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One-body reduced density-matrix functional theory for the canonical ensemble
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We establish one-body reduced density matrix (1RDM) functional theory for the canonical ensemble in a
finite basis set at an elevated temperature. Including temperature guarantees the differentiability of the universal
functional by occupying all states and additionally not fully occupying the states in a fermionic system. We
use the convexity of the universal functional and invertibility of the potential-to-1RDM map to show that the
subgradient contains only one element which is equivalent to differentiability. This allows us to show that all
1RDMs with a purely fractional occupation number spectrum (0 < ni < 1 ∀i) are uniquely v-representable up
to a constant.
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I. INTRODUCTION

Quantum chemistry and physics deal with the descrip-
tion of many interacting particles. Often we limit ourselves
to a single-particle species. In quantum chemistry these are
usually electrons, but in physics also bosonic particles are
of interest. Though the many-body Schrödinger equation in-
volves only linear operators, the daunting dimensionality of
the many-body wave function renders a direct solution in-
tractable, but for a few particles. This is one of the prime
reasons to aim directly for reduced quantities.

In 1964 Hohenberg and Kohn presented their revolutionary
work about density functional theory (DFT) [1]. They showed
that any observable can be regarded as a functional of the
density. Especially the Kohn-Sham (KS) formulation [2] has
been important to the success of DFT. Their idea was to
approximate the true kinetic energy by the kinetic energy of
the KS system: a noninteracting system with the same density
as the interacting system. The KS kinetic energy turns out
to be a decent approximation to the true kinetic energy of
the interacting system. The difference in the kinetic energy
is then lumped together with the interaction beyond Hartree
(classical Coulomb) in the exchange-correlation energy func-
tional. Though formally exact, in practice KS-DFT has some
weaknesses, since the exchange-correlation functional needs
to be approximated. A famous example is the stretching of the
H2 bond [3–5].

One way to bypass some of these problems in construct-
ing an approximate exchange-correlation energy functional
is with one-body reduced density-matrix (1RDM) functional
theory. One advantage over DFT is that we have also an
explicit expression for the kinetic energy while still having the
total energy as a functional of the 1RDM [6]. However, in a
zero-temperature setting, mapping back from 1RDMs to (non-
local) potentials is problematic, as already noted by Gilbert
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[6] and others [7–10]. This is most clear in the case of non-
interacting particles, since typically ground state 1RDMs are
idempotent. It therefore seems that nonidempotent 1RDMs
cannot be v-representable in the absence of interactions. There
is the possibility for orbital energies to be degenerate, how-
ever, which allows fractionally occupied orbitals and hence
nonidempotent 1RDMs [11,12]. But one quickly realizes that
the scaled identity operator is the one-body Hamiltonian
which has all 1RDMs as ground state 1RDM. It is clear that
the interaction should play a crucial role in the back mapping,
but there has been no progress in this direction.

An alternative to regularize the theory is to introduce en-
tropy, i.e., work at finite temperature, as proposed more than a
decade ago [8,9,13,14]. Though this is a theoretical motivation
to introduce temperature, also physically this is a well justified
choice, since most experiments are conducted at T > 0. Im-
portant examples where temperature plays an important role
are metal-insulator transitions in transition metal oxides [15],
high Tc superconductors [16], hot plasmas [17], etc.

In Ref. [10] 1RDM functional theory (1RDMFT) was
presented for the grand canonical ensemble within a finite
basis set. However, the use of a grand canonical ensem-
ble is inappropriate if the number of particles is relatively
low as in ultracold atom experiments [18], but also in the
low-temperature limit the grand canonical ensemble can lead
to unphysical results [19,20]. A canonical formulation of
1RDMFT is therefore desirable and will be the goal of this
paper.

In classical thermodynamics the grand potential can be
reached by a Legendre transformation of the Helmholtz free
energy with respect to the number of particles. In the quan-
tum mechanical setting we cannot do that. The reason is
that the grand potential and the Helmholtz functional act on
different spaces: the Fock space and the N-particle Hilbert
spaces, respectively. Thus, we can not simply transform it
back to obtain the canonical case. Another major difference
with respect to the grand canonical ensemble is that in the
noninteracting case the occupation numbers are not explicitly
given by either the Fermi/Bose function for fermions/bosons.
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Instead, they need to be calculated recursively, using auxiliary
partition functions [21]. In Ref. [14] it therefore remained an
open question whether every thermal 1RDM (only fractional
occupation numbers) would be noninteracting v-representable
and not much progress could be made. However, we do
not rely on such an explicit relation and are able to prove
a one-to-one correspondence between thermal 1RDMs (all
occupation numbers fractional) and (nonlocal) potentials for
any interaction. The noninteracting system is just a particular
case. This result justifies the existence of an algorithm which
finds for any thermal 1RDM the corresponding noninteracting
Hamiltonian as published recently by Kooi [22].

In this paper we present 1RDMFT in a rigorous way for a
fixed number of particles, finite basis set, and elevated temper-
ature. We show that the universal functional is differentiable
and it holds

∂FN,±
∂γ

= −v, (1)

where γ is the ground state 1RDM for the potential v. Here
and in the following, + and − stand for the bosonic and the
fermionic case, respectively. If we have a handy expression for
FN,±[γ ] then we can circumvent the handling of the density-
matrix operator to compute the free energy and instead we
only need to deal with the reduced quantity γ . The minimizer
for the Helmholtz functional can then be determined through
the above relation (1).

This paper is constructed in the following way. In Sec. II
we introduce all the relevant spaces, then, in Sec. III, we
present the Helmholtz functional, its minimizing density-
matrix operator, and the general approach for 1RDMFT. For
this task we make use of the universal functional FN,±. To
show differentiability of FN,± we utilize results from convex
analysis. In Sec. IV we show that all the relevant function-
als are convex. Additionally, we show that two potentials
differing by more than a constant cannot generate the same
density-matrix operator. The proof of differentiability of FN,±
is finalized in Sec. V.

II. SETTING

We build our N-particle space from a finite number of
single-particle states |i〉, for i ∈ {1, . . . , Nb} and Nb < ∞. We
require the states to be orthonormal. The one-particle Hilbert
space H is now the C-vector space generated by the states |i〉,
i.e., H := span{|1〉 , . . . , |Nb〉} ∼= CNb . To build the N-particle
space we need to distinguish between bosons and fermions.

Bosons. A system with N bosons is described by a symmet-
ric wave function. Therefore, the bosonic N-particle Hilbert
state, denoted by HN

+, consists of all symmetric tensors of
order N , i.e., HN

+ := SymN (H). The dimension of HN
+ is(Nb+N−1

N

)
.

Fermions. Fermionic systems are described by antisym-
metric wave functions. Thus, we consider the space of
antisymmetric tensors of order N , i.e., HN

− := ∧NH. The di-
mension is given by

(Nb

N

)
. Note that we need to have Nb � N .

The case Nb = N is trivial since we have only one possible
state. Thus, we will only consider Nb > N .

The set of density-matrix operators on the N-particle space
HN

± is defined as

PN,± := { ρ̂ : HN
± → HN

± | ρ̂ = ρ̂†, ρ̂ � 0, Tr{ρ̂} = 1 },
(2)

which we endow with the norm

‖ρ̂‖2 = (
Tr{|ρ̂|2})1/2

. (3)

A density-matrix operator ρ̂ ∈ PN,± has a spectral decompo-
sition

ρ̂ =
∑

l

λl |ψl〉 〈ψl | , (4)

and its kernel is given by

ρ(x1, . . . , xN ; y1, . . . , yN )

=
∑

l

λlψl (x1, . . . , xN )ψ∗
l (y1, . . . , yN ). (5)

We can define the 1RDM γ by [23]

γi j[ρ̂] = Tr{ρ̂ â†
j âi}.

It turns out (see the Appendix) that the relevant spaces for
the 1RDMs are subsets of the space of all Hermitian Nb × Nb

matrices denoted by H(Nb),

N N,+ := { γ ∈ H(Nb) | γ � 0, tr{γ } = N }, (6a)

N N,− := { γ ∈ H(Nb) | γ � 0, γ 2 � γ , tr{γ } = N }. (6b)

We have used tr{·} to emphasize that the trace is over the
one-particle Hilbert space H as opposed to the Tr{·} which
is over a HN

± Hilbert space. By convention, the eigenvalues
and eigenstates of the 1RDM γ are called natural occupation
numbers and natural orbitals (NOs), respectively. Coleman
has shown that all elements of N N,± can be obtained from
a density-matrix operator in PN,±, so it is a true 1RDM [24].

Theorem II.1 (Coleman). For any γ ∈ N N,± there is a
density matrix ρ̂ ∈ PN,± which generates γ .

The proof can be found in the Appendix.

III. GENERAL APPROACH

The Helmholtz functional for the canonical ensemble is
defined as

�v[ρ̂] := Ev[ρ̂] − β−1S[ρ̂], (7)

where

Ev[ρ̂] := Tr[ρ̂Ĥv] (8)

is the energy of a system with the Hamiltonian Ĥv := Ĥ0 +
V̂v [Ĥ0 contains the kinetic and interaction part and V̂v is the
potential with kernel v(x, x′)]. The second term contains the
entropy

S[ρ̂] := −Tr{ρ̂ ln(ρ̂ )} (9)

and the inverse temperature β = 1/T . The minimizer ρ̂v of
the Helmholtz functional can be found by variations in the
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density-matrix operator which yields the equation

Tr{δρ̂[Ĥv + β−1 ln(ρ̂v )]} + β−1Tr{δρ̂} = 0. (10)

From the unit trace condition and (10) it follows that

ρ̂v = e−βĤv/Z[v], where Z[v] := Tr{e−βĤv }. (11)

The minimizer ρ̂v is called the Gibbs state of our system. Note
that we only have a proper solution for 0 < Z[v] < ∞. This
is always the case since we work in a finite basis setting with
a fixed number of particles, so the trace only runs over a finite
number of elements.

One aim is to show that the map from the potential v to the
density-matrix operator ρ̂v is invertible. However, this is only
doable up to a constant since adding a constant to the potential
does not change the density-matrix operator. To achieve a
one-to-one correspondence we allow only potentials from the
following set,

V := {v ∈ H(Nb) | tr{v} = 0}. (12)

We can also think of v ∈ V being a representative of the equiv-
alence class containing potentials differing by a constant.

In Theorem II.1 we have seen that all γ ∈ N N,± are
N-representable. However, physically relevant are only the
1RDMs that are associated with a Gibbs state ρ̂v . Thus, we
denote the set of all v-representable 1RDM by

VN,± := { γ ∈ N N,± | ∃ v ∈ V �→ γ }. (13)

The approach is to partition the minimization in the Helmholtz
functional as

�N,±[v] := inf
ρ̂∈PN,±

�v[ρ̂] = inf
γ∈N N,±

(FN,±[γ ] + tr{vγ }),

(14)
where

FN,±[γ ] := inf
ρ̂∈PN,±
ρ̂→γ

�0[ρ̂]

= inf
ρ̂∈PN,±
ρ̂→γ

Tr{ρ̂[Ĥ0 + β−1 ln(ρ̂)]} (15)

is called the universal functional which takes the value ∞ in
case no ρ̂ → γ exists. Here and in the following, �0[ρ̂] =
�v=0[ρ̂]. The aim is to show that FN,± is differentiable. Then
the minimizer can be found through the relation

∂FN,±
∂γ

= −v,

and we know that γ is a canonical eq-1RDM (equilibrium
1-RDM) which was an open question in Ref. [14].

IV. GENERAL PROPERTIES OF THE HELMHOLTZ
FUNCTIONAL AND IMPLICATIONS ON

THE UNIVERSAL FUNCTIONAL

Theorem IV.1. The mapping Ĥv �→ ρ̂v with v ∈ V is invert-
ible up to a constant in the Hamiltonian.

Proof. Assume that two Hamiltonians Ĥv and Ĥ ′
v differing

in their potential yield the same density-matrix operator ρ̂v .
From (10) it follows that ρ̂v fulfills

1

β
ln(ρ̂v ) + Ĥv = C,

1

β
ln(ρ̂v ) + Ĥ ′

v = C′.

Subtracting these equations gives Ĥv − Ĥ ′
v = C − C′. �

Remark 1. Since we have a fixed number of particles in
the Hilbert space, the constant in Theorem IV.1 can be of the
form f (N̂ ) where f : R → R, so this includes the arbitrary
constant shift in the potential.

Corollary 1. The map v �→ ρ̂v with v ∈ V is invertible.
Note that we only have a one-to-one correspondence be-

cause we require tr{v} = 0. Otherwise a constant shift in the
potential would lead to the same density-matrix operator.

At this point we want to mention that the density-matrix
operator ρ̂v is positive definite, ρ̂v > 0, and lies in the follow-
ing subspace of PN,±,

PN,± := { ρ̂ : HN
± → HN

± | ρ̂ = ρ̂†, ρ̂ > 0, Tr{ρ̂} = 1 }. (16)

It follows that the natural occupation numbers ni are positive
and in the fermionic case additionally ni < 1. To see this let
φ1, . . . , φNb be the NO basis and ρ̂v = ∑

j λ j |ψ j〉 〈ψ j | be the
spectral decomposition of the density-matrix operator. Then,
as the ψ ′

js build a basis of HN
±, each NO φi contributes to at

least one of the eigenstates. So,

ni =
∑

j

λ j

∫
dxdydx2 · · · dxNφ∗

i (x)φi(y)

×ψ j (x, x2, . . . , xN )ψ∗
j (y, x2, . . . , xN ) > 0, (17)

where we used the fact that all weights λ j = e−βEj /Z are
positive. In the case of fermions we have already showed that
ni � 1. The ith NO cannot be present in all ψ ′

js (in the case
N �= Nb), so

ni =
∑

j

λ j

∫
dxdyx2 · · · dxNφ∗

i (x)φi(y)

×ψ j (x, x2, . . . , xN )ψ∗
j (y, x2, . . . , xN ) < 1, (18)

because the integral is at least for one j not equal to 1. Sum-
marized, the 1RDMs produced by a potential are contained
in

NN,+ := {γ ∈ H(Nb) | γ > 0}, (19)

NN,− := {γ ∈ H(Nb) | γ > 0, γ 2 < γ }. (20)

We want to show that the most important functionals are either
convex or concave to be able to use results from convex anal-
ysis. We start with the functional �N,±[v] which is achieved
through a minimization and thus turns out to be concave [25].

Theorem IV.2. The functional �N,±[v]= minρ̂∈PN,± �v[ρ̂]=
minρ̂∈PN,± �v[ρ̂] = −β−1 ln (Z[v]) is strictly concave in v.
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Proof. Let v1 �= v2 be two potentials in V and let 0 < t < 1. Then we have

�N,±[tv1 + (1 − t )v2] = min
ρ̂∈PN,±

Tr

{
ρ̂

[
t Ĥv1 + t

1

β
ln(ρ̂)

]}
+ Tr

{
ρ̂

[
(1 − t )Ĥv2 + (1 − t )

1

β
ln(ρ̂)

]}

> t min
ρ̂1∈PN,±

Tr

{
ρ̂1

[
Ĥv1 + 1

β
ln(ρ̂1)

]}
+ (1 − t ) min

ρ̂2∈PN,±
Tr

{
ρ̂2

[
Ĥv2 + 1

β
ln(ρ̂2)

]}

= t�N,±[v1] + (1 − t )�N,±[v2],

where the strict inequality follows from Corollary 1. �

With Corollary 1 it is possible to show a generalization
of the Hohenberg-Kohn theorem for 1RDMs and nonlocal
potentials [26].

Theorem IV.3. The map v �→ γv for v ∈ V is invertible.
Proof. Assume there are two potentials v1 �= v2 ∈ V yield-

ing different density-matrix operators ρ̂1 �= ρ̂2 but the same
1RDM γ . Then we get

�N,±[v1] = �v1 [ρ̂1] = �v2 [ρ̂1] + tr{γ (v1 − v2)}
> �v2 [ρ̂2] + tr{γ (v1 − v2)}
= �N,±[v2] + tr{γ (v1 − v2)}.

Changing the role of v1 and v2 and adding the two inequalities
gives

�N,±[v1] + �N,±[v2] < �N,±[v2] + �N,±[v1],

which is a contradiction. �
One aim is to show that the universal functional is convex.

For this purpose we first show that the entropy is strictly
concave [27–29].

Theorem IV.4. The entropy is strictly concave, i.e., for any
ρ̂0, ρ̂1 ∈ PN,± and λ ∈ (0, 1) we have S[λρ̂0 + (1 − λ)ρ̂1] >

λS[ρ̂0] + (1 − λ)S[ρ̂1].
Proof. Let ρ̂λ = λρ̂0 + (1 − λ)ρ̂1 = ∑

k wk |ψk〉 〈ψk|. We
use strict concavity of the function s(x) = −x ln(x) and we
get

S(ρ̂λ) = −
∑

k

wk ln(wk ) =
∑

k

s(〈ψk|ρ̂λ|ψk〉)

=
∑

k

s(λ 〈ψk|ρ̂0|ψk〉 + (1 − λ) 〈ψk|ρ̂1|ψk〉)

> λ
∑

k

s(〈ψk|ρ̂0|ψk〉) + (1 − λ)
∑

k

s(〈ψk|ρ̂1|ψk〉)

� λ
∑

k

〈ψk|s(ρ̂0)|ψk〉 + (1 − λ)
∑

k

〈ψk|s(ρ̂1)|ψk〉

= λS[ρ̂0] + (1 − λ)S[ρ̂1],

where we used Jensen’s inequality for the last inequality. �
Corollary 2. The Helmholtz functional �v[ρ̂] is strictly

convex in the density operator ρ̂.
Proof. It follows directly from the fact that the Helmholtz

functional is the sum of a linear and a strictly convex func-
tional. �

Theorem IV.5. The universal functional FN,±[γ ] is convex
on N N,±.

Proof. Let γ0, γ1 ∈ N N,±, λ ∈ [0, 1] and γλ = λγ0 +
(1 − λ)γ1 and taking ρ̂, ρ̂0, ρ̂1 ∈ PN,± we get

λFN,±[γ0] + (1 − λ)FN,±[γ1]

= λ inf
ρ̂0→γ0

�0[ρ̂0] + (1 − λ) inf
ρ̂1→γ1

�0[ρ̂1]

= inf
ρ̂0→γ0

inf
ρ̂1→γ1

λ�0[ρ̂0] + (1 − λ)�0[ρ̂1]

� inf
ρ̂0→γ1

inf
ρ̂1→γ1

�0[λρ̂0 + (1 − λ)ρ̂1]

= inf
ρ̂→γλ

�0[ρ̂] = FN,±[γλ].

�

V. FINAL RESULT

Now we want to show that the universal functional FN,± is
differentiable. Differentiability is only defined on an open set.
However, the set N N,± has an empty interior in H(Nb). Thus,
we need to embed N N,± in a topological space where NN,±
is the interior of N N,±. The idea is to use the following result
about subgradients and subdifferentials.

Theorem V.1. Let X be a finite-dimensional vector space,
and let f : X → R ∪ {∞} be a convex function with domain
M. Assume M is contained in a + L such that L is a subspace
with the lowest dimension such that there exists a ∈ X with
M ⊂ a + L [30]. Let ∂L f (x) := ∂ f (x) ∩ L where ∂ f (x) is
the subdifferential of f at a point x in the set M. Then the
following properties hold for ∂L f (x): (i) The set ∂L f (x) is
nonempty. (ii) f is differentiable at x if and only if ∂L f (x)
contains only one element. In that case this element equals
the usual gradient. [With differentiable we mean that there
is a linear map J : L → R such that for all h ∈ L we have
limh→0

1
‖h‖L | f (x + h) − f (x) − J (h)| = 0.]

The universal functional has domain N N,± which is con-
tained in L + a with L = { x ∈ H(Nb) | tr{x} = 0 } and a =
N/Nb · 1 [31] and its (relative) interior is NN,±. Figure 1 shows
N N,+ for two particles and three basis functions. This also
justifies the choice of the potential gauge. The aim is to get
the relation ∂FN,±/∂γ = −v. But as mentioned in Theorem
V.1, the differential is a map J : L → R, i.e., it is contained
in V . We can now apply the above theorem for all 1RDMs
contained in NN,±.

Theorem V.2. If the infimum in (15) is attained, then (i)
NN,± = VN,±, and (ii) the universal functional FN,±[γ ] is
differentiable on NN,±.

Proof. Convexity of FN,± implies that for any γ ∈ NN,±
there exists at least one subgradient h ∈ V . So for all
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n1

n2

n3

a

2

2

2

FIG. 1. Representation of N N,+ in terms of the occupation num-
bers for Nb = 3 and N = 2 (see proof of Theorem II.1). The vector a
shifts a two-dimensional subspace to an affine space which contains
N N,+.

γ̃ ∈ N N,± it holds FN,±[γ̃ ] + 〈−h|γ̃ 〉 � FN,±[γ ] + 〈−h|γ 〉,
which implies

FN,±[γ ] + 〈−h|γ 〉 � min
γ̃∈N N,±

FN,±[γ̃ ] + 〈−h|γ̃ 〉 = �N,±[−h].

Thus, the negative of the subgradient, −h, yields a potential
generating γ and hence NN,± = VN,±. By Theorem IV.3, we
get that there is only one such potential. Hence the subgradient
is unique and FN,±[γ ] is differentiable for all γ ∈ NN,± by
Theorem V.1. �

We proved v-representability under the assumption that the
minimum in (15) is attained. To finish the proof we still need
to show that this is indeed the case. The idea is to show that
the relevant functions are continuous and then use the fact that
continuous functions attain their minima (and maxima) over
compact sets.

Proposition V.3. The energy Ev[ρ̂] is Lipschitz continuous
on PN,±.

Proof. The Hamiltonian acts on a finite-dimensional space
and thus it has a maximum eigenvalue, ‖Ĥv‖∞ < ∞. For two
density-matrix operators ρ̂0, ρ̂1 we have

|Ev[ρ̂0] − Ev[ρ̂1]| � ‖Ĥv‖∞‖ρ̂0 − ρ̂1‖.
�

Proposition V.4. The entropy is continuous on PN,±.
Proof. The function ρ̂ �→ (a1, . . . , am) where (a1, . . . , am)

contains the eigenvalues of ρ̂ in an ordered fashion and with
multiplicity (ai � ai+1 for all i = 1, . . . , m − 1) is continu-
ous. The statement follows from continuity of the function
(a1, . . . , am) �→ ∑m

j=1 a j ln(a j ). �
To finish the proof we make use of the following theorem.
Theorem V.5. Let X be a compact metric space and let f :

X → R be a continuous function. Then f is bounded and it
attains its maximum and minimum.

Compact sets in finite-dimensional affine spaces (with
the usual metric) are fully characterized by closedness and

boundedness. Thus, PN,± and { ρ̂ ∈ PN,± | ρ̂ → γ } are com-
pact and we get the following corollary.

Corollary 3. The infima in the the Helmholtz functional
�N,±[v] and the universal functional FN,±[γ ] are achieved in
the fermionic and bosonic case, so the infima in (7) and (14)
can be replaced by minima.

VI. CONCLUSION

For a fixed number of particles, finite numbers of basis
functions, and elevated temperature the universal functional
in 1RDM functional theory is differentiable with ∂FN,±/∂γ =
−v for all 1RDMs γ in NN,±. This relation holds for potential
with tr{v} = 0. However, all potentials differing from v by
only a constant lead to the same 1RDM. From this relation
it follows directly that the map v �→ γ is bijective up to a
constant in the potential and it gives a characterization of
the set of v-representable 1RDMs. Additionally, for every po-
tential the Helmholtz functional and the universal functional
attain a minimum. One might think of reaching the T = 0
case by taking the limit T → 0. The Gibbs state will just be
an equiensemble of the ground states, but a difficulty is that
it changes discontinuously when the potential is varied such
that other states become ground states. Additionally, we can
no longer guarantee that the 1RDM will be in the (relative)
interior of N N,± which prevents invertibility of v �→ γv and
also differentiability will probably no longer be in the cards.

ACKNOWLEDGMENT

The authors acknowledge support by the Netherlands Or-
ganisation for Scientific Research (NWO) under Vici Grant
No. 724.017.001.

APPENDIX: PROPERTIES OF THE 1RDM

We are still left with showing that the set of 1RDMs is
N N,±. To show the properties (6a) and (6b) for the 1RDM
we use the following equivalent definition.

The kernel of γ is given by tracing out N − 1 particles in
the density-matrix operator,

γ (x, y) = N
∫

dx2 · · · dxNρ(x, x2, . . . , xN ; y, x2, . . . , xN ).

(A1)
The 1RDM can be worked out in a one-particle orthonormal
basis φ1, . . . , φNb for a matrix representation with elements

γi j = N
∫

dxdydx2 · · · dxNφ∗
i (x)φ j (y)

× ρ(x, x2, . . . , xN ; y, x2, . . . , xN ). (A2)

Note that we have the following inequality,

γii = N
∑

l

λl

∫
dx2 · · · dxN

×
(∫

dxφ∗
i (x)ψl (x, x2, . . . , xN )

)2

� 0. (A3)

Next we want to show that for the fermionic 1RDM the diago-
nal entries are bounded from above by 1. For this, note that the
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entries of a statistical ensemble are bounded by the maximum
value of the eigenstates of the corresponding density-matrix
operator, i.e.,

γi j = N
∑

l

λl

∫
dxdydx2 · · · dxNφ∗

i (x)φ j (y)

× ψl (x, x2, . . . , xN )ψ∗
l (y, x2, . . . , xN )

� max
l

N
∫

dxdydx2 · · · dxNφ∗
i (x)φ j (y)

× ψl (x, x2, . . . , xN )ψ∗
l (y, x2, . . . , xN )

= max
l

(γψl )i j, (A4)

where γψl means the 1RDM generated from the wave function
ψl . Thus, we need to show the desired upper bound only
for pure states. With a similar argument, it suffices to show
the bound for Slater determinants built from one-particle or-
thonormal states f1, . . . , fN ,

ψ (x1, . . . , xN ) = 1√
N!

∑
σ∈SN

(−1)sgn(σ ) fσ (1)(x1) · · · fσ (N )(xN ).

(A5)
The kernel of the 1RDM can be worked out as

γψ (x, y) =
N∑

j=1

f j (x) f ∗
j (y), (A6)

and its diagonal elements are

(γψ )ii =
N∑

j=1

|〈 f j |φi〉|2 � 〈φi|φi〉 = 1. (A7)

It is easy to see that the 1RDM is Hermitian. Thus, it has a
spectral decomposition

γ =
Nb∑

l=1

λl |ϕl〉 〈ϕl | . (A8)

Note that since the diagonal elements are non-negative for
any basis, it follows that the eigenvalues λl are non-negative.
Therefore, γ � 0 and for fermions we have additionally
γ�1. The trace of γ can be calculated through its integral

kernel (A1),

tr{γ } =
∫

dxγ (x, x)

= N
∑

l

λl

∫
dxdx2 · · · dxN |ψl (x, x2, . . . xN )|2

= N. (A9)

All these properties together show that the set of 1RDMs is
contained in N N,±.

Next, we want to prove Theorem II.1.
Proof. For N = 1 we can simply take ρ̂ = γ . So let us

consider the case N � 2. We represent γ in the NO basis γ =∑Nb
j=1 λ j |ϕ j〉 〈ϕ j |. We need to distinguish between bosons and

fermions.
Bosonic case. We define the N-particle wave function

ψ (x1, . . . , xN ) := 1√
N

Nb∑
j=1

λ
1/2
j

N∏
i=1

ϕ j (xi ).

It is now easy to see that ψ is symmetric, normalized, and that
it generates γ .

Fermionic case. We work with a polytope. The 1RDM
γ can be expressed as a vector of length Nb containing its
occupation numbers n = (λ1, . . . , λNb ). The extreme points
of the polytope are all possible permutations of N occupation
numbers set to one and all other set to zero,

γ I := γ i1...iN := ei1 + · · · + eiN ,

for 1 � i1 < . . . < iN � Nb and where the e′
is are unit vec-

tors. The index I is a renumeration of i1 . . . iN and can take
K = (Nb

N

)
values. The vector n is an element of the polytope


 :=
{

K∑
I=1

μIγ I | μI � 0,

K∑
I=1

μI = 1

}
.

The extreme points γ i1...iN can now be identified with
|ϕi1 . . . ϕiN 〉 〈ϕi1 . . . ϕiN |. Since the mapping ρ̂ → γ is linear
we find that γ is generated from a linear combination of the
Slater determinants |ϕi1 . . . ϕiN 〉 〈ϕi1 . . . ϕiN |. �
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