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The non-vanishing of the natural orbital (NO) occupation numbers of the one-particle density matrix
of many-body systems has important consequences for the existence of a density matrix-potential
mapping for nonlocal potentials in reduced density matrix functional theory and for the validity of
the extended Koopmans’ theorem. On the basis of Weyl’s theorem we give a connection between
the differentiability properties of the ground state wavefunction and the rate at which the natural
occupations approach zero when ordered as a descending series. We show, in particular, that the
presence of a Coulomb cusp in the wavefunction leads, in general, to a power law decay of the natural
occupations, whereas infinitely differentiable wavefunctions typically have natural occupations that
decay exponentially. We analyze for a number of explicit examples of two-particle systems that
in case the wavefunction is non-analytic at its spatial diagonal (for instance, due to the presence
of a Coulomb cusp) the natural orbital occupations are non-vanishing. We further derive a more
general criterium for the non-vanishing of NO occupations for two-particle wavefunctions with a
certain separability structure. On the basis of this criterium we show that for a two-particle system of
harmonically confined electrons with a Coulombic interaction (the so-called Hookium) the natural
orbital occupations never vanish. © 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4820419]
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. INTRODUCTION

The fractional occupation numbers #; of the correlated
one-body reduced density matrix (1IRDM) have intrigued
many scientists in the past decades. They are defined by the
eigenvalue equation

/dx/ y(x,X)¢;(X) = n; ¢;(x), (1)

where the 1RDM itself is defined in terms of the usual cre-
ation and annihilation field operators as

y(x, X) = (WP (x)| W)

for a state |) where X := ro is a space-spin coordinate. The
one-particle orbitals ¢;(x) in Eq. (1) are denoted as the natu-
ral orbitals (NOs) whereas the eigenvalues n; are called the
NO occupation numbers. As an integral kernel the 1RDM
is a bounded linear Hermitian operator with an infinite but
countable eigenvalue spectrum and the set of all NOs form
a basis in the set of quadratically integrable functions. If the
state |W) is fermionic it is not difficult to prove that 0 < n;
< 1.' In the following, we will restrict ourselves to electronic
systems such that this property holds. The fact that the oc-
cupation numbers can also have non-integer values between
zero and one is one of the most distinct features of interact-
ing systems compared to non-interacting systems which can
only have integer occupation numbers typically. Therefore,
the occupation numbers reflect strongly the electronic corre-
lations present in the system under consideration. A system is
considered weakly correlating when the occupation numbers
differ only slightly from zero or one, in which case the full
many-electron wavefunction can well be approximated by a
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single Slater determinant (non-interacting wavefunction). If
a system is strongly correlated, the occupation numbers de-
viate strongly from integer values and multiple determinants
are required to obtain a sufficiently accurate approximation
to the many-body wavefunction which captures the physics
of the system. The ability of the IRDM occupation numbers
to signal strong correlation has encouraged people to develop
1RDM functional theory as an alternative to traditional den-
sity function theory (DFT) to handle strongly correlated sys-
tems such as dissociating molecules,™* Mott insulators® and
quantum Hall systems,® for which the current approximate
density functionals fail miserably.

The sum of the occupation numbers equals the number of
electrons in the system. Therefore, if we order the occupation
numbers, n;, from the highest to the lowest one, their values
need to decay to zero sufficiently fast for k — oo, i.e.,

lim n; =0,
k— 00

or even become zero after some point kpn,x. The question
whether they actually do become zero or only approach zero
for k — oo is not only an academic question, but also of
practical interest for methods that try to build an accurate
approximation to the wavefunction by making an expansion
in terms of Slater determinants, e.g., configuration interac-
tion (CI). This question has recently been addressed for the
dissociating hydrogen molecule.” One would expect that an
optimal set of orbitals exists which leads to the fastest con-
vergence of the expansion of the wavefunction in terms of
Slater determinants.! One can prove that if all determinants
are taken into account (full CI) that the highest occupied NOs
are the orbitals which give the fastest convergence towards the

© 2013 AIP Publishing LLC
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exact IRDM in the L?-norm.® The NOs become even more
interesting if the occupation numbers become all zero for k
sufficiently large, since this would imply that only a finite set
of NOs would already be sufficient to expand the full many-
electron wavefunction.

The question if zero occupation numbers exist in
Coulomb systems is even more important for IRDM func-
tional theory. Basic theorems in 1RDM functional theory’
follow similar arguments as the famous Hohenberg—Kohn
theorem'® of density functional which establishes a one-
to-one correspondence between densities, potentials, and
non-degenerate ground states. The main difference between
1RDM functional theory and density functional theory is that
the natural conjugate variable to the IRDM is a non-local ex-
ternal potential of the form

V= /dx/dx’ v(x, X) YT ()P (X)) 2)

rather than the local potential of density-functional theory. It,
therefore, immediately follows that the energy contribution of
the nonlocal external field to the total energy is given by

V= /dx/dx’ v(x, X))y (X, x).

With this expression the Hohenberg—Kohn proof can be fol-
lowed exactly as in density-functional theory and Gilbert’ in
fact did this to establish that there is a one-to-one correspon-
dence between non-degenerate ground states |V) and their
corresponding 1RDM y. This is already sufficient to estab-
lish IRDM functional theory, since the ground state energy
can be written as a functional of the IRDM E[y]. In density-
functional theory one can further prove that two different (up
to a gauge) potentials cannot have the same non-degenerate
ground state. The analogous proof fails in 1IRDM theory
since there can exist nonlocal potentials V with the property
that

V|v) =0 3)

for a given ground state |¥) of some Hamiltonian 4. Such a
potential can, therefore, always be added to this Hamiltonian
without affecting the ground state (it could be that |\W) is now
an excited state but by multiplying V by a small enough num-
ber we can ensure that |W) is still the ground state). Let us
now see how Eq. (3) can come about. Let us first define the
annihilation operator

a = / X (067 (%),

which annihilates the NO ¢, from any many-body quantum
state. Suppose now that d;|W) = O for some of the labels s,
which means that the orbital ¢, does not appear in any Slater
determinant of a CI expansion of |W). This implies that

ng = (Wlala,|v) =0,

such that the corresponding NO occupation number vanishes.
We can then construct the following one-body potential

2>

r,s€{i:n;=0}

Vs alas,
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where v,y = v}, is an arbitrary Hermitian matrix and where
we sum only over the labels for which n, = n; = 0 for the
state |\W). It is clear that this potential exactly has the property
VW) = 0. In real space this corresponds to a nonlocal spatial
potential of the form of Eq. (2) where

v(x, X)) = Z

r,s€fi:n; =0}

Urs ¢;k (x)s (X/)‘

We, therefore, see that Eq. (3) can be satisfied whenever the
state |¥) has vanishing NO occupations. The non-vanishing
of the NO occupation numbers for electronic ground states
is, therefore, a necessary condition for the existence of a
one-to-one mapping between nonlocal potentials and 1RDMs.
To the best of our knowledge the answer to the question
whether the necessary condition is also a sufficient one is
unknown. The one-to-one mapping between non-local poten-
tials and 1RDMs would be relevant for the foundations of
linear response 1RDM functional theory and also its time-
dependent extension would greatly benefit from the resulting
simplifications.

Other consequences of vanishing occupation numbers
arise in the extended Koopmans’ theorem.!!~!* The extended
Koopmans’ theorem is an extension to arbitrary wavefunc-
tions of the well known theorem by Koopmans that the occu-
pied Hartree—Fock orbital energies provide approximations to
the ionization energies.'” If the exact wavefunction is used in
the extended Koopmans’ procedure, even the exact ionization
energies should result, provided the set of partially occupied
NOs is complete, i.e., none of the occupation numbers van-
ishes. A less restrictive condition has been derived by Pernal
and Cioslowski,'¢ though in practice it simply implies that
none of occupation numbers should vanish. For systems with
Coulombic interactions the extended Koopmans’ theorem is
found to hold to very high numerical accuracy'”-'® although
this does not prove its validity.

We have, therefore, seen that the possible vanishing of
NO occupation numbers has important consequences for CI
expansions as well as for the validity of fundamental theo-
rems in many-body theory. This then immediately raises the
question in which cases the NO occupation numbers vanish.
If none of the occupation numbers vanishes, then every NO
is needed in an expansion of the ground state wavefunction.
One general observation that one can make is that infinite ex-
pansions are typically required when expanding non-smooth
functions in terms of smooth ones. In the case of electronic
ground states the Coulomb interaction requires the wavefunc-
tion to have a cusp at the positions where the electrons come
together of the form

\I'("IZ_)O)Z\IJ(FIZZO)<1+%"12+"'>’ 4)
where rj; := |r; —rp|. This cusp gives an infinite kinetic
energy which exactly compensates the infinity from the
Coulomb interaction between the electrons.'*2> Due to this
non-analytic behavior of the wavefunction, a full expansion of
the wavefunction in one-electron functions requires in general
all functions to be present. Hence, one may expect in the par-
ticular case of an expansion in NOs, none of the NOs should
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have an occupation number equal to zero, since that would
imply that the NO is not required in the expansion.

Although this argument sounds very reasonable, it is
certainly not a proof that zero occupations do not occur in
Coulomb systems. Though infinitely many occupation num-
bers are required to be non-zero, it might be that some of them
are still zero in some special situations. In the case of the ho-
mogeneous electron gas (HEG), however, this argument can
be turned into a proof. Since the NOs of the HEG are sim-
ply plane waves, the occupation numbers are then given by
the momentum distribution, n(k). Kimball has shown that the
momentum distribution is required to decay as 1/&® due to the
inter-electronic cusp condition,?® so the occupation numbers
never become exactly zero.

In the case of the HEG we were in the fortunate situa-
tion that the NOs are plane waves, so that their occupation
numbers are simply given by the momentum distribution. For
general systems we are not in such a convenient position, be-
cause a straightforward expansion in a finite basis set effec-
tively smoothens the electron-electron cusp (4) and the argu-
ment does not apply anymore. For two-electron systems we
are in a more fortunate situation, however, since for singlet
two-electron systems there is a strong connection between the
NOs and the wavefunction. The spatial part of the singlet two-
electron wavefunction is symmetric and can, therefore, be
diagonalized

W(r,r) =Y cdi(r)di(ra). (5)
k

By calculating the corresponding spin-integrated 1RDM, one
readily finds that the eigenfunctions are NOs and that the co-
efficients are related to the occupation numbers as nj = c;.
Though we are not in such a good position as for the HEG,
this connection is quite useful, since it allows us to connect
the behavior of the occupation numbers directly to the an-
alytic properties of the wavefunction, instead of going via
the 1RDM in which much of the analytic properties are inte-
grated out. Therefore, we will focus our attention in this paper
mainly to singlet two-electron systems to demonstrate how
the form of the interaction determines the analytic properties
of the wavefunction, which in turn dictates the asymptotic de-
cay of the occupation numbers.

Il. EXPLICIT EXAMPLES

Before we present a general treatment for simple explic-
itly correlated wavefunctions, we first consider some specific
examples for which we can solve the NOs and coefficients ex-
plicitly or at least prove that none of the NOs have a vanishing
coefficient (occupation number).

A. A simple 1D Hylleraas wavefunction

Let us first consider the simplest wavefunction with a
cusp in one dimension (1D)

W(x1, x2) = Ka(xpa(x)(1 + nlx; — x2),

where K is a normalization constant and «(x) is an arbitrary
orbital apart from the fact that it is positive, a(x) > 0. To cal-
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culate the NOs and the coefficients in the spectral expansion
of the wavefunction (5), we need to solve the following eigen-
value equation

K /dxz a(xp)o(x2)(1 4+ nlx; — x2])r(x2) = cx dr(x1).

Introducing the following function @i(x) := ¢ (x)/a(x) the
eigenvalue equation can be written as

K / s (1 + 01 — XD (e)gr () = e guxn).

Now differentiating this equation twice with respect to x;, we
obtain the following differential equation for ¢ (x)

ckpy (x) = 2nK o (x)gr(x),

where we used that |x|” = 28(x). From this equation we see
that ¢ #£ 0 if n # 0, since otherwise we would have ¢; = 0
which is not an eigenfunction. Hence, for n £ 0 we can divide
by ¢ and write the equation as

O (xX) = Aa” ()i (x),
where
)»k = 277K/Ck. (6)

In the case that a simple Slater function is used for the or-
bital, a(x) = e~ 4™, the differential equation can be cast into
Bessel’s differential equation. The full construction of all the
NOs and their coefficients is rather technical and has been
deferred to Appendix B. The result of the calculation is that
none of the occupation numbers is zero and that the occupa-
tion numbers behave asymptotically as

ng~ — (k— 00),

k4

where C is a constant. We will see later that such a power law
behavior is typical for wavefunctions that are at most a finite
number of times differentiable (in our case zero times).

B. A simple 3D Hylleraas wavefunction

Let us now try to extend the approach of the previous
example to a three dimensional case, so that we have a wave-
function in three dimensions (3D) that satisfies the cusp con-
dition (4) of the form

W(ry, ry) = K a(rpa(r)(1 +nri),

where rj, = |r; — rp|. Since the NOs are eigenfunctions of
the wavefunction (5), they satisfy the eigenvalue equation

/ dr' (e, 1)) = ¢ dulr). ™

Now introducing similar function as in the 1D case,
i (r) := ¢p(r)/a(r), the eigenvalue equation can be written
as

K fdr’ (L4 nlr — ¥))e’()ee) = cx gi(r).

Unfortunately, just taking the Laplacian does not work, since
V2|r —r'| = 2/|r — r’|. Taking the Laplacian a second time,
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however, we obtain the sought after delta function and our
equation becomes

—87nK a*(N)@i(r) = ¢ V2V2gi(r).

We can now use the same argument as in the 1D case. Since
the orbital a(r) will in general not vanish on some open set,
¢ = 0 would imply that ¢ (r) = 0 for unoccupied NOs. Since
such orbitals are not normalizable, our simple explicitly cor-
related wavefunction does not have any NOs with occupation
numbers equal to zero. Since the differential equation for the
functions ¢ (r) is now fourth order and additionally in 3D,
it becomes quite hard to obtain the NOs explicitly from this
equation. In any case, it is exactly the cusp behavior that al-
lows us to conclude that none of the NO occupation numbers
vanish.

C. Double harmonium

Although we have found that the exact treatment of the
cusp in the simple Hylleraas wavefunction prevented the NOs
to have a zero occupation number, one can wonder if the
electron-electron cusp is actually essential to have only non-
zero occupation numbers. This is actually not the case as one
can show explicitly for a system with harmonic interactions
in one dimension. The Hamiltonian for such a system can be
written as
1 92 w?

1 92
+ 7()612 +x3) + Alx) — x2)%,

19 19
2 8x12 2 8x§
where A > 0. The coordinates can be decoupled by making a
transformation to centre-of-mass coordinates, which gives the
following expression for the Hamiltonian

A 192 1 1 92 1
A=—-2 42— -2 4 @22, 8
2952 T2YY T2 Ta? ®
where s = (x +x2)/«/§, t:=(x; — xz)/ﬂ and
@* = w? + 41. Since this is the Hamiltonian for two

independent harmonic oscillators, we can immediately write
spatial part of the singlet ground state wavefunction as

4 ®o —1 ws+ot?
W(xp,xy) =, —e 2o
b
— 4 wweféwxlzeféwxg ef%(a”)fw)tz.
7T2

The structure of this solution is sufficiently simple to deter-
mine the NOs and the corresponding wavefunction coeffi-
cients explicitly. Due to the purely harmonic nature of our
system, one might suspect that the NOs also have the form of
harmonic oscillator solutions. Indeed, one can actually calcu-
late the NOs to be (see Appendix C)

dr(x) = ayHy (Vo x)e ™7V )

where Hy(x) are the Hermite polynomials and a; normaliza-
tion constants satisfying

, Voo

TN
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The corresponding wavefunction coefficients are
23w ( 1)k<\/5— \/5>k
Vo + /@ Jo+é/)
We find that the wavefunction coefficients are alternating and
only vanish in the limit X - co. Only when @ = w (no inter-
actions), all the coefficients become zero, except for the first
one ¢y = 1. An important conclusion is now that instead of a

power law behavior we now have an exponential decay of the
form

Ck (10)

nk=Cak

with C and a constants. We will show below that such a behav-
ior is typical in the limit k — oo for infinitely differentiable
wavefunctions. Our examples seem to indicate that there is
a connection between the differentiability properties of the
wavefunctions and the asymptotic behavior of the NO occu-
pations. In Sec. III, we make this connection more precise.

lll. ALOWER BOUND ON THE DECAY RATE
OF THE OCCUPATION NUMBERS

The eigenvalue equation for the NOs (7) is a Fredholm
integral equation, where the two-body wavefunction ¥ is
the kernel and c; are the eigenvalues. (Often one considers
the characteristic values, 1/c;, instead of the eigenvalues.)
In the theory of Fredholm integral equations, lower bounds
on the decay rate of the eigenvalues have been established
on the basis of differentiability and analyticity of the integral
kernel.>42° Although only lower bounds have been found,
these bounds are a nice illustration of the strong link between
the differentiability of the kernel and the decay rate of the ker-
nel.

The first result of interest is by Hille and Tamarkin, who
showed that the eigenvalues of operators with analytic kernels
decay exponentially. More precisely

lim |A;| R¥* =0,
k— o0

where A; are the eigenvalues and the constant R is related to
the size of the region where the kernel is analytic.>>2¢ Indeed,
the kernel of the double harmonium is analytic and the corre-
sponding coefficients decay exponentially (10).

A result for finitely differentiable integral kernels by
Weyl?* is of particular interest for wavefunctions with a cusp.
Weyl?* showed that the eigenvalues of a finitely differentiable
kernel only need to decay polynomially. More precisely, if the
partial derivatives of a symmetric kernel are continuous up to
order p, the decay rate of its eigenvalues is bounded by

lim [i k74 =0, (11)

where d is the dimension of the integration variable. A deriva-
tion of Weyl’s?* result can be found in Appendix A.

Let us compare Weyl’s?* theorem with the results for the
simple 1D Hylleraas atom (Sec. II A). The first derivative
of the wavefunction is already discontinuous in this case, so
p = 0. This gives us a rather modest lower bound on the de-
cay rate of the coefficients, comparing to the actual quadratic
decay-rate (k=2) of the coefficients (see Appendix B).
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The bound by Weyl?* can be tightened by using more reg-
ularity properties of the discontinuous derivatives of the
wavefunction.>>2¢ Since the discontinuity is bound, the two-
electron wavefunction can be put in Lip,(1,2)*>?® which
gives the lower bound k%2 on the decay-rate of the
coefficients.

Though Weyl’s?* theorem does not put a very stringent
constraint on the decay of the occupation numbers, it clearly
demonstrates that wavefunctions with an interelectronic cusp
will typically have only a polynomial decaying occupation
number spectrum, whereas the occupation numbers of a wave-
function without a cusp will decay exponentially. Since in a
finite basis set the non-analyticity of the cusp cannot be fully
represented and is thereby effectively smoothened, the calcu-
lated occupation numbers will always decay exponentially or
faster, i.e., too fast compared to the typical polynomial decay.
This is actually not surprising, since if only a finite number
of orbitals is included in the calculations, all the orbitals in
the complement are automatically NOs with zero occupation
number. Additionally, since a finite basis set representation
effectively removes the cusp from the wavefunction (4), the
original argument that NOs with vanishing occupation num-
bers do not exist in many-body Coulomb systems, does not
even apply anymore.

IV. A PROOF BY FOURIER TRANSFORM

The example with the harmonic interaction shows that
the cusp actually might not be essential to prevent occupation
numbers becoming zero. It seems that any correlation that re-
quires some 71, behavior that cannot be expressed in a finite
number of simple orbital products will probably imply the ab-
sence of unoccupied NOs. We can make this idea more precise
in the case of a singlet two-electron system which is limited to
the form of a simple orbital product times an arbitrary correla-
tion function depending only on r; — ry, i.e., a wavefunction
of the form

W(ry, ry) = a(rpa(r;) f(r; —ry), (12)

where «(r) > 0. Considering the situation that an NO, ¢;(r),
has a zero occupation number (so also ¢; = 0), the eigenvalue
equation (7) then simplifies to

/ ar’ fr—r) x:(r) =0,

where x;(r) := a(r) ¢;(r). Since this condition has the form
of a convolution product, we can deconvolute it by taking the
Fourier transform

FX&xi k) =0. (13)

Provided that f(k) # 0 almost everywhere, it follows that
%i(k) = 0. Since a(r) # 0 almost everywhere, this implies
that the NO ¢;(r) = 0. Because this is not a normalizable
function, we can conclude that no eigenvalues ¢; = 0 exist,
if £(k) # 0 almost everywhere.

The converse also holds. If f (k) = 0 on some finite in-
terval, an NO with zero occupancy exists by construction. To
construct this NO, define a ¥,(k) which is non-zero on this
interval where f(k) vanishes. By Fourier transforming back,
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we can construct the corresponding NO (¢ (r) = x(r)/a(r)).
Since this will be a function in the null-space of the (linear)
1RDM-operator, it cannot be expressed linear combination of
NOs with finite occupancy. Let us show this more explicitly.
Suppose that such a linear combination exists, then we write
the new NO as

Gy =Y bii(r).
iefin;#0}
Since the IRDM-operator is linear, we can write its action on
¢ as

0= /dr’y(r, D)= Y /dr’y(r,rw,-(r’)b,-.
)

ielini#0

If we now take the inner product of this result with ¢, we find

0= > bbmldjley= Y nilbil.
i,jefi:n; #0} iefi:n; #0}
Hence, we have a contradiction, so the constructed NO with
zero occupation number cannot be expressed as a linear com-
bination of the NOs with a finite occupancy.

Now let us check if our proof indeed recovers the result
that our previous examples do not have vanishing occupation
numbers. In the case of the harmonium the correlation func-
tion is simply a Gaussian. Since the Fourier transform of a
Gaussian is simply again a Gaussian, the Fourier transform
is non-zero everywhere. Hence, no unoccupied NOs should
exist, which is in agreement with our explicit construction.
The situation is more complicated in the case of the simple
Hylleraas wavefunction. The correlation function is not an L?
function anymore, so we can expect distributions to appear
in its Fourier transform.”’ Note that a divergent correlation
function is allowed, provided the divergence of the correla-
tion function is compensated by a stronger decay of the orbital
a(r), to make the wavefunction normalizable. The Fourier
transform in 1D becomes

2
FI1 + nlx|]k) = 278(k) — k—;’ (14)

and in 3D we find
Fat = (2 s 15
[+nr]()__7<k_3+ﬂ()>' (15)

The calculation of these Fourier transforms has been worked
out in more detail in Appendix D. Since we find in both cases
that the Fourier transform is non-zero everywhere, we recover
the result that no unoccupied NOs exists as we have found
before. Now let us apply the theorem to some other systems.

A. Inverse harmonic interaction

First, we will consider a system with inverse harmonic
interactions which has been considered before by Morri-
son et al.”® The inverse harmonic interaction is also some-
times referred to as the Calogero interaction.”®=*! The full
Hamiltonian we will consider here is given as

N I, 1_, 1, 5, , A

H = ZVr‘ 2Vr2+2a) (r1 +r2)+r122.
The eigenstates of this Hamiltonian can be solved exactly by
making a transformation to the centre-of-mass coordinates,
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which decouples the coordinates. The Hamiltonian for the
centre-of-mass coordinate is simply the Hamiltonian of a har-
monic oscillator, so is readily solved. The Hamiltonian for the
relative coordinate is more involved, but can still be solved in
terms of confluent hypergeometric functions.?® 3> Fortunately,
the ground state reduces to the following particularly simple
form

U( ) \/ il =
ry,rn)= = 3 €
24erS2T (3 + a)

where ['(z) is the gamma function and o = («/ 1+4A
- 1)/ 2.3 Since the ground state is simply the product of an
orbital, ar(ry)a(r,), times a correlation function, f(ri) =rp,,
our theorem can be applied to this case. For the Fourier trans-
form of the correlation function we find (see Appendix D for
details)

o(r?+r?) .«
1 2 r12’

Flr*1k)
7 (—=1)e2s0+0 (k) even o
4
= =7 X TQ+wsin(re/2) ) (16)
otherwise,

f2ta

where §7(k) denotes the nth order derivative of the delta-
function. Therefore, we find that zero occupation numbers can
only exist for even «, which is in agreement with the findings
of Morisson et al.*® Actually, it is not surprising that there are
only a finite number of unoccupied NOs for even «, since in
that case the correlation function becomes exactly separable
in 1 and 7, so the wavefunction can be represented by a finite
number of orbitals. For example, in the simplest non-trivial
case of @ = 2 the wavefunction can be written as

3/2
W) = T (7)) Darxe) + xeroxae)

= 2(xx () xx (r2) =+ Xy (ro) xy (r2) + 3z (r) xz (r2)l,

where we used x ¢(r) := f (r)e‘%‘”’2 as a compact notation for
the various one-particle functions. Since only five orbitals are
required to represent this wavefunction, only five NOs with
non-zero occupation number exist. We see that the contribu-
tion from the p orbitals to the wavefunction is already diago-
nal, so to obtain the NOs, we only need to normalize them

w 1,2

bu(r) = 20 (;)3/2 xe tor

and we have similar expressions for ¢,(r) and ¢,(r) of
course.* Their coefficient in the spectral expansion (5) is
readily obtained as ¢x = ¢, =c¢, = —1/ V/15. The contribu-
tion from the other two orbitals y;(r) and x,2(r) is not diago-
nal, so has to be diagonalized. This is readily achieved by the
following linear combinations

2a o\ 0 , 12
(—) (—r j:l)e jor’,
da+3 \m 2a

¢+(r) =

where a := /15 /4. The orbitals ¢ (r) are constructed such
that they are orthonormal, so they are the required NOs. Their
corresponding expansion coefficients can be calculated to be
c+ = (4a £ 5)/10.

J. Chem. Phys. 139, 104109 (2013)

This example clearly demonstrates that the cusp is ac-
tually not essential for the absence of unoccupied NOs. The
absence of zero occupation numbers is caused by correla-
tion in the full many-body wavefunction, which cannot be ex-
panded in a finite series of one-electron functions. The cusp
actually causes the exact wavefunction to have such a form,
hence there will be an infinite amount of non-zero occupation
numbers.

B. Hookium atom

In this section, we will apply our theorem to Hooke’s
atom. The interaction is now the Coulomb interaction, the in-
teraction of interest for electrons. However, the confining po-
tential is still harmonic to allow for the separation of variables
by changing the coordinates to the centre-of-mass frame. The
Hamiltonian is given as

N I, 1, 1, , , A

H = —EVI — EVZ + Ea) (rl +r2) + E
The ground state has the following form

\Ij(rl ) r2) = Ne_%w(r12+r22) t( a)/z rlz) 3
T2

where N is a normalization constant. The function #(p) sat-
isfies the following differential equation®>3¢ for the ground
state

"o 2.7 < ~ _ A ) —
ot" =2p°t" + | (& — Dp t =0,
Vo2
where €, = 2¢,/w with €, as the contribution to the energy
from the relative coordinate (the total energy is %w + €,). Un-
fortunately, this differential equation does not allow for an
explicit solution, though a series solution can be constructed
which even has only a finite number of terms for specific ra-
tios A%/w. More importantly, by neglecting the second order
derivative and the last term, we readily find that the solution
has to behave asymptotically for large p as
t(p — 00) ~ po 3,
so at least its Fourier transform exists as a distribution and in
particular its Laplace transform

i(s) := L[t1(s) :=/ dpe*"t(p)
0

exists. The differential equation for #(p) can be transformed
into the following differential equation for the Laplace
transform

1 2 b A = _
2s7"(s) + (s” + € +3) F'(s) + (2s + m)t(x) =0,
(17)

where we used that #(0) = 0. The Fourier transform of the
correlation function can now directly be obtained from 7(s) as

FLFIk) = % lim_ (i(o +ik) — f0 —ik)),  (18)

where the limits are important to include possible poles at
the origin. Since the Laplace transform is a solution of a sec-
ond order differential equation, it has to be an analytic func-
tion. This analyticity is carried over to the Fourier transform
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FIG. 1. The NO occupations of the harmonium in the s-channel. In the weak
correlation regime (large w) only the highest occupied NO has a positive
coefficient and all the other NOs have a negative coefficient. In the strongly
correlated regime (small w) the signs of the NO are alternating. In the color
version the sign of the corresponding coefficient has been coded as black for
positive and red for negative.

except for some possible irregularities located at the origin
(k = 0). Since an analytic function can only be zero in an
open set if it vanishes everywhere, the Fourier transform of
the correlation function of the Hookium atom does not vanish
in a finite region and hence, the NO coefficients (occupation
numbers) do not vanish for the Hookium atom.

This result is orthogonal to the claim made by Cioslowski
and Pernal.’’ They have studied the behavior of the wave-
function coefficients of Hooke’s atom numerically and found
that the coefficients become very small and that the sign pat-
tern of the most significant coefficients around these points
change. Therefore, they concluded that the expansion coeffi-
cients have to become zero to change their sign. As a courtesy
to the reader, we have repeated their calculations to obtain an
accurate expression for the wavefunction and calculated the
NO coefficients by diagonalizing the wavefunction directly.
The results for the occupation numbers in the s-channel are
shown in Fig. 1 and are identical to the ones reported in
Ref. 37. Indeed, the most significant NOs have a different sign
in the large and small w limit. However, upon closer inspec-
tion of the plot in Fig. 1, one readily sees that coefficients
of different NOs actually gain in amplitude when making the
transition between the weakly and strongly correlated regime,
so there is actually no evidence that the NO coefficients do
cross zero. The numerical results of Cioslowski and Pernal’’
are, therefore, in agreement with our findings.

V. CONCLUSION

The question of the existence of NOs with vanishing oc-
cupation numbers in many-body Coulomb systems is impor-

J. Chem. Phys. 139, 104109 (2013)

tant for a number of practical applications. For the direct ex-
pansion of wavefunctions in finite orbital basis sets (CI expan-
sions) it would be beneficial if only a finite number of NOs
has a finite occupancy. However, the presence of unoccupied
NOs will cause complications in the formal developments of
1RDM functional theory. For the extended Koopmans’ the-
orem the existence of vanishing natural occupation numbers
could even be catastrophic, since the ionization energies do
not necessarily converge to the exact ones when the approxi-
mate wavefunction converges to the exact many-body state.

The divergence of the Coulomb interaction between the
electrons requires the wavefunction to have a cusp at the coa-
lescence points of the electrons (4). This non-analytic behav-
ior can only be represented by including an infinite amount
of orbitals (NOs) in the expansion of the wavefunction, so
there are an infinite amount of NOs with a non-zero occu-
pation number. However, this argument does not provide a
proof that natural occupation numbers equal to zero do not
exist, i.e., that the NOs with a non-zero occupation numbers
form a complete set. However, we have been able to show that
wavefunctions of the form «(r;)a(r,) f(r; — ry) do not have
any vanishing occupation number, if and only if the Fourier
transform of the correlation function, f(r;»), does not vanish
on an open set. The Fourier transform of the correlation func-
tion only seems to disappear if the wavefunction is separa-
ble, i.e., representable in a finite basis. Applying our theorem
to the harmonium atom, we have shown that the occupation
numbers do not vanish in contradiction with earlier assertions
by Cioslowski and Pernal based on numerical calculations.?’
However, a more careful inspection of their results showed
that only their interpretation was incorrect and that their re-
sults actually agree with our proof up to numerical accuracy.

Further, we have demonstrated that a discontinuity in the
wavefunction is not required for the absence of unoccupied
NOs. Even the perfectly smooth ground state of the double
harmonium has no vanishing occupation numbers. More es-
sential is the non-separability of the wavefunction, which is
caused by the discontinuity of the cusp. The discontinuity of
cusp does have an effect on the decay-rate of the occupation
numbers. It causes the occupation numbers to decay merely
polynomially compared to an exponential decay of the occu-
pation numbers for wavefunctions without a cusp.
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APPENDIX A: A LOWER BOUND FOR THE DECAY
OF EIGENVALUES

Though the proof of (11) is “duBerst einfach” according
to Weyl,* it might be worthwhile to expose its derivation.
Weyl?* starts with an alternative derivation of a theorem by
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Schmidt*® to prove that

/ds/dt |K(s,t) —kn(s, O)F > A0 + 22, +--, (Al

where A are the eigenvalues of the integral kernel K (s, t) or-
dered in descending order and k,(s, t) is a Hermitian finite
rank operator

ka(s, ) = ) kijgi(s)g;(0),

ij=1

with g; € L? and k; = k;fi. This theorem is easily understood
by using the spectral representation of the integral kernel. The
minimum value of the integral is achieved by using the largest
eigenvalues of K (s, t) at the diagonal, k;; = A;6;; and the cor-
responding eigenfunctions for the functions g,. This choice
exactly eliminates the largest eigenvalues of K (s, t) and only
the smaller n + 1 eigenvalues will contribute to the integral.
Any other choice for k,(s, t) will give a larger value of the
integral.

For more rigor, consider the following proof. To cover the
infinite dimensional case we use the Rayleigh quotient to de-
fine the eigenvalues. The first eigenvalue (and largest in mag-
nitude) is defined as

IR Il
Api=max ——-— x [|K I,
0 | fIl HfH %
where || - || is the usual L? norm and the operator K is defined

be the action of the integral kernel K (s, t) on a function f as

K f(s) := / dt K (s, t) f(t).

The function that achieves this maximum, ¢;(s), is the cor-
responding eigenfunction. The other eigenvalues are defined
(found) by searching over a subspace where the previously
found eigenfunctions have been projected out

Antl i= min max ||I€'f||
d)la--wd)/x fJ_(Pl ..... ¢,,
IflI=1

and the function that achieves this maximum, f; is the corre-
sponding eigenfunction. Using this definition, we readily find
for the eigenvalue of the sum of two linear operator K; and
K226

Anims1(K1 + K2) = min max  |[(Ki + K fl
¢l:~~~ »¢n+m fJ_(P[ ,,,,, ¢,l+,,,
Ifl=1
< min max  [|K; f]l
Oty Butm  fLly, ..., O
Ifll=1
+ min max K2 f]

b1 Putm fLGntts oo Puim

1K f

+ min max
OntisesOnim fLBuityoov s Puim
Ifl=1

= An1(K1) + A p1(K2).
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Since the rank of &, is only #, it has only n non-zero eigenval-
ues at maximum. Therefore, we find that

)"n+m+1(K) = ki71+1(K - kn)

Applying this inequality for all eigenvalues of K, we readily
recover Schmidt’s*® inequality (A1).

Schmidt’s*® inequality gives a lower bound for the inte-
gral. An upper bound can be obtained from Taylor’s theorem.
This procedure is probably most clearly explained at the end
of Ref. 39. To simplify the analysis, we assume without loss
of generality that we integrate over a finite block with sides of
length L, so that we can divide it in m? smaller blocks, where
d is the dimension of our integration variable. In each of these
regions we can make a Taylor expansion around its centre s

K. ty= )" (S_p%)paspk(so,t)jt D hp(s)s — s0)”,

Ipl<p ) |pl=p

where p denotes a multi-index

p' =P1'Pd' x? _xll’l .ng
3\p|f
= + -+ 817 =
Ipl:=p1 Dd L PRI

and the remainder satisfies
lim £ ,(s) = 0.
S—8o

By choosing all possible powers of s up to order p as basis
functions for k,, we can create N = (” +d) linearly indepen-
dent functions per block, so Nm“ functions g; in total. Using
these basis functions, we can set the kernel k, with n = Nm¢
equal to the Taylor expansions of K in these blocks. The error
of the Taylor expansion can now be approximated as

|K(S, t) - kde(S, t)| < €m (L/m)pa

where €,, — 0 as m — oo. Now combining this inequality
from the Taylor expansion of the kernel with Schmidt’s® i
equality (A1) we have

L% ( L/m

z : )\Nm"-&-k

Nm¢

z } :)‘ mi+k = > Nm? )‘2de’
so for m — oo we need
lim m?P*4)2, , =0.
m—00 2Nm

Now setting k = 2Nm? and cleaning up the limit, Weyl’s?*
inequality for the asymptotic behavior of the eigenvalues (11)
readily follows. Tighter bounds on the asymptotic decay of
the eigenvalues can be found by using additional properties

of the integral kernel.>>26

APPENDIX B: NOS FOR THE 1D MODEL ATOM

First we need to determine the boundary condition to be
imposed on the solutions, which will give the required quan-
tization of the expansion coefficients c;. To find the boundary
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conditions, we first rewrite the integral equation as

ckpr(x) = K/ dy &> (1 + n(x — ¥))@x(y)

—l—K/ dy ozz(y)(l —n(x — Y))(Pk(y)-

Now considering the limit x — oo, the last integral vanishes
and we find that the solutions have to behave asymptotically
as

o0

cpr(x) ~ (1 +nx)K / dy o> (0)gi(y)

—0Q

[o.¢]
L / dy & (Myee(y),
—00

since the orbital should decay exponentially for the wavefunc-
tion to be normalizable. Because we are dealing with a sym-
metric orbital, the solutions can be separated in gerade and
ungerade functions. For the even solutions only the first con-
tribution survives, so we have the following boundary condi-
tion for x — oo for the gerade solutions

1 o0
Gor(x — 00) ~ T g / dy (") gex(»). (Bl

Ck 00

Likewise, for the ungerade solutions only the last term sur-
vives and we find

nkK *© 2
Qur(x — 00) ~ E/ dy a™(y) ¥ ur(y). (B2)

Note that this analysis of the boundary conditions is com-
pletely general for symmetric o?(x). Now we have found the
boundary conditions for the various solutions, we turn our at-
tention to the solution of the differential equation

¢"(x) = he o),
where the normalization constant is calculated to be

nk 2
2 AP 6Z/n+4

Since we are looking for symmetry adapted solutions, we only
need to solve this differential equation for x > 0. If we define
(forx > 0)

Vv |)‘|e—Zx

s(x) = Z

, (B3)

then for a function ¢(x) = f (s(x)) we have

do _ ﬂd_s _ —Zx gt — _ /
dx  ds dx \/We S )= ~2sf5)
)

" ds \? . d2s
P fGs) (a) +f (S)@
= Z*(s*f"(s) + sf'(9))

and the differential equation in term of f(s) becomes

52 f(s) + sf'(s) — sgn(M)s> £ (s) = 0.
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This is the Bessel differential equation for the zeroth order
Bessel functions and the general solution to this equation is

f(s) = Cilo(s) + CaYo(s)
f(s) = Cilp(s) + C2Ko(s)

with C; and C, constants and J; and Y, Bessel functions of
the first and second kind, respectively, and Iy and K; their
modified counterparts. Now going back to the original func-
tion u(x) we find for A < 0

¢ (x)=Ci] (—_ke_zx) + 1Y < Z_ke_z’“>

z

for A <O,
for A > 0,

and in the case of A > 0 we find
A A
et (x) = Cil <%—e_2x> + K, (%—e-h> )

Now we construct the even and odd solutions by imposing
the corresponding boundary conditions. First, we impose the
boundary conditions at x = 0. The odd solutions need to van-
ish at the origin, so we find

@, (x) = C[YO(X)JO(S()C)) — Jo(X)YU(S(X))],
@ (x) = C[Ko(A)Io(s(x)) — In(X)Ko(s(x))].

where X := /[A[/Z and C is a normalization constant. For
the even solutions the first order derivative at x = 0 needs to
vanish, so for the even solutions we find

9, () = C[Y1(A)Io(s(x)) = Ji(X) Yo(sx))].
¢ (x) = C[Ki(A)To(s(x)) + L1 (2) Ko (s(x)) |-

To obtain the proper quantization of the eigenvalue X, we need
to impose the proper boundary conditions for x — o0, i.e., s
— 0. From the asymptotic behavior of the Bessel functions
for small s, we find that our ungerade solutions behave asymp-
totically for x — oo as

2 -
¢, (x)~C [Yo()») = —Jo()(y +1n(2/2) — Zx)} ;

g (x) ~ C[Ko(R) + Loy + In(/2) — Zx)],

where y is the Euler—Mascheroni constant. We found before,
however, that the odd solutions do not have a linear term (B2),
so we must have

JoW/=2/2)=0
Iy(v/A/Z) =0

for A <O,

for A > 0.

Since Iy(y) does not have any zero, only solutions for A < 0
exist, which are related to the zeros of the zeroth order Bessel
function of the first kind, Jo(yx) = 0, as

)\u,k = _(Zyk)z-

Using (6) the coefficients of the odd NOs are readily deter-
mined to be
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The zero’s of the zeroth order Bessel function behave asymp-
totically as

yk:n<k—%) (k — 00),

so asymptotically, the coefficients decay quadratically,
Cuk = O(k~?). To construct the corresponding NOs, we use
that u,, (—x) = —uy, (x), so

Puk(x) = Cypsgn(x)e” Mo (ye™ M.

The normalization constant of the ungerade NOs is readily
calculated by using that the nth order Bessel functions satisfy

1
1
/ dp 03, (0t )T (turp) = §<Jn+1<an,-))2a,~k,
0

where «,; is the jth zero of J,. Making the substitution

p = e %* and taking n = 0, we find that the normalization
constant for the odd NOs is given as
vz
Cu,k = .
J1(ve)

Now we will construct the even solutions. First, we consider
the large x behavior of the even solutions. From the asymp-
totic behavior of the Bessel functions for small s we find that
for x - oo

~ 2 . -
05 () ~ C[Y1(2) = Z0(3)(v +n(3/2) - 2x) ]
00~ C[Ki(R) =1 (%) (v +In(3/2) - zx)].
Since we know that the even solutions have to behave for
X — 00 as given by the asymptotic relation in (B1), we must

have that the ratio between the linear and constant term must
be equal to 7, i.e., f*(1) = 0, where

ffoy:=1-

n |:K1(y) _
ZLL»

F70) = 00) = 2[FY0) =10y +ny/2)].

(V + ln(y/z))j| ,

Note that in f* we could divide by I;(y), since this is an
exponentially growing function and has no zeros apart from
y=0.

Let us now first consider the positive coefficients, A > 0.
The function f*(y) is constructed out of modified Bessel func-
tions of the first and second kind, which are monotonically
decreasing and increasing functions, respectively. Since the
logarithm is a monotonically increasing function, the function
fT(y) is also a monotonically increasing function, so f*(y) can
have only one zero at most. Because the ratio of the modified
Bessel functions K;(y)/I;(y) diverges at y — 0 as 1/y%, we
have f*(y — 0) = —oo. Further, due to the logarithm f*(y)
diverges logarithmically for y — o0, so f*(y) has always ex-
actly one zero (see Fig. 2). Hence, we find that there is exactly
one NO with a positive coefficient of gerade symmetry. The

J. Chem. Phys. 139, 104109 (2013)

n/Z = 1/100

nZ =10
1 \n/Z:1
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y

FIG. 2. Plots off*(y) for four different values of n/Z = 10, 1, 1/10, 1/100.

corresponding NO, d); (x), is readily constructed as

sitr=t[(Ferm(3)Juloe )
+Ko (yoe_zmﬂ e 2k,

where C; is a normalization constant and yo is the zero of
the function f*(y). The corresponding coefficient attains the
simple expression

Ao K2

g 72 yg :
The negative solutions, 1 < 0, can be obtained in a similar
manner. The only difference is that the function f~(y) has an
infinite amount of zeros, z;, due to the infinite amount of os-
cillations of the usual Bessel functions. Following the same

steps as for the positive orbital, we find that the gerade NOs
with negative coefficients are

_ _1(Z Z _
Por = Cg*[(ﬁ +y+ ln(zk)>lo<zke Z'”)
_%YO(ZkeZu)]ezm,

where C; « are normalization constants and z; are the zeros of
the function f~(y). The corresponding (negative) coefficients
are
nkK 2
Cek = "2 2°

B Z Zk
For large k, z; is a large number, so asymptotically the condi-
tion f~(z) = 0 becomes

tan(z — 3_71) = % (E +y +ln(z/2)>
4 7\ n '
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For very large z the logarithm on the right-hand side will di-
verge and the tangent on the left-hand side is only large when
z = (4n + 1)m/4 for an integer n. So we find that the zeros
behave asymptotically as

Zk=77<k+%> (k — 00),

so the negative coefficients of the even NOs decay quadrat-
ically, ¢, , = O(k™2), exactly as the coefficients of the odd
NOs.

APPENDIX C: NOS FOR HARMONIC POTENTIAL
AND INTERACTION

In this appendix, we will show how to find the NOs for
the ground state of a system with only harmonic interactions
(Sec. I C). The NOs satisfy the following integral equation

/dy V(x, y)oi(y) = crgi(x),

where the integral kernel is simply the wavefunction which is
for the current purpose most conveniently written as

[ wd ENIPYIN
\IJ(X, y) — 4 ?efa(xzﬁvz) 2/3)5)7

where o := (0w + ®)/4 and B := (w — ®)/4. Since all the
interactions are harmonic, we expect that a Gaussian,
Po = e, might be a solution. Working out the integral

gives
~ 2
/ dy W, e = 22 [ T (ei)e,
72Va+v

so we find that a Gaussian is indeed an eigenfunction if the
exponent is set to

v=+a?—-B%= %@

The corresponding eigenvalue can be worked out to be

2Jwd

) = ———

(Vo + V@)

The other solutions will now be of the form
or(x) = Pk(x)e’%m"z, where Pp(x) is a polynomial of
order k. From the eigenvalue equation, it follows that these
polynomials satisfy

V C;—Cf f dy Pu(y)e i(VorVomHo—Vor? — ¢ p(x).

Now we make the following coordinate transformation
u = 1o+ V@)x and v := $(Jw + /@)y, which simpli-

fies the equation for the polynomials to

f dv Qx(v — que™" = ju Qu(w), (Cl)
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where
 Jo—Vo
LRI
1 £
Wi = 5(\/54'\/;) —Ck,
1)
0,(x) -—P(—Z’“ )
TN\ e+ va/)

Solving the equation for the polynomials of the first four or-
ders gives

Qo(u) =1 po =/,

Q1(u) =u = (=),
Qo(u) = 1+2(n" — L’ py = (=),
Qsw)=u+30" =’ py=Jw(=n)’.

We see that the eigenvalues are simply related by a factor
—n, so we should be able to recover this relation. Taking the
derivative n times from the integral equation for Qy, we find

Jaklge = (=n)klge / dve™ = Ja(—n)lklqe,

where g, denotes the highest order coefficients of the poly-
nomial Q. Hence, we find that the eigenvalues are simply
i = /7 (—n)¥, which can be worked out to give (10).

Due to the integration Gaussian as integration weight, we
expect that the polynomials are related to the Hermite poly-
nomials. Using the following definition for the Hermite poly-
nomials,

H(x) 1= (—1fe” (3,) e,

it follows from our results for the polynomials Qg (u) ...Q3(u)
that they should be related to the Hermite polynomials as
Qi () = Hi(y/1 — n%u). Since the Hermite polynomials sat-
isfy the recursion relation

Hjei1(x) = 2xHg(x) — H(x),
the polynomials Q(u) should satisfy
Q)

V1 —n?

Inserting the recursion relation in the integral equation for
0, (), we find that Q. 1(u) is indeed also a solution if Q. (1)
is a solution, with an eigenvalue 1) = —n - . Hence, we
have found all NOs in terms of the Hermite polynomials.

Working out them in the original quantities, one recovers the
expression for the NOs for the harmonic interaction (9).

Qiy1(u) =21 —n?u Qp(u) —

APPENDIX D: FOURIER TRANSFORMS

In this appendix, we show in more detail how the Fourier
transforms of the correlation functions of the various model
systems were calculated. Let us first consider the correla-
tion functions of the 1D systems. In the case of the double-
harmonium the correlation function is a Gaussian, so the
Fourier transform should be again a Gaussian. Indeed, when
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we work it out, we find

oo
]:-I:e—%(a”)—a))xz:l(k) _ / dy eikx e F@—)?
—00
K2

1 o 1o~ ik \2
—=¢e 200 / dx e—i(a)—w)(x— (b—m)
—00

1 k2 ° Lo~ 2
—e 10w dye 2@~

[ee]

2 12

w—w
where we used that the integration contour could be shifted
through the complex plane, since there are no poles.

For the Fourier transform of the 1D Hylleraas wavefunc-
tion we have

FI1 + nlx[]k)
- /00 dx e (1 4 nlx])

— 27T8(.X) + n 111%1 / dxx(eikx + e—ikx)e—ax
a—0t 0

where we introduced the «-limit to make the integral con-
vergent. This integral is readily worked out by differentiating
under the integral sign

/ dx x(eikx 4 e—ikx)e—ax
0

o)
— _aa / dx (e(ikfot)x 4 ef(ikfa)x)
0

2_ 12
N 200 _5 a”—k '

o? + k? (o? + k2)?
Now taking the limit « — 0, we find for the full Fourier trans-
form as in (14).

The other systems are three dimensional and have in
common that their correlation function only depends on the
length, 715, so we can already do the integration over the
angles

FLAOI) = / dr ™" £(r)

00 1
= 271/ dr rzf(r)/ ds e
0 ~1

4 [ .
= — dr r sin(kr) f(r).
k Jo

Let us first consider the Fourier transform of the correlation
function of the 3D Hylleraas wavefunction

FI1 4+ nrik) = 47”[ dr rsin(kr) (1 + nr).
0

For the first integral we have

o0 [0¢]
/ dr rsin(kr) = —Bk/ dr cos(kr)
0 0

% [* ik
=—— dre™ = —m 9 (k).

N (D1)
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For the second integral we need to introduce the convergence
factor again, so we evaluate

” 2 [ 4
dr r?sin(kr)e ™ = 2 dr (e(lk—a>r _ e—(1k+a)r)
2i
0 0
2k 30? — k?
= 8 = .
“a2 k2T T (@2 K2

Using this result in the limit « — 0 together with (D1), we
find the full Fourier transform of the 3D Hylleraas correlation
as in (15).

Finally, let us consider the Fourier transform for the cor-
relation function of the system with inverse harmonic interac-
tions. For general o > 0 we have

o 47 o b - oy
Flr*ltk) = - nhr(r)1+/ dr r' ™ sin(kr)e™"
-0t Jo

2w o

= — lim drr
ik n—0+ 0

27 1 (n=ikyoc
= — lim —/ de *tle™
ik n—0+ (17 - 1k)2+a 0

1 (n+ik)oo
— (n n ik)2+a / dt tot-‘rle—t)
0

27 Q+a)mi/2 —Q+a)mi/2 et
= Tt (e — ¢ ) drt €
ik 0

v . (24«
ZWSIH

4 .
= e sin(ma/2)I'(2 + «),

1+« (e—(n—ik)r _ e—(n+ik)r)

n) r'e+ow

where we used that the integration interval could be deformed
without difficulty, since the integrant does not have any poles,
and that the definition of the gamma function

o0
I'(z) :=/ dr i te ™.
0

We find that the Fourier transform diverges for k — 0. In the
case of even «, however, it is not clear what happens, since
we obtain a division of zero by zero. To asses what the real
answer should be, we have to calculate these cases separately.
For even «, we can work out the Fourier transform by taking
successive derivatives under the integral

Flrelk) = 47” / dr r'* sin(kr)
0

4 o o0
= _n(—a,f) /2/ dr r sin(kr)
k 0

4
— T(_ 1)0{/25(14-0()(]()7

where §(k) denotes the nth order derivative of the delta-
function and we used the previous result for the 3D Fourier
transform of a constant function (D1). Combining these re-
sults, we find for general « > O the Fourier transform as
reported (16). Note that this result for general F[r*](k) can
also be used to obtain the Fourier transform of the correlation
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function of the 3D Hylleraas wavefunction and give the same
result.

APPENDIX E: LAPLACE TRANSFORM OF THE
CORRELATION FUNCTION OF THE HOOKIUM ATOM

Here, we will consider a series solution for the differen-
tial equation of the Laplace transform of the correlation func-
tion of the Hookium atom (17). To construct the series, first
observe that a physical solution requires, limy_, o, 7(s) = 0,
otherwise the inverse Laplace transform does not exist.*’
Hence, the solution should be expanded in powers of /s
rather than in powers of s. Using the Frobenius trick, we find
that the solution for 7(s) can be expanded as

1 <~a
f(s) = — -,
szvi_(:)s"

where the coefficients d, satisfy the following recursion
relation

do # 0,

. A

ay = mao,

- A dy_y 26, \ _
CZU:W N +<2V—1—X>al)2.

The second boundary condition is effectively given by the
condition that the full wavefunction is normalizable.’® This
additional condition serves as a quantization condition for
the internal energy contribution, €,. In general, the power
series will not terminate. However, there are special ratios
A2/w at which the series terminates after a finite amount
of terms. Since the series truncates after a finite amount
of terms at these ratios, the wavefunction is automatically
normalizable.3¢

The series solution for 7(s) could also have been obtained
by Laplace transforming the series solution for #(p) by Taut*®
term-by-term using that

_(m+ 1)

Pu(s) = LI (s) = fo dr =

Similar to the series solution of #(p),3¢ the series solution of
f(s) has at least two terms due to the cusp condition. As a
check consider the solution for A2/w = 2, which has only two
terms

i(s) 1+1
s)=— + —.
s2 53

Using (18), we can construct the Fourier transform of the cor-
relation function, f. From the first term we get up to the factor
2wi/k

1 1
lim - — ;
o0t \ (o +ik)2 (o — ik)?
. —4ick 2% Tim 9 o
m ———— =21 lim oy—5~
o0+ (02 + k2)2 0+ k (02 + k2)

= 2i3; lim — 27i8/ (k),

o
o—0t (0'2 =+ k2)
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where we used that the delta function

1 U
S(x) = — lim ———.
x) 7 0o0 X2 4+ n?

The second term is easier, since we can drop the limit imme-
diately to give

omi (1 I\ 4x
7<W_m) s

Combing these results, we find

4m (1
—7” (F + ms/(k)) = F[1+ ir]),

where the identification with the Fourier transform of
1+ %r was readily made by comparing with the Fourier
transform of the correlation function of the 3D Hylleraas
wavefunction (15).
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