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Recently, we have demonstrated that the problems finding a suitable adiabatic approximation in
time-dependent one-body reduced density matrix functional theory can be remedied by introducing
an additional degree of freedom to describe the system: the phase of the natural orbitals [Phys.
Rev. Lett. 105, 013002 (2010), J. Chem. Phys. 133, 174119 (2010)]. In this article we will show
in detail how the frequency-dependent response equations give the proper static limit (ω → 0),
including the perturbation in the chemical potential, which is required in static response theory
to ensure the correct number of particles. Additionally we show results for the polarizability for
H2 and compare the performance of two different two-electron functionals: the phase-including
Löwdin–Shull functional and the density matrix form of the Löwdin–Shull functional.

I. INTRODUCTION

Time-dependent one-body reduced density matrix
functional theory (TD1MFT), provides an interesting al-
ternative to time-dependent density functional theory
(TDDFT). The description of excitations while break-
ing bonds goes catastrophically wrong in TDDFT [1, 2].
Double excitations are absent in adiabatic TDDFT,
which therefore fails for excited state potential energy
surfaces (PES), which rapidly acquire double excitation
character at elongated bond lengths, as demonstrated for
the lowest excited Σ+

g surface of H2 [1] and for the low-

est Πu surface (b1Πu) in N2 [3]. Both these types of
excitations are feasible with TD1MFT [1, 4], and also
charge-transfer excitations can be described without dif-
ficulty with TD1MFT. For practical calculations, the use
of an adiabatic approximation is mandatory. However,
in the case of TD1MFT the standard adiabatic (SA) ap-
proximation as is usually employed in TDDFT, leads to
some unphysical results: the occupation numbers become
time-independent as demonstrated in Refs [4–8] and the
frequency-dependent linear response equations [7, 9] are
in the static limit (ω → 0) not equal to the static response
equations [10, 11].

To avoid these problems, an alternative adiabatic ap-
proximation was proposed [5, 12]. This adiabatic approx-
imation assumes that the occupation numbers instanta-
neously relax, so are determined by their ground state
equations. This approximation has been given the more
descriptive name instantaneous occupation number re-
laxation (IONR) approximation by Requist and Pankra-
tov [13]. Unfortunately, the occupation numbers are still
not dynamic variables, which impairs the description of
some dynamic phenomena. An example are the “diag-
onal” double excitations, like the (1σg)

2 → (1σu)2 exci-
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tation of the first 1Σ+
g excited state in H2 at elongated

bond lengths (& 5 Bohr) [4].
An alternative way to resolve these issues due to the

adiabatic approximation in TD1MFT is to extend the de-
scription of the system with additional variables, which
can be introduced and treated as the natural orbital (NO)
phase factors. The phase factors of the NOs are not de-
fined, since they are the eigenfunctions of the 1RDM.
To distinguish these combinations of NOs and phase fac-
tors from the NOs, they are named phase including NOs
(PINOs). It has been demonstrated that the explicit
treatment of the phase of the PINOs leads to a num-
ber of significant improvements over TD1MFT in the SA
approximation [7, 9, 14, 15]. Not only a correct static
limit is recovered as in the IONR approximation, but
also the occupation numbers become truly dynamic, so
also diagonal double excitations can be described such
as the lowest 1Σ+

g excitation of elongated H2, and off-
diagonal double excitations as in the lowest state of N2.
Furthermore, an explicit treatment of the phase factors
implies that also the functionals will be dependent on
the phases of the PINOs. This has the advantage that
the energy expression of the Löwdin–Shull wavefunction
for two-electron systems [16] can be written as a phase
including NO functional (called PILS). Treating these
additional phase variables in the response formalism of
TD1MFT leads to a large improvement in performance
over the phase-independent form, which is obtained by
casting the Löwdin–Shull energy in the form of a density
matrix functional (called DMLS).

In this article we will focus on the calculation of dy-
namic polarizabilities. In particular, the static limit
(ω → 0) will be important. Therefore, after an intro-
duction to the theory, we will show in detail how the
static response equations are recovered. As a demonstra-
tion, we will show results of polarizability calculations for
the simple two-electron system H2. Also we study the ef-
fects of removing the majority of the virtual-virtual pairs
from the polarizability calculation to decrease the compu-
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tational cost. (With virtual we mean a weakly occupied
PINO.) We obtain similar encouraging results as for the
excitation energies and oscillator strengths [14, 15].

II. PINO FUNCTIONAL THEORY

In TD1MFT, not only the density is used to describe
the system of interest, but the complete one-body re-
duced density matrix (1RDM), which can be defined for
a state Ψ as

γ(x,x′; t) := 〈Ψ|ψ̂†H(x′t)ψ̂H(xt)|Ψ〉,

where ψ̂†H(xt) and ψ̂H(xt) are the usual field operators in
the Heisenberg picture and x = rσ is a combined space-
spin coordinate. The central idea of TD1MFT is that all
the quantities of interest can be defined as a functional
of the 1RDM, in particular the action functional

A[γ] :=

∫ T

0

dt 〈Ψ[γ](t)|i∂t − Ĥ(t)|Ψ[γ](t)〉.

In particular for the case of local potentials this state-
ment holds, since by the Runge–Gross theorem [17] and
its extensions [18–20], the action is a functional of the
density, which is trivially recovered from the 1RDM as
its diagonal in coordinate representation, γ(x,x; t). For
full variation over the 1RDM, an extension of the Runge–
Gross theorem to 1RDMs and non-local potentials is re-
quired.

The 1RDM is hermitian, so it can be diagonalized

γ(x,x′; t) =
∑
k

nk(t)φk(xt)φ∗k(x′t).

The eigenvalues, nk(t), are called the (natural) occupa-
tion numbers and the eigenfunctions, φk(xt), are called
the natural orbitals (NOs) [21]. The occupation numbers
and NOs are equivalent to the 1RDM, so functionals can
be defined in terms of the occupation numbers and NOs
in stead of the 1RDM, A[γ] = A[{φ, n}]. However, since
the NOs are eigenfunctions of a hermitian operator, the
phase of the NOs is not defined and therefore, the func-
tionals A[{φ, n}], are not allowed to depend on them.
Unfortunately, this phase independence leads to prob-
lems in the SA approximation as has been demonstrated
in Refs [7, 9, 13, 22] and also extends to higher order
reduced density matrices [23]. Therefore, it has been
proposed to go beyond TD1MFT and to use this phase
information as well. The action is assumed to be a func-
tional of the PINOs and occupation numbers, A[{�π, n}].
To be able to derive some useful equations of motions
(EOMs) from the action, it is split in an non-interacting
part, A0 based on a non-interacting ensemble, and a re-
mainder, AHxc, as

A[{�π, n}] = A0[{�π, n}] +AHxc[{�π, n}],

where the non-interacting part is defined as

A0 :=

∫ T

0

dt
∑
r

nr(t)〈�πr(t)|i∂t − ĥ(t)|�πr(t)〉.

The one-body hamiltonian, ĥ(t), is the one-body part of
the interacting system and contains the usual kinetic and
potential terms.

Useful expressions for the EOMs of the PINOs and
occupation numbers can now be derived by taking func-
tional derivatives. However, one has to keep in mind the
boundary terms of the upper time-limit as pointed out
by Vignale [24]. Therefore, we introduce

δW[{�π, n}] := i〈Ψ(T )|δΨ(T )〉 − δAHxc

− i
∑
r

nr(T )〈�πr(T )|δ�πr(T )〉,

which allows us to formulate stationarity of the action as

δA0 − δW = i
∑
r

nr(T )〈�πr(T )|δ�πr(T )〉.

Taking functional derivatives with respect to the occupa-
tion numbers gives the EOM for the PINO phases

i
〈
�πk(t)

∣∣�̇πk(t)
〉

= hkk(t) +
δW
δnk(t)

. (1)

Taking functional derivatives with respect to the PINOs
and taking ortho-normality into account one recovers the
EOM of the 1RDM

i
[
ṅk(t)δkl +

(
nl(t)− nk(t)

)〈
�πk(t)

∣∣�̇πl(t)〉]
=
(
nl(t)− nk(t)

)
hkl(t) +

(
W†kl(t)−Wkl(t)

)
, (2)

where we defined

Wkl[{�π, n}](t) :=

∫
dx

δW
δ�πk(xt)

�πl(xt).

The EOMs can be recombined, to give an EOM for the
occupation numbers

iṅk(t) =W†kk(t)−Wkk(t)

and an EOM for the PINOs

i∂t�πk(xt) =
(
ĥ(t) + v̂PINO(t)

)
�πk(xt),

where the effective PINO potential is defined by its ma-
trix elements as

vPINO
kl (t) :=


W†kl(t)−Wkl(t)

nl(t)− nk(t)
for k 6= l

δW
δnk(t)

for k = l.
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The standard adiabatic (SA) approximation can now
simply be defined as W[{�π, n}] ≈ W [{�π, n}], where
W [{�π, n}] is the ground state functional for the two-body
part of the energy. In practice, this will be one of our ap-
proximations to the exact ground state functional.

To formulate the linear response equations, it is conve-
nient to expand the time-dependent perturbation in the
PINOs in the stationary PINOs as [14]

δ�πk(xt) =
∑
r

�πr(x)e−iεrtδU rk(t). (3)

To preserve the orthonormality of the {�πk(xt)}, the ma-

trix δU has to be antihermitian, δU = −δU †. The off-
diagonal elements in δU(t) have the following simple re-
lation to the perturbation in the 1RDM

δγkl(t) = δklδnk(t) + (nl − nk)δUkl(t).

We can therefore use the off-diagonal δUkl instead of the
δγkl, which can be numerically more convenient when the
occupation numbers are very small or very close to each
other. Note that the diagonal δUkk are purely imaginary
and (being the components of δ�πk(xt) along the station-
ary �πk(x)e−iεkt) describe the phase of the time-dependent
PINOs. Further, it is convenient to introduce the follow-
ing notation to indicate the real and imaginary parts of
the matrices in the time-domain

f
R/I
kl (t) := [Re / Im]fkl(t).

We define the vector of diagonal δU elements as δUDk :=
δU Ikk. Assuming that the reference PINOs, �πk(x), are
real we can write the adiabatic linear response equations
as [9, 25]

δγ̇Rkl(t) =
∑
a>b

(
Akl,ba +Akl,ab

) δγIab(t)
nb − na

+
∑
a

Akl,aaδU
D
a (t) + (nl − nk)δvIkl(t), (4a)

δṅk(t) =
∑
a>b

(
Akk,ba +Akk,ab

) δγIab(t)
nb − na

+
∑
a

Akk,aaδU
D
a (t), (4b)

−δγ̇Ikl(t) =
∑
a>b

(
Akl,ba −Akl,ab

) δγRab(t)
nb − na

+
∑
a

Ckl,aδna(t) + (nl − nk)δvRkl(t), (4c)

−δU̇Dk (t) = 2
∑
a>b

Cab,k
δγRab(t)

nb − na

+ 2
∑
a

W k,aδna(t) + δvkk(t), (4d)

where we introduced the following response matrices

Akl,ba := (nb − na)(hkaδbl − δkahbl)

+

∫
dx

(
∂
(
W †kl −Wkl

)
∂�πb(x)

�πa(x) (5a)

−
∂
(
W †kl −Wkl

)
∂�π∗a(x)

�π∗b(x)

)
,

Ckl,a := hkl(δal − δka) +
∂
(
W †kl −Wkl

)
∂na

, (5b)

W k,a :=
1

2

∂2W

∂nk∂na
. (5c)

The frequency-dependent response equations can be ob-
tained by simply taking the Fourier transform. The re-
sulting set of linear equations can be represented in the
following matrix form [9, 25]

χ−1SA(ω)


δγR(ω)
δn(ω)

iδU I(ω)

iδUD(ω)/2

 :=


ω1M 0 −A+

MM −A+
Mm

0 ω1m −A+
mM −A+

mm

−N−1A−N−1 −N−1C ω1M 0

−CTN−1 −W 0 ω1m




δγR(ω)
δn(ω)

iδU I(ω)

iδUD(ω)/2

 =


N iδvI(ω)

0
δvR(ω)
δvD(ω)/2

 , (6)

where we used the following definitions

Nkl,ba := (nl − nk)δkaδbl,

A±kl,ba := Akl,ba ±Akl,ab.

The inverse response matrix on the left-hand side of
Eq. (6) is blocked as (M,m,M,m), with M := m(m −
1)/2 and m is the size of the basis set. The subblocks
of A+ which are diagonal in either the column index

(A+
kl,aa) or the row index (A+

kk,ab) or both (A+
kk,aa) are

indicated with appropriate subscripts, A+
Mm, A+

mM or
A+
mm, respectively.

From these linear response equations (in the SA ap-
proximation) it is straightforward to find the excitation
energies by solving the homogenous equation, or to find
one-body-one-body response functions such as the polar-
izability which is defined as minus the real part of the



4

dipole-dipole response function. Before we turn our at-
tention to the results for the polarizability of H2, we will
first show in detail how these response equations behave
in the ω → 0 limit and how the static response equa-
tions [11] are fully recovered, contrary to what happens
in the SA approximation in TD1MFT [5, 9].

III. STATIC LIMIT

It has already been observed [9] that the static limit
(ω → 0) has to be treated very carefully, lest discrep-
ancies arise between the static response equations [11]
(which should be recovered at exactly ω = 0) and the
small but finite ω values occurring when the limit ω → 0
is taken in frequency dependent calculations. This issue
is addressed here. We will see that the perturbation by a
spatially constant time-dependent potential plays a spe-
cial role in the linear response equations, so before we can
consider the static limit ω → 0, we need to investigate
the response to such potentials first, i.e. to perturbations
of the following type

δvkl(t) = δv(t)δkl.

The constant time-dependent potential should play a
similar role as in TDDFT where it only affects the time-
dependent phase factor of the wavefunction and does not
lead to a response of the density [17]. Therefore, we
expect that the constant time-dependent potential only
induces a global change of PINO phase factors and no
response of the 1RDM. Hence

δγkl(t) = 0 ∀k,l,
−δU̇Dk (t) = δv(t) ∀k

should be a solution of the time-dependent response
equations (4). Using the fact that δUDk (0) = 0 inde-
pendent of k, and therefore all δUDk (t) equal at all times
according to the second equation above, this solution is
readily verified, if the following sum-rule is satisfied by
the response matrix A∑

a

Akl,aa = 0 ∀k,l. (7)

The derivation of this sum-rule is quite technical and has
been deferred to the Appendix A. Taking the Fourier
transform, we find the frequency dependent counterpart
of the equations above

δγkl(ω) = 0 ∀k,l,
ω iδUDk (ω) = F

[
−δU̇Dk

]
(ω) = δv(ω) ∀k.

This solution implies that in the static limit, ω → 0,
δUDk (ω) diverges if δv(0) 6= 0, such that

lim
ω→0

ω iδUDk (ω) = δv(0) ∀k.

For general perturbing potentials, divergence can be
avoided by explicitly subtracting a time/frequency-
dependent constant δε(ω) from the perturbing potential,
so δvD(ω)→ δvD(ω)− δε(ω)1m. As argued before, it is
allowed to add a constant shift to the potential, since it
does not lead to any physical response of the system.

The constant part of the potential for ω = 0 can be ob-
tained by requiring iδUD(ω → 0) not to diverge, so the

ω iδUD(ω) term will now vanish from the last set of equa-
tions of the frequency dependent response (6) for ω → 0.
By multiplying from the left by the occupation numbers
nT , we find that the constant part of the potential, δε(0),
has to satisfy

0 =
∑
k

nk
(
δvDk (0)− δε(0)

)
,

where we used that the response matrices C and W sat-
isfy the following sum-rules (see Appendix B)∑

a

Ckl,ana = 0 and
∑
a

W k,ana = 0. (8)

The simplest definition of the constant part of the po-
tential at finite frequencies consistent with the zero fre-
quency result is

δε(ω) =
1

N

∑
k

nkδvkk(ω). (9)

With the explicit elimination of the constant part of the
potential, we can take the zero frequency limit of the
frequency dependent response equations, without having
to worry about a possible divergence of iδUD(ω). In
particular for real perturbations, iδvI = 0, the response
equations in the static limit reduce to

A−δUR(0) +Cδn(0) +NδvR(0) = 0, (10a)

2CT δUR(0) + 2W δn(0) + δvD(0) = δε(0)1m. (10b)

These static response equations are identical to the static
response equations derived earlier, cf. Eqns (40) and (41)
of Ref. [11] (see Eqns (21a) and (21b) of Ref. [9] in the
present notation). This immediately reveals that the
δε(0) constant we have introduced is in fact the first
order change in the Lagrange multiplier introduced in
Refs [9, 11] to enforce a constant number of electrons.
This fits in with our present introduction of δε(0) be-
cause of the necessity of keeping the number of electrons
constant by avoiding divergence of iδUD(ω → 0). Eq. (9)
can be regarded as a frequency dependent generalization
of the perturbation in the Lagrange multiplier to enforce
the correct number of electrons as derived in Ref. [9]. We
note that the explicit elimination of the constant part
of the potential is not only useful to demonstrate that
we correctly recover the static response equations in the
ω → 0 limit, but it is also useful in practical calculations.
Without the elimination of the frequency-dependent con-
stant, iδUD(ω) would diverge for ω → 0 causing prob-
lems in numerical calculations. The δε(ω) prevents these
complications.
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Note that for a smooth ω → 0 limit it is important
that the functional truly depends on the PINO phases.
If the functional W does not depend on the PINO phase
factors, αk, which true TD1MFT functionals do not do,
then

0 =
dW

dαk
=

∫
dx

(
∂W

∂�πk(x)

d�πk(x)

dαk
+

∂W

∂�π∗k (x)

d�π∗k (x)

dαk

)
= i

∫
dx

(
∂W

∂�πk(x)
�πk(x)− ∂W

∂�π∗k (x)
�π∗k (x)

)
= i
(
Wkk −W

†
kk

)
.

Since
(
Wkk−W

†
kk

)
vanishes identically, also all its deriva-

tives vanish in the response matrix A, especially we find
that A+

mM = 0 and A+
mm = 0 and also A+

Mm = 0, since
A is hermitian in the sense that Akl,ba = A∗ab,lk (Ap-

pendix A). Hence, the coupling with the phase factors
in the first three sets of PINO response equations (6) is
lost. Since also A+

mM vanishes, we find that the second
Eq. (6)reduces to ωδn(ω) = 0, so for finite frequencies
we have additionally that δn(ω) = 0, which underlines
the problem of lack of occupation number response in
true 1RDM functionals (phase independent) mentioned
before. The second of the Eqns (6) can then be left out of
the response equations. So for a phase independent func-
tional W , the adiabatic PINO response equations become(

ω1M −A+
MM

−N−1A−N−1 ω1M

)(
δγR(ω)

iδU I(ω)

)
=

(
N iδvI(ω)
δvR(ω)

)
.

which means they have reverted back to the TD1MFT
response in the SA approximation [1, 4]. The perturba-
tion in the PINO phase factors (which have an arbitrary
initial value) can be solved afterwards from the last equa-
tion as

ω iδUD(ω) = 2CT δUR(ω) + δvD(ω)− δε(ω)1m,

though this not of any practical use, since in this case the
PINO phases do not couple to any physical observables.

If there is no phase-dependence in the functional, the
standard adiabatic approximation leads to a special situ-
ation at zero frequency, ω = 0: the conditions ωδn(ω) =
0 do not imply anymore that there is no change in the
occupation numbers. This causes a jump in the solutions
(a discontinuity from ω → 0 and ω = 0). At ω = 0
the perturbation in the δn becomes well defined, since
the coupling to the PINO phase factors now also disap-
pears completely from the last set of response equations,
so δγR(0) and δn(0) are now determined from the static
linear response equations (10). The perturbation in the
imaginary part of the 1RDM is directly related to the
imaginary part of the perturbing potential as

iδγI(0) = N iδU I(0) = −N
(
A+
MM

)−1
N iδvI(0).

For a demonstration of this jump in the frequency depen-
dent response when a phase invariant functional is used,
we refer the reader to Ref. [9], where the discontinuity
has been illustrated with the αzz(ω) polarizability of the
HeH+ system with the DMLS functional (12).

IV. POLARIZABILITY

The polarizability is defined as the negative of the
dipole-dipole response, so it can simply be obtained by
evaluating the dipole response due to a dipolar field as
perturbation. Using the response equations [Eq. (6)], one
can immediately obtain an expression for the polarizabil-
ity. However, we assumed that the stationary PINOs are
real, so only δγR(ω) and δn(ω) are required to evaluate

the induced dipoles. Therefore, iδU I(ω) and iδUD(ω)
are not of interest and can be eliminated from the equa-
tions. Shuffling the terms around in the equations, we
obtain the following expression for the polarizability

αη,ν(ω) = −
(
2νTM νTm

) [
ω21−A+D

]−1
A+

(
ηM
ηm/2

)
,

for η, ν = x, y, z and ηM , ηm denote off-diagonal and
diagonal matrix elements of ηkl := 〈�πk|η|�π l〉 respectively
and similarly for ν. Further, we introduced the following
matrix

D :=

(
N−1A−N−1 N−1C

CTN−1 W

)
.

In principle the sum-rule of the matrix A (7) should take
care of the constant of the dipole matrix elements. Un-
fortunately, this sum-rule is usually not well satisfied in
practice due to finite numerical precision, which leads
to erratic behavior near ω = 0. Therefore, we explicitly
project out the constant shift δε in practical calculations,
so for the diagonal dipole elements we use

νkk → νkk −
1

N

∑
r

nrνrr.

In this article we will restrict ourselves to singlet two-
electron systems. It has often been claimed that the exact
1MFT functional is known for such systems. However,
there are two forms in use which are identical to each
other for real (PI)NOs in the ground state, but lead to
quite different results in the time-dependent regime. The
one closest to the original Löwdin–Shull expression [16]
is the phase including Löwdin–Shull (PILS)

WPILS[{�π, n}] =
1

2

∑
rs

√
nrnswrrss,

where the two-electron integrals are defined as

wklrs :=

∫
dx

∫
dy�π∗k (x)�π∗l (y)w(x,y)�πr(y)�πs(x). (11)

The integral wrrss = 〈rr|ss〉 is not a normal exchange
integral Krs = 〈rs|sr〉 since the complex conjugation dif-
fers. With real functions there is of course no difference
in numerical value. The PILS functional is not a proper
1MFT functional, since its expression is not phase invari-
ant, i.e. it includes a dependence on the PINO phases
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through the two-electron integrals. By changing the
phase of the PINOs the sign of the contribution to the
sum can be influenced.

To derive a proper 1MFT functional, i.e. to make the
functional phase-invariant, one can swap two indices in
the integral which gives the following expression

WDMLS[{φ, n}] =
1

2

∑
rs

f∗r fs
√
nrnswrsrs. (12)

The integral wrsrs = 〈rs|sr〉 = Krs is now the usual
exchange integral, which does not depend on the phase
of the orbitals anymore. Since the phase of the orbitals
can not influence the signs of the contributions anymore,
explicit phase factors {fk = ±1} need to be included in
the phase-invariant form. This functional is now a proper
1MFT functional for fixed {fk} and is therefore named
density matrix Löwdin–Shull (DMLS) functional.

An additional advantage of using a normal exchange
integral is that we have with DMLS an example of a so-
called JK-only functional. JK-only functionals have been
the first trial functionals. The derivation of Müller [26]
starts from the Hartree-Fock exchange and therefore al-
ways uses just K integrals for the exchange-correlation
part. The derivation of Buijse and Baerends [27, 28] does
not determine the phases and affords either K or L in-
tegrals. Until now the choice for K integrals (hence JK-
only NO functionals) has almost universally been made
since it seems to naturally connect to the correlation-less
Hartree-Fock model and because they are pure 1RDM
functionals. For ground state calculations (real orbitals)
the choice of phases was immaterial anyway. However,
in time-dependent 1RDM/PINO functional theory this
subtle difference expresses itself in horrific results for dy-
namic properties in the case of the DMLS functional, in
particular many low lying spurious excitation energies are
produced [9]. These spurious excitations show up as very
narrow divergencies (poles) in the polarizability, visible
as “spikes” in Fig. 1 for the αzz(ω) component for H2

at interatomic distances of 1.4 and 5.0 Bohr respectively.
The calculation has been done in an aug-cc-pVTZ ba-
sis [29] and all response matrix elements δγkl have been
taken into account (see below for tests with reduced num-
bers of δγkl matrix elements). As a reference, also the
full configurations interaction (CI) results are shown in
red.

The PILS functional, contrary to the DMLS func-
tional, shows perfect agreement with the exact results,
since it falls exactly on top of the full CI results. It can
actually be shown analytically that the PINO response
equations with PILS functional in fact constitute a re-
formulation of the full CI equations for the two-electron
system, so this should indeed be the case. Further, al-
though the DMLS functional shows a lot of spurious ex-
citations (spikes) in the polarizability, it follows the exact
polarizability rather closely on the ω intervals in between.
Apparently, these spurious excitations carry little or no
oscillator strength. Especially at equilibrium distance
RH-H = Re = 1.4 Bohr, where double excitations are not

RH-H = 1.4 a.u.
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Figure 1. The αzz(ω) component of the polarizability tensor
for H2 at interatomic distances of 1.4 and 5.0 Bohr in an aug-
cc-pVTZ basis. The exact (full CI) and PILS results exactly
coincide. Exact (full CI) & PILS: thick (red) lines; DMLS:
thin (black) lines. All matrix elements have been taken into
account for the PINO response calculation.

important at this range of frequencies, the agreement of
the DMLS curve with the exact and PILS curves is very
good (apart from the poles). However, for a stretched
bond distance (RH-H = 5.0 Bohr), double excitations be-
come important and the agreement of the DMLS func-
tional with the exact results at the intervals between the
spikes deteriorates (Fig. 1). Diagonal doubly excited na-
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RH-H = 1.4 a.u.
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Figure 2. The αzz(ω) component of the polarizability tensor
for H2 at interatomic distances of 1.4 and 5.0 Bohr in an aug-
cc-pVTZ basis. Exact (full CI): thick (red) lines; PILS (1 →
all): dashed (green) lines; DMLS (1 → all): thin (black) lines.

ture of excited states (excitation from closed shell config-
uration (φi)

2 to closed shell configuration (φa)2) cannot
be represented with the DMLS functional since, as a pure
1MFT functional, it suffers from the lack of response in
the occupation numbers, which represents diagonal ex-
cited character [4, 14]. Such diagonal double excitation
character ((1σg)

2 → (1σu)2) enters the low-lying excited
states of H2.

One would expect that not all elements δγkl are equally

RH-H = 1.4 a.u.
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Figure 3. The αzz(ω) component of the polarizability tensor
for H2 at interatomic distances of 1.4 and 5.0 Bohr in an aug-
cc-pVTZ basis. Exact (full CI): thick (red) lines; PILS (1, 2
→ all): dashed (green) lines; DMLS (1, 2 → all): thin (black)
lines.

important. Since the δγkl can be associated with k → l
orbital transitions [14], we would expect that notably
virtual → virtual elements δγab where both a and b de-
note very weakly occupied NOs, would not be important
for the polarizability (we denote weakly occupied NOs
as “virtuals”). Therefore, we also did a response cal-
culation in which we only included transitions from the
1σg PINO to all virtuals (1 → all). This has been de-
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noted the R0 variant in Ref. [14], with roughly TDDFT
size (NoccNvirt ×NoccNvirt size of the response matrix).
The diagonal elements δγpp = δnp are always included
because of their importance for diagonal double excited
nature of the states. The results for this calculation are
shown in Fig. 2, where all the other parameters have been
kept the same as in the previous calculation (Fig. 1).
As expected, this limited calculation performs best at
Re = 1.4 Bohr, where the 1σg PINO has an occupancy
of 0.98 and the 1σu PINO only an occupancy of 0.01. Es-
pecially transitions between PINOs with large occupancy
difference should be important for low frequency fields/
energies, since they give the most significant contribu-
tions to the lowest excitation energies [14, 15]. There-
fore, although only the transitions from 1σg PINO to the
other ones have been included, we cover the most impor-
tant ones, which is corroborated by the results in Fig. 2
for 1.4 Bohr.

However, at a stretched bond distance of 5.0 Bohr, the
1σg occupation is only 0.63 and the 1σu occupation is
increased to 0.37. Therefore, also “transitions” from the
1σu PINO will be important for a correct calculation of
response properties at low energies. This can be clearly
seen from the second plot (5.0 Bohr) in Fig. 2, where the
agreement for this R0 variant with the exact results is
much poorer than at 1.4 Bohr.

Further note that if only the 1 → all excitations are
included (R0) the DMLS results are rather close to the
PILS results at 1.4 Bohr, and still reasonably close at 5.0
Bohr. They do not show any spurious spikes in the dis-
played interval at 1.4 Bohr, and only 1 at 5.0 Bohr. The
spurious low lying excitations by the DMLS functional
are off-diagonal double excitations which are represented
by virtual-virtual transitions. Apparently, double exci-
tations are made “too easy” by the DMLS functional,
so they mix in at too low energies and produce many
spurious low-lying (double) excitations. By only allow-
ing transitions from the 1σg PINO, we effectively remove
all these bad virutal-virtual double excitations. How-
ever, they are required for the description of correlation,
so the elimination of the spurious excitations comes at
the cost that the exact polarizability as a function of the
frequency is not followed so closely anymore: both PILS
and DMLS differ considerably from the exact full CI (red)
curves at 5.0 bohr.

Since the 1σu PINO has such a large occupancy (0.37)
at 5.0 Bohr, the removal of the transition out of the 1σu
PINO in the R0 approximation is a severe limitation. In-
deed, when we include also transitions from the 2nd PINO
(all elements δγ2p in the response of the 1RDM), the re-
sults at RH-H = 5.0 Bohr improve significantly as shown
in Fig. 3. The results for both the PILS and DMLS func-
tional are now in very good agreement with the exact
results at low frequencies [ω . 0.7 a.u.]. Of course, also
the results for RH-H = 1.4 Bohr improve, but the im-
provement is not so spectacular as at RH-H = 5.0 Bohr.
The DMLS results already feature one spurious low ex-
citation at 0.445 Hartree [25].

V. CONCLUSION

In this article we have studied the calculation of
frequency dependent polarizabilities with the phase-
including density matrix functional theory. The static
limit (ω → 0) of the frequency-dependent PINO response
equations requires special attention to avoid unwarranted
divergencies. We have shown that with careful treatment
of the constant term in the perturbing potential, not only
the static 1MFT response equations are recovered, but
that also the perturbation in the chemical potential (the
Lagrange multiplier for electron number conservation) is
treated correctly in this limit. The (spatially) constant
time-dependent potential plays in the time-dependent
PINO linear response equations a special role, which can
be shown to be related to the perturbation in the chem-
ical potential.

Further we have shown results for the αzz(ω) compo-
nent of the polarizability tensor for H2 at interatomic
separations of 1.4 and 5.0 Bohr. The response calcula-
tion were performed with two different functionals: the
PILS functional which explicitly depends on the PINO
phases and the DMLS functional which is a proper 1RDM
functional, so it does not depend on the PINO phases.
The PILS functional shows a perfect agreement with the
exact results. It can be shown actually that the PILS
functional can be regarded as a reformulation of the full
CI equations for two-electron systems in the PINO basis,
so these excellent results should be expected. The DMLS
functional fails in the sense that it supports very many
low lying spurious excitations. This is caused by the
DMLS functional putting the double excitations at too
low energies. At other ω values, it has also a good cor-
respondence with the exact results at RH-H = 1.4 Bohr.
At RH-H = 5.0 Bohr, double excitations are more impor-
tant, so the correspondence of the DMLS results withe
the exact ones deteriorates.

Since the spurious low lying DMLS excitations are
related to double excitations, the spectrum could be
cleaned up by only including excitations from the high-
est occupied PINO, the 1σg, to the other PINOs. All
spurious excitations could be removed this way and we
obtained quite good results at RH-H = Re = 1.4 Bohr.
However, this simplification of the calculations comes at
a price: the results at 5.0 Bohr are no longer accurate,
both in the DMLS calculations and also in the PILS cal-
culations, with this approximation. At 5.0 Bohr, also the
1σu PINO has a large occupancy, so also excitations from
this PINO should be important. Indeed, including also
excitations from the 1σu PINO to all the others improved
the results at 5.0 Bohr significantly for both the PILS and
DMLS functional. Since the results were already quite
accurate with the R0 variant at 1.4 Bohr, the inclusion
of excitations from the 1σu PINO only slightly improved
the results and the DMLS functional already shows one
spurious low lying excitation.

These results show that the extension of 1MFT with
functionals that include phase information is imperative
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when one wants to obtain reliable response properties.
This will be important for developing successful general
N -electron PINO functionals.
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Appendix A: The sum-rule for A

The sum-rule for the response matrix A (7) can be de-
rived in two steps. First we will show that A is hermitian
in the sense that Akl,ba = A∗ab,lk, after which the sum-rule
is quite easy to prove. First we only consider the deriva-
tives in the two-electron part of A (5a), where we have
to keep in mind that the response matrix is defined in a
stationary basis PINO basis, so this transformation (3)
has to be taken into account

Kφ
kl,ba :=

∑
rs

∫
dx

(
∂Ukr

(
W †rs −Wrs

)
U†sl

∂�πb(x)
�πa(x)−

∂Ukr
(
W †rs −Wrs

)
U†sl

∂�π∗a(x)
�π∗b(x)

)
=
(
W †bl −Wbl

)
δka −

(
W †ka −Wka

)
δbl

+

∫
dx

∫
dx′

[
δ

δ�πb(x′)

(
�π∗k (x)

δW

δ�π∗l (x)
− δW

δ�πk(x)
�πl(x)

)
�πa(x′)−�π∗b (x′)

δ

δ�π∗a (x′)

(
�π∗k (x)

δW

�π∗l (x)
− δW

δ�πk(x)
�πl(x)

)]
= Kφ:2

kl,ba −Wblδka −W
†
kaδbl,

where we introduced

Kφ:2
kl,ba :=

∫
dx

∫
dx′

(
�π∗k (x)

δ2W

δ�π∗l (x)δ�πb(x′)
�πa(x′)−�πl(x)

δ2W

δ�πk(x)δ�πb(x′)
�πa(x′)

−�π∗k (x)
δ2W

δ�π∗l (x)δ�π∗a (x′)
�π∗b (x′) + �πl(x)

δ2W

δ�πk(x)δ�π∗a (x′)
�π∗b (x′)

)
.

From the definition of Kφ:2 it is immediately clear that

it is hermitian, Kφ:2
kl,ba =

(
Kφ:2
ab,lk

)∗
. The response matrix

A (5a) can now be written as

Akl,ba =
[
nbhka −

(
nahka +W †ka

)]
δbl

+
[
nahbl −

(
nbhbl +Wbl

)]
δka +Kφ:2

kl,ba.

If we now work out the hermitian conjugate we have

A∗ab,lk =
[
nlh
∗
ak −

(
nkh

∗
ak +Wka

)]
δlb

+
[
nkh

∗
lb −

(
nlh
∗
lb +W †bl

)]
δak +

(
Kφ:2
ab,lk

)∗
= Akl,ba,

where we used the stationarity condition

nkhkl +Wkl = nlhkl +W †kl.

This stationarity condition can be obtained from the
EOM for the 1RDM (2) by requiring that the 1RDM is
stationary, i.e. that all the time-derivatives vanish. This
condition also follows from the first order stationarity
conditions for the ground state state [9, 30, 31].

To establish the sum-rule for A (7), we consider∑
k

Akk,ba =
∑
k

(nb − na)hba(δbk − δka) +
∑
k

Kφ
kk,ba

=
∑
k

∫
dx

(
∂
(
W †kk −Wkk

)
∂�πb(x)

�πa(x)

−
∂
(
W †kk −Wkk

)
∂�π∗a(x)

�π∗b(x)

)
= 0,

where in the last step we used that Tr{W } = 2W , where
W was the two-electron part of the energy. The equality
between the trace of W and twice the two-body part of
the energy follows from [25, 32]

Wkl =

∫
dx

∂W

∂�πk(x)
�πl(x) =

∑
rst

Γkrstwtsrl,

where the two-body two-electron reduced density matrix
(2RDM) is defined as

Γ(x1x2,x
′
2x
′
1) := 〈Ψ|ψ̂†(x′1)ψ̂†(x′2)ψ̂(x2)ψ̂(x1)|Ψ〉.

Now using the hermiticity of A, the sum-rule (7) follows
immediately.
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Appendix B: The sum-rules for C and W

We first prove the sum-rule for W by starting from the
following stationarity condition

hkk +
∂W

∂nk
= εk, (B1)

which can be obtained by requiring the PINOs to be sta-
tionary, i.e. �πk(xt) = e−iεkt�πk(x). For fractionally oc-
cupied PINOs one can prove that εk = ε [31]. Now we
multiply this equation by nk and sum over k, which gives

∑
r

nr

(
hrr +

∂W

∂nr

)
=
∑
r

nrεr.

Differentiating this equations with respect to the occu-
pation number nk, we find(

hkk +
∂W

∂nk

)
+
∑
r

∂2W

∂nk∂nr
nr = εk.

Using the definition of W (5c) and the stationarity con-
dition (B1) the sum-rule for W (8) immediately follows.

The sum-rule for W can now be used to establish the
sum-rule for C from the stationary response equations.
Acting with nT on the last set of stationary response
equations (10b) we find

0 =
∑
r

nr
(
δvrr − δε

)
−
∑
rs

nr
∂2W

∂nr∂ns
δnr

=
∑
r

nrC
T
r,abδU

R
ab.

Since this equation should hold for arbitrary δUR, we
find the sum-rule for C (8).
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