and H2 if the phase information in PILS is com-
pletely correct. We comment on deviations for the case there
are errors in the phase choices in Sec. III. Importantly, even
with a severely reduced size of the response matrix �0(ω),
the oscillator strengths fα remain very accurate, as we have
found earlier for the excitation energies.26 The shape of the
fα(R) curves is rationalized with a decomposition analysis
of the corresponding transition densities and dipole integrals
in the basis of the KS molecular orbitals (MOs). Such an
analysis also explains why the TDDFT f (11	+

u )(R) does not
seem to fail so spectacularly as the excitation energy does. In
Sec. IV, the conclusions are drawn.

II. PINO OSCILLATOR STRENGTHS

In adiabatic PINO theory, the matrix response Eqs. (1)
can be written in the ground-state PINO basis as21, 24

(ω21 − �0)(A+)−
1
2 X(ω) =

√
A+V a(ω). (5)

Here, the vector X(ω) contains the response of the density
matrix

X(ω) =
(

δγ R(ω)

δn(ω)

)
, (6)

where δγ R(ω) is the real part of the change in unique off-
diagonal density matrix elements and δn(ω) is the change in
the diagonal elements (occupation numbers). The right-hand
side of (5) contains a modified perturbing potential (a denotes
axis x, y, or z)

V a =
(

δva
OD(ω)

1
2δva

D(ω)

)
, (7)

which is partitioned into its off-diagonal (OD: va
pq, p > q)

and diagonal (D: va
pp(ω)) parts. We consider a simple dipole

perturbation along the axis a, so va
pq = 〈�π 0

p|ra|�π0
q〉, so that

V a is expressed through the dipole integrals. The inverse re-
sponse matrix χ−1(ω) in (5) has the form (2) where the adia-
batic PINO �0 is expressed as

�0 =
√

A+ D
√

A+. (8)

The matrices A+ in Eqs. (5) and (8) and D in Eq. (8) are
obtained as second order derivatives of the PINO ground-state
functional W 0[{�π0

i }, {n0
i }] of the electron-electron interaction

energy with respect to the PINOs �π 0
i and their occupations n0

i

(See the Appendix for definitions of the matrices).
The PINO response matrix χ (ω) is obtained with the in-

version of the symmetric matrix in the left-hand side of (5)
through the eigendecomposition

(�0 − ω21)−1 =
∑

α

Fα FT
α

ω2
α − ω2

, (9)

where Fα are the eigenvectors of the adiabatic �0 of (8). In-
sertion of (9) in (5) with the subsequent inversion of the left-

hand-side matrix yields the response matrix

χ (ω) =
∑

α

√
A+ Fα FT

α

√
A+

2
(
ω2 − ω2

α

) . (10)

With Eq. (10), the dynamic dipole polarizability tensor αab(ω)
can be obtained as minus the dipole-dipole response function

αab(ω) = −4V T
a χ(ω)V b. (11)

Insertion of (10)) in (11) produces the sum-over-states for-
mula for the polarizability

αab(ω) = 2
∑

α

V T
a

√
A+ Fα FT

α

√
A+V b

ω2
α − ω2

. (12)

The physical interpretation of this sum-over-states represen-
tation of αab(ω) is that its poles are the excitation ener-
gies, while the residues yield the corresponding oscillator
strengths. Specifically, for the diagonal component of (12)
one has

αaa(ω) = 2
∑

α

∣∣V T
a

√
A+ Fα

∣∣2

ω2
α − ω2

. (13)

For each excitation, the average of the residues of (13) over
three dipole directions yields the desired equation for the cor-
responding oscillator strength fα

f (α) = 2

3

(∣∣V T
x

√
A+ Fα

∣∣2 + ∣∣V T
y

√
A+ Fα

∣∣2

+ ∣∣V T
z

√
A+ Fα

∣∣2)
. (14)

The product V T
a

√
A+ Fα in this equation can be related to the

transition dipole moment Mτ
a (α), which enters the expression

for fα , see below. In order to make this relation, we consider
the real part of the spectral Lehman representation of the re-
sponse function

χ(ω) =
∑

α


γ R(α) ⊗ 
γ R(α)
2ωα

ω2 − ω2
α

, (15)

where 
γ R(α) is the real part of transition 1RDM


γkl(α) = 〈�0|γ̂kl|�α〉. (16)

From the comparison of (15) with (10) follows the relation


γ R(α) =
√

A+ Fα

2
√

ωα

, (17)

so that, finally, we have the expression of Mτ
a (α)

V T
a

√
A+ Fα√
ωα

= V T
a 
γ R(α) = Mτ

a (α) (18)

through the dipole integral vector V a and the transition
1RDM 
γ R(α). With (17), the master Eq. (14) for f(α) is
formally converted to the conventional formula

f (α) = 2

3
ωα

∑
a=x,y,z

Mτ
a (α)2. (19)

In practice, we obtain the eigenvectors Fα from the diagonal-
ization of �0. The transition density matrix elements, which
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we use to interpret the corresponding excited state26 then fol-
low directly from Eq. (17).

III. CALCULATION OF OSCILLATOR STRENGTHS
WITH ADIABATIC PINO THEORY

In this section, the results of the adiabatic PINO calcu-
lations of the oscillator strengths fα of (14) are presented.
The curves of fα as a function of the bond distance are cal-
culated for the lowest two 1	+

u excitations in the H2 molecule
and the lowest two 1	+ excitations in the HeH+ molecule.
At first, the ground-state calculations are carried out with the
phase-including functional W 0[{�π0

i }, {n0
i }], which is the en-

ergy expression for the electron-electron interaction energy
of the two-electron wavefunction in NO basis according to the
analysis of Löwdin and Shull (PILS)27 for closed-shell singlet
systems,

W 0
[{

�π 0
i

}
,
{
n0

i

}] = 1

2

∑
i,j

√
n0

i n
0
j

〈
�π 0

i
�π 0

i

∣∣�π 0
j
�π 0

j

〉
. (20)

This expression follows immediately from the spatial
part of the CI wavefunction in NO basis, �(r1, r2)

= ∑
i Ciφ

0
i (r1)φ0

i (r2), where Ci = fi

√
n0

i /2. (A completely
occupied NO has an occupation number of 2 in our notation.)
The prefactor fi is either +1 or −1. We consider the PINOs
�π 0

i of the form �π 0
i (r) = e−iθ0

i φ0
i (r) where φ0

i (r) is a real NO.
The phases e−iθ0

i can generate the +1 or −1 prefactor with
θ0
i = 0 and π /2, respectively. In principle, the phases can also

be optimized, but here we have simply chosen the phases ac-
cording to the known rules that they usually obey. Specifi-
cally, for simple two-electron systems (atoms, molecules at
Re) the phase of the first (heavily occupied) NO is conven-
tionally chosen θ0

i = 0, fi = +1 (fixing the one free overall
phase factor in the wavefunction), and for all the “virtual”
(weakly occupied) NOs θ0

i = π/2, fi = −1. So, the standard
DMFT-LS expression for the ground-state electron-electron
interaction energy

W = 1

2

∑
i,j

fifj

√
n0

i n
0
j

〈
φ0

i φ
0
i

∣∣φ0
j φ

0
j

〉
(21)

is recovered where f1 = 1 and fi = −1, i > 1. We also use this
Ansatz for the H2 molecule for RH–H < 5.0 Bohr. However,
this sign convention gives errors in the considered excitation
energies of up to 2 mHartree when RH–H > 5.0 Bohr. Even
larger errors are observed for excitations not considered in
this article. This stems from the fact that the used sign conven-
tion is erroneous in those cases. From accurate ground state
CI calculations, it is known that the signs of the weakly occu-
pied second σ u NO, 2σ u, and first weakly occupied πg NO,
1πg, are +1 when RH–H > 5 Bohr.28 We use this sign conven-
tion for the RH–H > 5 Bohr calculations. These sign changes
correct the deficient excitation energy behavior.

The minimum of the total energy, which uses W of (21),
is found in an iterative process. Each iteration consists of two
steps: in the first step, the real NOs φ0

i (r) are optimized while
keeping the occupations fixed and in the second step the occu-
pations n0

i are optimized. The optimization of the NOs φ0
i (r)

at a given set of occupation numbers uses two strategies: it

is initially carried out by (iterative) diagonalization of the ef-
fective Fockian for the NOs of Ref. 29. Upon approach of
convergence, we switch to a direct optimization scheme us-
ing gradients of the NO coefficients.30, 31 The optimization of
the occupation numbers at a given set of NOs is carried out
with the gradients of the energy with respect to the occupa-
tion numbers. At the next stage, when NOs and occupations
have been determined, the adiabatic PINO response calcula-
tions are performed according to Refs. 21 and 24. The PINO
response matrices A+ and D (see the Appendix for their def-
initions) are obtained with differentiation of the functional
W 0[{�π0

i }, {n0
i }] of (20) with respect to the PINOs �π 0

i , �π 0∗
i and

their occupations n0
i . The integrals occurring in these matri-

ces are obtained with the GAMESS-UK package.32 With these
matrices, the eigenvalue problem (4) is solved for the excita-
tion energies ωα and the oscillator strengths fα are calculated
from the formula (14). Reference values for the fα are ob-
tained from the response coupled cluster singles and doubles
(CCSD) calculations with the DALTON package.33 All calcu-
lations are performed in the aug-cc-pVTZ basis.34

Note, that full PINO calculations have a higher compu-
tational cost than adiabatic TDDFT because the dimension of
the response matrices is of the order n(n + 1)/2 if n is the num-
ber of basis functions (the TDDFT size is noccnvirt). However,
as was shown in Ref. 26, one can strongly reduce the size of
the total response matrix �0 to roughly the same size as the
TDDFT response matrix and still retain a good accuracy. To
assess the performance of these restricted approaches in cal-
culations of fα , the so-called R0, R1, and R2 restricted vari-
ants are used in this paper. These variants are characterized
by restrictions on the length of the response vector δγ ia that
is used (i.e., restriction on the dimension of the response ma-
trix). We denote the N/2 NOs with the highest occupations
as the “strongly occupied” ones, or just the occupied orbitals.
Their occupation numbers are all >1, indeed most are close
to 2 and only a few will have, upon dissociation, occupa-
tions that approach 1. The remaining NOs with occupations
<1, usually close to 0 are called the “weakly occupied” or-
bitals, or simply the “unoccupied orbitals” or “virtuals.” The
(strongly) occupied orbital with the lowest occupation usually
corresponds to the HOMO in the Hartree-Fock model and is
denoted the “highest occupied NO” or HONO, the “unoccu-
pied” NO with the highest occupation is denoted the “lowest
unoccupied NO” or LUNO. If a response vector obtained for
a certain excitation energy ωα has a single large δγ ia element,
it corresponds to a singly excited state i → a, see Ref. 26.
If two diagonal elements δγ ii and δγ aa are large, we are deal-
ing with a diagonal double excitation from configuration (φ0

i )2

→ (φ0
a)2. All elements related to the occupation number (di-

agonal density matrix) response δγ pp = δn0
p, p = 1, . . . , n are

always retained in the response vector, so double excitations
can be obtained, which is not the case in adiabatic TDDFT.
In the variants R0-R2, the off-diagonal elements of δγ are
restricted as follows. In R0, one only retains off-diagonal ele-
ments δγ ia, where i indexes one of the N/2 strongly occupied
NOs. The index a always runs over all NOs. The R1 variant
extends the range of the i index to the lowest “unoccupied”
natural orbital (HONO+1=LUNO). Both off-diagonal dou-
ble excitations, to a configuration (φ0

LUNO)1(φ0
a)1, and single
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FIG. 6. Excitation energies for the first 2 1	+
u excitations. Solid line CCSD

reference, dashed line R2, dotted-dashed line R1, dotted line R0, black 11	+
u ,

red 21	+
u .

excitation out of the doubly occupied (1σ u)2 (which config-
uration is present in the ground state wavefunction at elon-
gated distances) into a virtual φ0

a , are represented with an off-
diagonal δγ LUNO,a element.26 Finally, the R2 variant extends
the range of the i index one step further to include LUNO+1.

A. Hydrogen molecule

Figure 6 displays the excitation energy curves ωα(R)
calculated for the two lowest excited 1	+

u states of the H2

molecule. As was already established in Ref. 26, the R1 and
R2 variants reproduce the reference curves fairly well, while
the R0 variant has a much larger deviation. The composition
of the PINO transition 1RDM 
γ R(α) in a suitable basis de-
scribes the orbital nature of the excitation. Tables I and II
compare the expansions of 
γ R(α) in the NO and KS ba-
sis sets for two lowest 1	+

u excitations of H2 at the equilib-
rium bond distance (Re = 1.4 Bohr). The KS MOs are ob-
tained from the corresponding ground-state calculation with
the BP86 DFT functional.

This comparison reveals a striking difference between
the KS and NO 
γ R(α) representations. In particular, in
the KS representation the leading term of 
γ R(11	+

u ) is

γ R

1σg1σu
(11	+

u ), the second largest term 
γ R
1σg2σu

(11	+
u ) is

about an order of magnitude smaller, while other terms are
negligible. In its turn, the leading term of 
γ R for the sec-
ond transition, 
γ R(21	+

u ), is 
γ R
1σg2σu

(21	+
u ). This means,

that the 11	+
u excitation can be interpreted as the single KS

orbital transition 1σ g → 1σ u, while the 21	+
u excitation is,

mainly, the 1σ g → 2σ u orbital transition. In contrast, the NO
representation does not provide such a simple orbital inter-
pretation of the considered excitations. Indeed, for both 11	+

u

and 21	+
u many NO elements of 
γ R(α) have a comparable

magnitude.

TABLE I. Decomposition of the R2 transition dipole moment for the H2

11	+
u state at 1.4 Bohr. The 
γ R

ia column represents the transition density

(
√

A+ Fα/
√

ωα). First the decomposition in terms of NOs and subsequently
the decomposition in terms of KS MOs.

vz
ia 
γ R

ia Mτ
ia

NO i NO a

1 2 0.910 0.570 0.519
1 7 0.364 0.534 0.194
1 23 0.178 0.443 0.079
1 32 0.062 0.216 0.013
1 37 0.106 0.356 0.038
1 41 0.060 0.281 0.017
1 44 0.078 0.468 0.039
1 49 0.029 0.374 0.011
1 50 0.020 0.603 0.012

KS orbitals
1σ g1σ u 0.705 1.328 0.936
1σ g2σ u 0.669 0.148 0.099

The revealed difference between the KS and NO repre-
sentations is understandable. In the former case, the KS or-
bitals ψ i are ordered according to their orbital energies εi.
Then, one can expect that the lowest excitations are pro-
duced, predominantly, with the transitions ψ i → ψa between
the frontier orbitals with the smallest energy differences
εa − εi. Indeed, the latter quantity serves as a reliable zero-
order adiabatic TDDFT estimate of the energies of the low-
est excitations in compact systems. It is a fortunate prop-
erty of the KS MO basis, and the KS orbital energies for
the virtual (and occupied) orbitals, that excitations can, in
contrast to the HF case, often be described as predomi-
nantly single orbital transitions, with the orbital energy dif-
ference as a very good first approximation to the excitation
energy.16, 35

In contrast, the NOs φi are ordered according to their oc-
cupations ni and this ordering provides no information about
the relative “energy” of the ordered NOs. The occupation
number does not provide information on the possible involve-
ment of an NO in an excitation: a (very) low occupation does
not imply at all that the NO is less likely to be occupied in
a low-lying excitation. This is corroborated by the results of

TABLE II. Decomposition of the R2 transition dipole moment for the H2

21	+
u state at 1.4 Bohr. The 
γ R

ia column represents the transition density

(
√

A+ Fα/
√

ωα). First the decomposition in terms of NOs and subsequently
the decomposition in terms of KS MOs.

vz
ia 
γ R

ia Mτ
ia

NO i NO a

1 2 0.910 0.571 0.520
1 7 0.364 0.388 0.141
1 23 0.179 0.229 0.041
1 49 0.029 − 0.296 − 0.009
1 50 0.020 − 1.094 − 0.022

KS orbitals
1σ g1σ u 0.705 − 0.236 − 0.166
1σ g2σ u 0.669 1.325 0.887
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TABLE III. Transformation matrix between σ u natural orbitals and σ u KS BP86 orbitals at RH–H = 1.4 Bohr. The NOs are ordered according to their
occupation number, the MOs are ordered according to their orbital energy.

Kohn–Sham MO

NO 2 4 11 12 21 26 30 32 44 48 50

2 0.459 − 0.587 0.401 − 0.367 − 0.276 − 0.228 0.078 − 0.116 − 0.011 0.026 − 0.006
7 0.323 − 0.297 − 0.007 0.080 0.373 0.391 − 0.308 0.553 0.152 − 0.274 − 0.102
15 0.060 − 0.038 0.034 0.131 − 0.143 0.330 0.552 0.238 − 0.652 − 0.149 − 0.198
23 − 0.264 0.175 0.154 − 0.172 − 0.387 − 0.158 0.130 0.289 0.186 − 0.625 0.382
32 0.133 − 0.055 0.021 0.283 − 0.206 0.469 0.414 − 0.189 0.460 0.244 0.398
37 0.216 − 0.093 − 0.268 0.111 0.325 − 0.158 0.045 − 0.460 − 0.330 − 0.350 0.535
41 0.179 − 0.024 − 0.173 0.161 0.043 − 0.035 0.214 − 0.285 0.392 − 0.522 − 0.596
43 0.047 − 0.007 − 0.263 − 0.275 0.412 − 0.378 0.575 0.351 0.203 0.208 0.059
44 − 0.319 0.016 0.275 − 0.590 0.390 0.454 0.107 − 0.299 0.028 − 0.115 − 0.034
49 0.289 0.167 − 0.639 − 0.517 − 0.358 0.255 − 0.132 − 0.004 − 0.032 0.025 − 0.002
50 − 0.572 − 0.703 − 0.399 0.047 − 0.124 0.028 − 0.013 − 0.003 0.013 − 0.007 − 0.015

Ref. 17, which demonstrate that the NOs 109 and 110 (in
the numbering by decreasing occupation) are important in
the low-lying excitations of H2 at 5.0 Bohr. Furthermore, the
NOs are solutions to a one-particle equation, such as the HF
and KS orbitals, but the electronic “potential” is not the cus-
tomary exchange or exchange-correlation potential but it is
obtained according to Gilbert36 as the functional derivative
δW/δγ (r, r′) of the electron-electron interaction energy W .
This nonlocal potential leads to equal orbital energies for all
fractionally occupied NOs (complete degeneracy). There is
therefore no contradiction if the expansion of a given NO in
the KS basis would contain considerable contributions from
both “low”- and “high”-energy KS orbitals. The suggestion
from Tables I and II, that the NOs (at least the virtual ones)
are strong mixtures of KS MOs is confirmed with Table III,
which presents the NO-KS transformation matrix for the NOs
and MOs of Tables I and II. One can see from Table III, that
all the NOs have considerable contributions from either the
1σ u or 2σ u KS MO, or from both low-energy KS MOs as
well as from various higher-energy KS MOs. This explains
the observed strong mixture of NOs listed in Tables I and II
for the lowest 11	+

u and 21	+
u excitations. This feature of the

NO representation makes its use for the purpose of the or-
bital analysis of excited states rather inconvenient. Our calcu-
lations do not find a confirmation of the result that an excited
state can be described as a simple change in occupation num-
ber of largely unmodified NOs, as proved to be the case for a
low-lying excited state in the model calculations of Ref. 37.
On the other hand, the KS representation, as observed above,
appears to be favorable for an orbital description of excita-
tions, so that only the latter orbital representation of the PINO
quantities will be used in the rest of this section.

Figure 7 presents oscillator strength curves fα(R) for the
11	+

u and 21	+
u states of H2. As in the above mentioned

case of excitation energies, the R0 variant produces substan-
tial errors for the calculated fα(R), while R1 and R2 per-
form very well. The only exception is the region R > 7.5
Bohr for the higher 21	+

u state, where all the restricted vari-
ants exhibit appreciable deviations. The remarkable feature of
Fig. 7 is a very different shape of the curves fα(R) for the two
lowest excited states. The curve f (11	+

u )(R) has a bell-like

shape with the maximum near 3 Bohr. In contrast, the curve
f (21	+

u )(R) exhibits two maxima near 0.5 and 7.5 Bohr and
it passes through a near-zero minimum near 4.0 Bohr (see
Fig. 7).

To interpret the shape of the fα(R) curves in Fig. 7,
the factors V z

ia and 
γ R
ia (α) of the transition dipole mo-

ment Mτ
ia(α) = V z

ia
γ R
ia (α) are displayed for the contribut-

ing orbital transitions. Table IV presents Mτ (11	+
u ) and

its leading components Mτ
ia(11	+

u ), V z
ia , and 
γ R

ia (11	+
u )

calculated with R2 at various bond distances of H2. The
element 
γ R

1σg1σu
(11	+

u ) steadily decreases with R and it
vanishes at R = 7 Bohr. Eventually, this leads to the de-
creasing oscillator strength f (11	+

u )(R) for larger R, which
is also true for the reference CCSD curve (see Fig. 7).
Yet, for all R considered, the 1σ g1σ u configuration is the
main term of the FCI wave function for the excited 11	+

u

state, �1(11	+
u ) ∼ 1σg1σu. That still the transition density

FIG. 7. Oscillator strengths for the first 2 1	+
u excitations. Solid line CCSD

reference, dashed line R2, dotted-dashed line R1, dotted line R0, black 11	+
u ,

red 21	+
u .
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TABLE IV. Decomposition of the transition dipole moment for the H2 11	+
u state into the transition density matrix and dipole matrix element factors for

the contributing orbital excitations in the KS basis, at several distances. Calculations with the restricted R2 variant of TD-PINOFT and comparison to full CI
(CCSD).

1.4 2.0 3.0 4.0 7.0

RHe–H vz
ia 
γ R

ia Mτ vz
ia 
γ R

ia Mτ vz
ia 
γ R

ia Mτ vz
ia 
γ R

ia Mτ vz
ia 
γ R

ia Mτ

1σ g1σ u 0.705 1.328 0.936 1.192 1.198 1.429 1.643 0.872 1.433 2.066 0.515 1.065 3.501 . . . . . .
1σ g2σ u 0.669 0.148 0.099 0.346 − 0.362 − 0.125 0.040 0.480 0.019 0.206 0.387 0.080 − 0.369 − 0.206 0.076
2σ g1σ u . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.449 0.055 − 0.025 0.107 0.464 0.050
2σ g2σ u . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3σ g1σ u . . . . . . . . . . . . . . . . . . 1.407 0.066 0.093 1.376 0.182 0.251 1.229 0.351 0.432
R2 Mτ (11	+

u ) 0.950 1.271 1.586 1.444 0.677
CCSD Mτ (11	+

u ) 0.977 1.309 1.606 1.434 0.631

matrix element 
γ R
1σg1σu

(11	+
u ) disappears is a direct mani-

festation of the strong non-dynamical electron correlation in
the ground �0(11	+

g ) state of the stretched H2. The point
is that non-dynamical correlation dictates a strong mixing of
the configurations 1σ 2

g and 1σ 2
u in �0, �0(11	+

g ) ≈ cg|1σ 2
g |

− cu|1σ 2
u |, cg ∼ cu. As a result, the corresponding terms of

the opposite signs compensate each other in the transition
1RDM 
γ R

1σg1σu
(11	+

u ) (note that γ̂kl(t) = ĉ
†
l (t)ĉk(t)),


γ R
1σg1σu

(11	+
u ) = 〈

�0

∣∣γ̂1σg1σu

∣∣�1
〉

≈ cg

〈∣∣1σ 2
g

∣∣∣∣γ̂1σg1σu

∣∣∣∣1
(1σg1σu)

∣∣〉
− cu

〈∣∣1σ 2
u

∣∣∣∣γ̂1σg1σu

∣∣∣∣1
(1σg1σu)

∣∣〉 ∼ 0. (22)

Thus, we have the seemingly paradoxical situation that
the transition 1RDM misses the “single excitation” element

γ R

1σg1σu
while the excited state has this singly-excited char-

acter. One may call this an accidentally forbidden (due to
the strong non-dynamical correlation in the ground state) 1σ g

→ 1σ u transition. This trend derived from the character of
the CI wavefunction is faithfully reproduced by the transition
1RDM 
γ R

1σg1σu
of the PINO response theory.

The shape of the oscillator strength curve (Fig. 7) can
now be understood as follows. For the 1σ g → 1σ u tran-
sition, it is easy to see, using the fact that these orbitals
are approximately (1sa ± 1sb)/

√
2S ± 2, that the dipole in-

tegral V z
1σg1σu

= ∫
dr z 1σg(r)1σu(r) becomes proportional to

the bond length R. Therefore, as long as non-dynamical cor-

relation is not strong, which is the case till ca. 3 Bohr, the tran-
sition dipole Mτ (α) (the square of which enters the oscillator
strength f(α)) increases because of the increase of the V z

1σg1σu

factor. At longer distances, however, the 1σ g → 1σ u tran-
sition becomes accidentally forbidden due to the strong non-
dynamical correlation in the ground state and 
γ R

1σg1σu
(11	+

u )
vanishes by virtue of Eq. (22). This combination of the in-
creasing V z

1σg1σu
and decreasing 
γ R

1σg1σu
(11	+

u ) fully ex-
plains the observed bell-like shape of the oscillator strength
f (11	+

u )(R) (see Fig. 7). We note that at larger distances also
other excitations enter the 11	+

u state, and affect the oscil-
lator strength, cf. the 1σ g2σ u, 2σ g1σ u and notably 3σ g1σ u

contributions at 7 Bohr.
Table V presents Mτ (21	+

u ) and its leading components
Mτ

ia(21	+
u ), V z

ia , and 
γ R
ia (21	+

u ) (evidently, V z
ia does not

depend on the excited state, so that the corresponding columns
of Tables IV and V are identical). This state has predominant
1σ g → 2σ u character at all distances, although at very long
distances (cf. 7 Bohr in the Table) considerable admixture of
other transitions (notably, 1σ u → 2σ g) occurs. However, un-
like the increasing dipole integral V z

1σg1σu
mentioned above,

the dipole integral V z
1σg2σu

passes through a near-zero mini-
mum at R = 3 Bohr (see Table V). This is caused by the
atomic orbital character of the 2σ u. For instance, when this
orbital becomes predominantly 2sa − 2sb the dipole integral
becomes proportional to R〈1sa|2sb〉, but the two-center over-
lap 〈1sa|2sb〉 goes to zero. At larger R values, exemplified by
the 7 Bohr entry in the Table, the character of the excited state
becomes strongly mixed and several contributions to the tran-

TABLE V. Decomposition of the transition dipole moment for the H2 21	+
u state into the transition density matrix and dipole matrix element factors for

the contributing orbital excitations in the KS basis, at several distances. Calculations with the restricted R2 variant of TD-PINOFT and comparison to full CI
(CCSD).

1.4 2.0 3.0 4.0 7.0

RHe–H vz
ia 
γ R

ia Mτ vz
ia 
γ R

ia Mτ vz
ia 
γ R

ia Mτ vz
ia 
γ R

ia Mτ vz
ia 
γ R

ia Mτ

1σ g1σ u 0.705 − 0.236 − 0.166 1.192 0.189 0.225 1.643 0.220 0.361 2.066 − 0.051 − 0.105 3.501 0.079 0.276
1σ g2σ u 0.669 1.325 0.887 0.346 1.292 0.447 0.040 − 1.200 − 0.047 0.206 1.018 0.210 − 0.369 − 0.726 0.268
2σ g1σ u . . . . . . . . . . . . . . . . . . 0.785 − 0.081 − 0.064 0.449 0.318 0.143 0.107 − 0.582 − 0.062
2σ g2σ u . . . . . . . . . . . . . . . . . . 3.974 0.026 0.102 4.167 − 0.052 − 0.215 4.530 − 0.073 − 0.330
3σ g1σ u . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.229 0.287 0.353
R2 Mτ (21	+

u ) 0.703 0.700 0.413 0.044 0.576
CCSD Mτ (21	+

u ) 0.687 0.656 0.330 0.106 0.562
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TABLE VI. Decomposition of the transition dipole moment for the HeH+ 21	+ state at several distances in KS basis.

1.463 2.5 4.0 6.0 10.0

RHe–H vz
ia 
γ R

ia Mτ vz
ia 
γ R

ia Mτ vz
ia 
γ R

ia Mτ vz
ia 
γ R

ia Mτ vz
ia 
γ R

ia Mτ

1σ2σ 0.624 1.300 0.811 0.671 1.299 0.872 0.442 1.368 0.605 0.117 1.385 0.162 0.004 1.390 0.005
1σ1σ . . . . . . . . . − 0.625 0.021 − 0.013 − 1.248 0.054 − 0.067 . . . . . . . . . . . . . . . . . .
2σ2σ . . . . . . . . . 1.504 − 0.022 − 0.034 2.580 − 0.056 − 0.144 . . . . . . . . . . . . . . . . . .
R2 Mτ (21	+) 0.804 0.812 0.426 0.105 0.003
CCSD Mτ (21	+) 0.807 0.814 0.427 0.105 0.003

sition dipole moment arise, which make it deviate from the
near zero value at ca. 4 Bohr. This explains the observed shape
of the reference curve f FCI(21	+

u )(R), which passes through
a near-zero minimum at R = 4 Bohr, while the PINO R1 and
R2 curves faithfully reproduce this shape (see Fig. 7).

B. Failure of adiabatic TDDFT

We can now explain why the adiabatic TDDFT oscil-
lator strength for the lowest excited state, 11	+

u , in Fig. 2,
although not quantitatively accurate, appears to give quali-
tatively the correct behavior as function of the distance, in
spite of the completely wrong TDDFT excitation energy.9–12

This, indeed, is caused by a fortuitous cancelation of errors.
The influence of non-dynamical correlation on the shape of
the KS 1σ g and 1σ u orbitals participating in the leading 1σ g

→ 1σ u transition does not affect the above mentioned pro-
portionality to R of the dipole integral V z

1σg1σu
and this leads

to a much too large transition dipole Mτ
TDDFT(11	+

u ). How-
ever, the excitation energy ωTDDFT(11	+

u ) goes (erroneously)
to zero. Eventually, this last factor (cf. Eq. (19)) makes the os-
cillator strength decline to zero. We conclude that this decline
in the oscillator strength beyond 3 Bohr is not caused, as it
should, by the change in character of the ground state due to
nondynamic correlation at long distance, but happens because
the excitation energy tends erroneously to zero.

C. The HeH+ molecule

Figure 8 displays the excitation energy curves ωα(R) cal-
culated for the two lowest excited 21	+ and 31	+ states
of the HeH+ molecule. In this case, already R0 reproduces
the shapes of both reference curves rather closely, while the
R1 and R2 curves virtually coincide with the reference ones
(see Fig. 8). Judging from the transition 1RDM elements

γ R

ia (21	+) in the KS basis presented in Table VI, the 21	+

excitation can be interpreted at all R considered as, mainly,
the orbital transition 1σ → 2σ , which corresponds to the CT
excitation 1s(He)→ 1s(H). In its turn, judging from the ele-
ments 
γ R

ia (31	+) of Table VII, the 31	+ excitation can be
interpreted as, mainly, the orbital transition 1σ → 3σ , which
also corresponds to a CT excitation, this time the 1s(He)
→ 2s(H) excitation.

Figure 9 displays oscillator strength curves fα(R) for the
21	+ and 31	+ excited states of HeH+. In this case, only R0
displays a visible error of the curve f(21	+)(R) in the interval

R < 4 Bohr, while in all other cases the restricted PINO curves
virtually coincide with the reference ones. Interestingly, the
fα(R) curves for the two lowest states of HeH+ have a similar
shape as those for the two lowest states of H2 (Compare
Figures 7 and 9). In particular, the curve f(21	+)(R) has the
bell-like shape with the maximum near the equilibrium bond
distance Re = 1.46 Bohr. In its turn, f (31	+)(R) passes
through a near-zero minimum near R = 4 Bohr and it exhibits
a maximum near 5.5 Bohr. Both fα(R) vanish at longer R
(Fig. 9).

To interpret the shape of the f(21	+)(R) curve, the cor-
responding total transition dipole moment Mτ (21	+), the
leading contributions Mτ

ia(21	+) as well as the factors V z
ia

and 
γ R
ia (21	+) are presented in Table VI. The leading

transition 1RDM element 
γ R
1σ2σ (21	+) does not change

much with R, so that the shape of f(21	+)(R) is, ap-
parently, determined by the corresponding dipole integral
V z

1σ2σ and the excitation energy ω(21	+), the latter influ-
ences f(21	+)(R) through (19). Then, the combination of
the decreasing ω(21	+) (Fig. 8) and the increasing (for
R ≤ 2.5 Bohr) V z

1σ2σ (See Table VI) produces the max-
imum of f(21	+)(R) near Re = 1.46 Bohr (Fig. 9). At
larger R the dipole integral V z

1σ2σ vanishes due to the

FIG. 8. Excitation energies for the first 2 1	+ excitations. Solid line CCSD
reference, dashed line R2, dotted-dashed line R1, dotted line R0, black 21	+,
red 31	+.
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TABLE VII. Decomposition of the transition dipole moment for the HeH+ 31	+ state at several distances in KS basis.

1.463 2.5 4.0 6.0 10.0

RHe–H vz
ia 
γ R

ia Mτ vz
ia 
γ R

ia Mτ vz
ia 
γ R

ia Mτ vz
ia 
γ R

ia Mτ vz
ia 
γ R

ia Mτ

1σ2σ 0.624 − 0.072 − 0.045 0.671 − 0.022 −0.015 0.442 − 0.066 − 0.029 0.117 − 0.102 − 0.012 0.004 − 0.033 0.000
1σ3σ 0.146 1.351 0.197 0.132 1.297 0.171 0.048 − 0.834 − 0.040 0.143 1.109 0.159 0.047 1.047 0.049
1σ4σ 0.038 − 0.168 − 0.006 0.037 0.401 0.015 0.136 1.064 0.145 0.143 0.780 0.111 0.018 0.616 0.011
1σ5σ 0.152 0.161 0.025 0.168 0.097 0.016 0.304 − 0.169 − 0.051 0.215 − 0.027 − 0.006 0.001 − 0.648 0.000
1σ6σ 0.016 0.130 0.002 0.021 − 0.143 −0.003 0.109 0.110 0.012 0.133 0.122 0.016 0.075 − 0.018 − 0.001
1σ7σ 0.079 0.054 0.004 0.248 0.070 0.017 0.343 − 0.011 − 0.004 0.419 0.143 0.060 0.562 0.072 0.041
R2 Mτ (31	+) 0.176 0.202 0.064 0.313 0.091
CCSD Mτ (31	+) 0.176 0.203 0.065 0.316 0.092

vanishing overlap of the orbitals 1σ ≈ 1s(He) and 2σ

≈ 1s(H) localized on the different atoms, so that the resultant
f(21	+)(R) also vanishes.

To interpret the shape of the f(31	+)(R) curve, the to-
tal Mτ (31	+), the leading contributions Mτ

ia(31	+) and the
components V z

ia , 
γ R
ia (31	+) are presented in Table VII. The

dipole integral V z
1σ3σ corresponding to the leading transition

1RDM element 
γ R
1σ3σ (31	+) and the total Mτ (31	+) simul-

taneously pass through a near-zero minimum at R = 4 Bohr
(Table VII), thus causing the resultant f(31	+)(R) also pass
through a near-zero minimum near this point (Fig. 9). The dip
in the oscillator strength at R = 4 Bohr is caused by config-
uration mixing: the 31	+ state acquires majority 1σ → 4σ

character here, and its contribution to the transition dipole is
counteracted by opposite sign contributions from the remain-
ing 1σ → 2σ , 1σ → 3σ , and 1σ → 5σ excitation character.
At large R V z

1σ3σ vanishes due to the vanishing overlap of the
orbitals 1σ ≈ 1s(He) and 3σ ≈ 2pz(H) localized on the dif-
ferent atoms, so that the resultant f(31	+)(R) also vanishes
(Fig. 9).

FIG. 9. Oscillator strengths for the first 2 1	+ excitations. Solid line CCSD
reference, dashed line R2, dotted-dashed line R1, dotted line R0, black 21	+,
red 31	+.

IV. CONCLUSIONS

In this paper, the previous development of the TDDMFT
and PINO adiabatic response theories for electronic excitation
energies ωα is completed with the derivation of the expres-
sion for the corresponding oscillator strengths f(α). The latter
quantity and the related transition dipole moment Mτ (α) are
expressed through the eigenvector Fα and the A+ part of the
coupling matrix of the PINO eigenvalue equations for ωα as
well as through the dipole integral vector V a .

The main emphasis of this paper is on the quality of
the oscillator strength curves fα(R) for various bond distances
R, an important subject, which has received surprisingly lit-
tle attention in the literature. It is well-known that conven-
tional (adiabatic) TDDFT yields wrong excitation energies
upon bond elongation.9, 11, 12 In the present paper, the prob-
lem that TDDFT has with reliably estimating the oscillator
strengths fα(R) for dissociating bonds is highlighted. For the
prototype case of the 11	+

u excitation in the stretched H2

molecule, the qualitative resemblance of f TDDFT(11	+
u )(R)

to the reference curve is achieved only because of a com-
pensation of unphysical errors in various components of
f TDDFT(11	+

u ).
The highlighted problem of TDDFT is addressed with

the present application of the PINO theory to the calculation
of f(α). The extension of adiabatic TDDMFT to the phase-
including adiabatic PINO leads to the exact 1RDM response
theory for two-electron systems. Then, full adiabatic PINO
with the ground-state PILS functional (in which the PINO
phases are properly chosen) produces accurate fα(R) curves
for the lowest 1	+

u excitations in the prototype “two-electron-
bond” molecule H2 and for the lowest 1	+ CT excitations in
HeH+. Already, the restricted R1 and R2 PINO variants with
the strongly reduced size of the eigenvalue problem produce
high quality fα(R) curves in these cases.

An interesting result of this paper is the very different
shape in both H2 and HeH+ of the fα(R) curves calculated
for the lowest excitation (11	+

u and 21	+, respectively) and
the second lowest excitation (21	+

u and 31	+, respectively).
For both molecules, the fα(R) curves of the lowest excitations
have a bell-like shape, while those for the second lowest ex-
citations pass through a near-zero minimum near R = 4 Bohr.
This difference has been traced to the (changes in the) com-
position of the ground state and the excited states along the
dissociation coordinate.
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The interpretation of the nature of excitations is based on
the orbital-pair composition of the transition 1RDM 
γ R(α),
while the established trends of the fα(R) curves have been an-
alyzed with an orbital decomposition of the transition dipole
moment Mτ (α). The corresponding orbital analysis is carried
out in the representation of the KS MOs, since each lowest
excitation in question can be conveniently interpreted (for the
majority of the considered bond distances) just as a transition
between a single pair of frontier KS MOs. The NO represen-
tation lacks this convenient feature and quite a few NO tran-
sitions contribute significantly to a given lowest excitation.

Further application of the PINO theory to the calculation
of ωα and f(α) for larger molecules requires the development
of an approximate N-electron functional, which, just as the
two-electron PILS functional of the present paper, would pro-
vide a good quality of ωα(R) and fα(R) with the restricted
PINO calculations. This work is in progress.
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APPENDIX: PINO RESPONSE MATRICES

In this Appendix, the definitions of the matrices A+ and
D are given with double differentiation with respect to the
PINOs �π 0

i , �π 0∗
i and their occupations n0

i of the ground-state
functional W 0[{�π0

i }, {n0
i }] of the electron-electron interaction

energy of an N-electron system. Within this differentiation,
the first functional derivatives Wkl of W 0 with respect to the
PINOs,

Wkl =
∫

dr
∂W 0

∂�π 0
k(r)

�π 0
l (r), (A1)

are used to obtain the second derivatives with respect to the
PINOs,

K
�π
kl,ba =

∫
dr

[
∂(W †

kl − Wkl)

∂�π 0
b(r)

�π 0
a(r) − �π 0∗

b (r)
∂(W †

kl − Wkl)

∂�π 0∗
a (r)

]
,

(A2)

and the mixed second derivatives with respect to the PINOs
and their occupations,

Kn
kl,a = ∂(W †

kl − Wkl)

∂n0
a

. (A3)

The matrix A is defined by adding the one-electron response
contribution to (A2),

Akl,ba = (
n0

b − n0
a

)
(hkaδbl − δkahbl) + K

�π
kl,ba, (A4)

where hka are the matrix elements of the one-electron en-
ergy operator. The matrices A± are defined as the following

combinations:

A±
kl,ba = Akl,ba ± Akl,ab, (A5)

These derivatives can be derived straightforwardly from the
functional W 0 (20), used in this work. Explicit expressions
can be found in Ref. 25.

In its turn, the matrix D is defined through the auxiliary
matrices A−, N, C, and W as follows:

D =
(

N−1 A− N−1 N−1C

CT N−1 W

)
, (A6)

where the diagonal matrix N is composed from the differences
of the PINO occupations,

Nkl,ba = (
n0

l − n0
k

)
δkaδbl . (A7)

The auxiliary matrix C in (A6) is defined with the mixed sec-
ond derivatives (A3),

Ckl,a = hkl(δal − δka) + Kn
kl,a, (A8)

while the matrix W is the second derivative of W 0 with re-
spect to the PINO occupations

Wk,a = 1

2

∂2W

∂n0
k∂n0

a

. (A9)
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